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Glossary 

Biocomposile Biological composite materials made 
through biological processes usually in living organ­
isms. Biocompositcs formed through biomineraliza­
tion processes arc referred to as biomineral composites 

Biomimelics Also known as biomimicry, is the study of 
biological systems with the aim of applying the meth­
ods and processes in these systems to the design of en­
gineering materials and systems 10 produce engineer­
ing devices and structures with superior or comparable 
functionalities. 

Biomineralization Mineralization carried out through 
biological processes to wnvert organic materials to 
inorganic materials to form biominerals. Biomin­
eral composites are wmposed of inorganic minerals 
formed through biomineralization processes by living 
organisms in organic matrices of proteins and polysac­
charides. 

Composite A combination of two or more monophase 
materials arranged into a material (or "material stnK­
ture") to produce one or more particular properties 
that are superior to the same properties exhibited by 
the individual wmponent materials. 

Multifunctionalily This is the ability of a material or de­
vice to perform two or more functions simultaneously 
or wnsecutively. 

Se1f healing The ability of a structure to repair damage 
without external intervention. For example,a small cut 
on a human skin will be repaired automatically by the 
body. Man-made structures with such ability are under 
early development. 

Definition of the Subject  

A composite material is a combination of two or more 

monophase materials arranged into a single entity mate­

rial (or "material structure") to produce one or more par­

ticular properties that are superior to the same proper­

ties exhibited by the individual wmponent materials. Un ­

til recently, most composites were designed with a single 




function in mind, most commonly focusing on improving 
strength or durability of the material. Many high perfor­
mance composites have been developed and are perform­
ing excellently in this respect. For example, carbon fiber 
reinforced epoxy is now commonly used in many engi­
neering applications. Carbon fibers have high theoretical 
strength and high stiffness, but are brittle and therefore 
readily break if a very small flaw is initiated. By embed­
ding the fiber in epoxy, which is relatively ductile (less 
flaw sensitive) compared to the carbon fiber, the compos­
ite structure combines the strength and stiffness of the car­
bon fibers with the ductility of the epoxy. A natural exten­
sion of this concept is to develop materials that are opti­
mized for engineering applications in conditions that de­
mand more than one function being performed by a sin­
gle material. For example, a material acting as a structural 
support may as well function as a thermal sensor at the 
same time. 

A multifunctional composite, therefore, is a compos­
ite material that is capable of performing two or more 
functions simultaneously or consecutively. The need for 
improved performance in current engineering application 
and in entirely new areas of application has been the major 
driving force behind the design and development of mul­
tifunctional composites. Multifunctionality is achieved in 
a composite by deliberately and purposefully engineering 
the microsructures of the component materials and the 
composite as a whole usually at the micro- and nano-range 
levels (that is at the length scales of μm and nm). When 
the reinforcement scale is in the nano-region the resulting 
composites are commonly referred to as nanocomposites, 
which is a new frontier in materials science and engineer­
ing. Today, much effort is being geared towards research 
and development of multifunctional composites at various 
materials research departments and institutions across the 
world. 

Introduction 

Multifunctional composites are designed, through mi­
crostructural modification, to enhance or introduce new 
material properties in order to improve or increase the 
functionalities of a structure, with respect to a broad range 
of properties. This can include various combinations of 
magnetic, electronic, electrical, optical, chemical, thermal 
and mechanical properties. In other words, a multifunc­
tional composite provides two or more functionalities si­
multaneously or sequentially with improved performance, 
with less complexity, cost and weight compared to a struc­
ture where these functions are provided by individual 
components. In many cases, a multifunctional composite 

is the only means by which the combination of the desired 
functions can be achieved. 

Requirements for high performance, durability, con­
servation of natural resources, low cost, and in many ap­
plications miniaturization have led to research and de­
velopment of multifunctional composites with high spe­
cific properties, e. g., high strength per unit weight. These 
have especially been the driving forces for applications in 
space exploration, aerospace, information technology and 
energy production and transmission. Thus, materials sci­
ence is a critical tool to bring together different materials 
as composites that can perform more than one function. 
Such composites are designed and engineered at various 
scales, ranging from the atomic level and up. For example, 
load-bearing composites have been developed to simulta­
neously act as thermal sensors by utilizing carbon nano­
tube reinforced polymers [109]. 

A very important multifunctional composite group 
that has been researched over the past two decades is 
the group of carbon nanotube composites because of the 
remarkable mechanical, electrical, thermal and structural 
properties exhibited by the fiber-like carbon nanotubes 
reinforcing component of the composites [35]. Carbon 
nanotubes are added to polymeric matrices to form car­
bon nanotube polymer composites with excellent mechan­
ical and electrical properties [105]. With the nanotubes the 
scale of reinforcement is now in the nano region hence 
these composites are termed nanocomposites, and will 
be discussed in Sect. “Functionalized Carbon Reinforced 
Polymer Matrix Composites”. 

Living organisms are made up of multifunctional ma­
terials. An example is the human skin that functions as 
a container and protector for all internal organs and the 
human structure. It also serves as a heat sensor, touch sen­
sor, and an outlet for sweat and oil. The human skin, made 
up of various cells and layers of cells consisting of blood 
vessels, sensory receptors, glands, and hair follicles, is 
therefore a natural multifunctional composite. Moreover, 
human skin has the amazing ability of self healing. Con­
sequently, nature serves as an inspiration for the develop­
ment of multifunctional materials. A second class of multi­
functional natural composites is the biomineralized mate­
rials found in living organisms. Biomineral composites are 
natural materials, a group of bioceramic-biopolymer com­
posites, produced through cell-mediated processes [40]. 
They are composed of inorganic nano- or micro-scale 
amorphous or crystalline minerals formed through bio­
logically induced or biologically controlled mineralization 
processes by living organisms in organic matrices of pro­
teins and polysaccharides [42,116]. Their functions in­
clude structural support, mechanical protection, move­



ment, grinding, and gravity or magnetic field sensing. This 
class of multifunctional composites is of importance in 
biomimetics and is of interest to both biologists and ma­
terials scientists. They are tough materials combining high 
hardness with high fracture resistance. Examples are bone, 
dentine, enamel, shells, scales, eggshells and sponge silica 
skeletons. There are many other biocomposites that are 
not organic-inorganic such as skin, wood and leaf – these 
are organic and are also multifunctional. 

Many other types of composite materials are now be­
ing developed aiming towards multifunctional compos­
ites as demands are increasing for smaller, lightweight 
but smarter products. Reinforcing components could be 
particles (0-dimensional), fibers (1-dimensional) or plates 
(2-dimensional). The orientation of these reinforcing 
components in a matrix could be random, unidirectional 
or bidirectional, and could be laminar. They are in the 
form of distinct phases in the matrix with sizes varying 
from macrophases to nanophases. When the size of the 
reinforcement is in the nano-range, the composite is re­
ferred to as a nanocomposite. When the nanoreinforce­
ments are composed of a functional nanophase the com­
posite is then a multifunctional nanocomposite in which 
the nanophase provides an advanced functional behavior 
through enhanced properties such as mechanical, chemi­
cal, biological, electrical, magnetic, optical properties. 

A Short Note on Carbon 

Carbon is a critical, enabling material and consequently an 
important component of many multifunctional compos­
ites. We will, therefore, outline some of the key properties 
for this element. 

Carbon is one on the most common elements found on 
earth. It appears in three major forms: diamond, graphite, 
and as various forms of “fullerenes” and “carbon nano­
tubes.” The two former versions occur naturally, whereas 
the latter is typically artificially produced. Diamond, with 
a cubic crystal structure where the atoms are arranged in 
a tetrahedral configuration, is the hardest material found 
in nature. It is an electric insulator. In graphite, the atoms 
are arranged in hexagonal planes that are stacked parallel 
to each other. This layered nature of the structure makes 
graphite anisotropic and relatively soft, since fracture eas­
ily occurs along these layers. In this form, carbon is elec­
trically conductive. 

A third form of carbon was categorized in 1985 [54] 
(even though earlier work indicated their existence) and 
will play a key role in functionalizing composite materials. 
This third form is a variant of graphite, where one layer of 
graphite is wrapped to form a sphere or cylinder. The ini­

tial form described was a 60-carbon atom sphere, where 
the carbon atoms are arranged in 20 hexagons and 12 pen­
tagons on the surface of the sphere. Soon after this dis­
covery, variants of the 60-atom sphere were found, where, 
in particular, the tubular form, carbon nanotube (CNT) 
have provided an exciting new research field [50]. There 
are endless variants of how CNTs can be assembled, but 
the major categories can be summarized as single- and 
multi-wall tubes along with their major division by the 
atomic structure (armchair or zigzag; if arbitrary direc­
tion “chiral” see Fig. 1). CNTs are one of the most promis­
ing materials for functionalizing composites, due to their 
unique properties. For example, the armchair styled CNT 
are metallic, but the other versions are semiconductors. In 
particular, single CNTs are excellent conductor, and can 
therefore serve as nano-sized electrical wires. CNTs also 
have excellent mechanical properties, for example as high 
as 1 TPa elastic modulus has been reported [48,60]. Multi-
walled CNTs consist of either single walled tubes layered 

Composites, Multifunctional, Figure 1 
Illustration of the various atomic configurations a carbon nano-
tube can assume. A carbon atom is located in each of the corners 
of the hexagons 



over each other (“Russian doll-style”), or as a continuous, 
rolled sheet forming a wrapped layered sheet (parchment-
style). There are several interesting review papers dis­
cussing CNT tubes, for example by Thostenson et al. [106] 
focusing on mechanical properties, by Gooding [43] fo­
cusing on electrochemistry and by Bandaru [5], discussing 
electrical properties of CNTs. Two recent review papers on 
theoretical aspects of the thermomechanical properties of 
carbon nanotubes can be found in [20,21]. 

Functionalized Carbon Reinforced Polymer 
Matrix Composites 

Carbon reinforced, polymer matrix composite are now 
commonly used in engineering applications, due to their 
relatively high strength and low weight. The carbon fibers 
give the composite their strength and stiffness, for which 
the structures traditionally have been optimized. However, 
recent developments make it possible to utilize the ability 
of carbon fibers to be electrically conductive. This opens 
up a broad range of opportunities for functionalizing car­
bon reinforced polymer matrix composites. 

Electromagnetic Shielding 

Electromagnetic interference (EMI) is caused by electro­
magnetic radiations emitted from sources that carry elec­
trical current. A common source for EMI is an electronic 
device, but natural sources such as the Northern Lights 
and the Sun can also cause EMI. EMI results in anything 
from annoying “sound sparkles” on the television or cell 
phone to a malfunction of a device or a system (e. g., an 
aircraft). In warfare, EMI can be used to disrupt commu­
nications by the hostile side. Thus, it is important to shield 
aircrafts and communication devices from EMI. Carbon 
reinforced polymer matrix composites can readily be de­
signed to shield EMI. Since carbon is electrically conduct­
ing, the carbon fibers can be used to reflect the radiations. 
By adding conductive fillers into the polymer matrix, the 
composite material can work efficiently as an EMI shield. 
It is now commonly used in many consumer products to 
shield them from EMI, both for protecting the machine 
and from spreading EMI the machine is generating. For 
example Bagwell et al. [4] added short copper fibers to in­
crease EMI. A review of EMI shielding can be found in ref­
erence [27] and a review of conducting polymer compos­
ites that are primarily optimized for EMI shield is found 
in [101]. 

Electrified Carbon Fiber Polymer Matrix Composites 

Interestingly, research from the groups of Sierakowski 
and Zhupanska have shown that the material properties 

in a carbon fiber polymer matrix composite may change 
when subjected to an electromechanical field [97,98,121]. 
Early work [98] indicated that the strength, in particu­
lar the resistance to fracture and delamination, increases 
when the composite is subjected to an electric current. 
Several factors contributes to this, including that (i) the 
mechanical and electromagnetic fields are coupled when 
mechanical and electromagnetic loads are imposed simul­
taneously; (ii) the heat generated in the conducting car­
bon fibers are transferred to the polymer matrix; and pos­
sibly that (iii) the failure mechanisms change when the 
structure is subjected to an electromagnetic field. Recent 
work [97,121] where the impact resistance was investi­
gated, show that the gains are short-term. The impact re­
sistance initially can increase as much as 30%, but for 
a structure subjected to long-term exposure to an elec­
tromagnetic field, the gain is reduced back to the initial 
properties. The losses appear to be caused by the increas­
ing temperature of the polymer due to the heating of the 
carbon fibers. Nevertheless, a structure can temporarily be 
strengthened by imposing an electromagnetic field. More­
over, the heat generated in the carbon fibers could poten­
tially be used to activate self healing mechanisms (self heal­
ing mechanisms are discussed in Sect. “Self-healing Com­
posites”) 

Functionalized Composites with Carbon Nanotubes 

As discussed in the introductory section of carbon, carbon 
nanotubes are probably one of the single most promising 
materials to functionalize composites. The possibilities ap­
pear to be endless and a few limited examples will be dis­
cussed here. 

Single-walled carbon nanotubes (SWNTs) have great 
promise for functionalizing composite materials. They are 
light weight and have high mechanical strength, high ther­
mal and electric conductivity and unique optoelectronic 
properties. They are also light weight, with a small di­
ameter and high aspect ratio. However, these properties 
may be compromised when incorporated into a polymer 
matrix. This is primarily caused by the SWNT not being 
compatible with the polymer matrixes. This results in the 
SWNTs tending to agglomerate into clusters. When the 
SWNT are not bonded properly to the polymer matrix 
and/or appear in clusters, their unique properties may not 
be transferred to the composite materials. Therefore, sig­
nificant efforts are being aimed towards improving the dis­
persion and bonding. 

Chen et al. [19] suggest that molecular engineering is 
a viable approach to achieve good mechanical strength and 
retain the electric conductivity of CNT. They pointed out 



that the problem with dispersion and bonding is due to 
the smooth surface of the SWNT. In a mix of SWNT and 
a polymer matrix, the mechanical load can be transferred 
though mechanical interactions between the SWNT and 
the polymer matrix, via van der Waals’ interactions or co­
valent bonds, or via special non-covalent bonds, such as 
hydrogen bonding. The covalent bonding is in general the 
strongest type of bonding. However, when this is imple­
mented, the electrical and thermal properties are often se­
riously challenged since these bonds tend to interfere with 
the SWNT structure [19]. 

CNTs can be used for energy absorption, which 
have been shown by Chen and co-workers [22,45,86]. 
In their work, they developed a solid-liquid composite 
which combines a non-wetting liquid with a hydropho­
bic nanoporous solid. The basic premise is that a liquid 
is absorbed into nanopores (such as the inside of a CNT) 
when a pressure is applied on the system. They showed 
that this infiltration absorbs and converts mechanical 
work into solid-liquid interface energy, with high energy 
absorption (10–100 J/g). Due to the ultra-high specific sur­
face area of the nanopores, this is several orders of mag­
nitude higher than conventional energy absorption mate­
rials. Moreover, by varying the interface energy, the en­
ergy absorption performance may be adjusted in a wide 
range, suitable for damping protections, vibration proof, 
or blast resistance. The interfacial energy can be changed 
by using chemical admixtures, or using viscous liquid. If 
the load  rate can  be controlled,  this  can  also  change the  
interfacial energy. In addition, by using functional liquids 
(such as electrolytes), the ion density at the nanopore­
liquid interface may be perturbed by external mechani­
cal or thermal fields. Thus, the multifunctional solid-liq­
uid nanocomposite may harvest thermal and mechanical 
energies into electricity [46,87]. 

Polyaniline (PANi) is formed by polymerizing ani­
line (phenylamine, aminobenzene) which is an aromatic 
amine with the formula C6H5NH2. PANi is a  conductive  
polymer, and consequently has great potential to be a use­
ful material component in multifunctional composites. 
When aniline is polymerized with the presence of multi-
walled carbon nanotubes (MWNT), to form a polyani­
line-carbon nanotube composite, the MWNT are coated 
with PANi and form a three-dimensional network within 
a matrix of PANi. This results in a composite with ex­
cellent electro-optical properties [90]. Preliminary work 
has shown that PANi can also work as a biological sen­
sor [61]. Here the SWNT was wrapped with a single-
stranded DNA and mixed with a self-doped polyaniline, 
poly(anilineboronic acid). The composite is able to detect 
nanomolar concentration of dopamine (a naturally occur­

ring hormone). The sensitivity for detecting dopamine was 
increased with a factor of four by adding the SWNT com­
pared to the self-doped polyaniline [61]. 

Polypyrrole (PPy) is formed from synthesized (con­
nected) pyrrole, where pyrrole is a heterocyclic aromatic 
organic compound, C4H4NH. PPy have been used for cor­
rosion protection of metals, discussed in Sect. “Multifunc­
tional Coatings”. In a similar manner as PANi, PPy is 
conducting. An interesting application is to use PPy with 
MWNT, where supercapacitive properties have been mea­
sured [49]. To achieve this, the MWNTs must be aligned 
and then coated by an appropriate layer of PPy. Align­
ment of the MWNTs can be obtained by growing them 
on a quartz glass under appropriate conditions, described 
for example by Hughes et al. [49]. Measurement of the 
charge storage capacity of the aligned-MWNT-PPy com­
posite film show several times charge storage than either 
PPy or MWNT alone (e. g., 2.55 F/cm2 for the composite 
film compared to 0.62 F/cm2 for pure PPy film) [49]. Thus, 
aligned MWNTs coated with PPy have potential applica­
tions for supercapacitors and batteries, as well as sensors. 

Composites as Actuators and Sensors 

Ionic polymers have received significant attention dur­
ing the last decade, based on their ability to work as elec­
tromechanical transducer and potentials to work as sen­
sors and/or actuators, and also as electrolytes in poly­
mer fuel cells. Today, the preferred polymer materials are 
perfluorosulfonic acid (PFSA) polymers, a class of flu­
oropolymers consisting of a hydrophobic polytetrafluo­
roethylene (PTFE) backbone attached to hydrophilic sul­
fonic acid groups (SO–

3) or carboxylate groups via the fluo­
rocarbon polymer side chains. Upon water uptake, the hy­
drophobic groups ionize and attach to the hydronium ions 
(H3O+) to provide a conductive path for proton transport, 
while the polymer network maintains the overall structure 
of the membrane. Commercial material products include 
Nafion®1 membranes and Flemion®2 membranes. These 
membranes are also used as the proton exchange mem­
branes (PEM) for fuel cell applications. A PEM functions 
as a “filter” (an electrolyte), letting protons through the 
polymer membrane, whereas the electrons are forced to 
take a path outside the PEM. From the path of the elec­
trons, electric energy can be harvested. 

Actuators and sensors can be made by an ionic poly­
mer metal composite (IPMC) [3,8,9,56,57,74,75,76,89], 

1Nafion® is a registered trademark of E.I. DuPont De Nemours & 
Co. 

2Flemion® is a registered trademark of Asahi Glass Group in 
Japan. 



Composites, Multifunctional, Figure 2 
A schematic of the principle of an IPMC actuator. a Geometry before a voltage is applied highlighting the morphology of the polymer 
chains (hydrophobic) and the hydrophilic groups forming a cluster. b The structure deforms when an external voltage is applied. c 
The cluster-network model for Nafion® membranes, illustrating the cation migration. Adapted from [47,67,76,95] 

with a potential application as artificial muscles [3,8,9,10, such as salts [3], to achieve its functionality. The metal 
56,57,67,76,94,95,112,114]. In this case, the ionic polymer electrodes are flexible layers, resulting in a soft and flex-
is sandwiched between two metallic electrodes. The ionic ible actuator which can perform large dynamic deforma­
polymer is hydrated, typically with water or ionic liquids tion if placed in an alternating electric field, see Fig. 2. 



Currently, platinum (Pt) and gold (Au) are the preferred 
electrode materials, which defuses into the ionic polymer 
membrane, resulting in a material gradient over the thick­
ness of the IPMC. The actuation is governed by the mo­
bile cations (positively charged) moving towards the fixed 
cathode (negatively charged), resulting in a biased mor­
phology and consequently a bending of the membrane as 
indicated in Fig. 2. When the current is switched, the loca­
tion of the cathode is reversed and the cations will conse­
quently move towards the other side, causing the actuator 
to move in the reverse. Alternatively, the IPMC can work 
as a sensor, where it generates a voltage if it is suddenly 
bent. 

Nafion® polymer based IPMCs relaxes (reduces its de­
flection), whereas Flemion® polymer based IPMCs slowly 
increases its deflection under constant voltage. This is at­
tributed to the mobile cations initially repelling the sul­
fonic acid groups in Nafion® polymer (which gives a fast 
actuation), but when the polarization is held constant, 
the cations relocates slowly, relaxing the IPMC. The car­
boxylate in Flemion® polymers are weaker in polariz­
ing the structure, and therefore the relaxation is not ob­
served [75,76]. 

These actuators can strain up to 3% for voltages less 
than 7 V [67]. This induces a significant bending, where 
stresses up to 30 MPa are reported [67]. Future research 
efforts are focused on reducing the negative effect of de­
hydration (an ionizing liquid is needed for the function), 
as well as addressing the reduced efficiency over time. Cur­
rent applications range from fins to robotic fish to artificial 
eyes [67]. 

Biomineral Composites 

Nature has presented us with a variety of biological com­
posites (biocomposites) such as skin, bone, shell, leaf and 
wood, which are all multifunctional in living organisms. 
Some are organic in nature, e. g. leaf and wood, whereas 
some are organic-inorganic, e. g. bone. Attempting to 
mimic nature, the design of these biocomposites are now 
intensely studied, including the structure and microstruc­
ture and the physical, chemical, electrical, magnetic and 
even optical properties. For example, using a biomimetics 
process M. C. Chang and co-workers have been able to de­
velop a synthetic bone [17,18]. 

Biocomposites formed through a biomineralization 
process are referred to as biomineral composites. Ex­
amples of biomineral composites include bone, dentine, 
enamel, mollusk shells, crustacean exoskeletons, eggshells, 
sponge silica skeletons, and a variety of transition metal 
minerals produced by different bacteria (see references in 

references [42] and  [33]). The functions of the biomin­
eral composites include structural support, mechanical 
protection and movement, anchoring (to another body 
or to ocean floor) grinding, filtering, gravity or magnetic 
field sensing, optical and piezoelectric [33]. Biomineral 
composites are composed of an organic matrix of pro­
teins, lipids and polysaccharides. The structure consist of 
a nano- or micro-scale amorphous or crystalline minerals 
formed by a biologically induced or controlled mineraliza­
tion processes, through complex chemical interactions be­
tween organic and inorganic matrices [2,42,91,116]. The 
structure is usually complex with the organic and the 
mineral components tightly interwoven at the nanoscale 
level, highly ordered and hierarchical to give high strength, 
rigidity along with mechanical and chemical stability, that 
are superior to synthetic materials made from the same 
materials. Biomineral composites are normally designed 
to function under a narrow range of environmental condi­
tions, such as narrow temperature regimes and restricted 
mechanical loads. However, the compositions of biocom­
posites can be altered over time when a gradual change 
in environmental conditions occurs, to achieve necessary 
properties for the survival of the organisms [63]. Mol­
lusks and sponges are known to make use of sophisti­
cated biomineralization mechanisms to obtain structures 
that exhibit attractive combinations of strength, stiffness, 
resilience, and energy absorbing capabilities [63]. Even 
though the mechanisms of biomineralization are yet to 
be fully understood [69], biomineral composites are of 
much interest to warrant in-depth studies by biologists 
and chemists as well as material scientists. The structures 
of a few biomineral composites that are multifunctional 
are briefly described below. 

The crustacean exoskeleton is a layered structure made 
up of the epicuticle layer, which is the topmost layer, the 
exocuticle layer and the endocuticle layer, which is the in­
nermost [25]. The epicuticule is a relatively thin layer of 
about 2–4 μm. It is waxy, acting as a diffusion barrier [77]. 
The exocuticle is about 150–180 μm in Homarus ameri­
canus (American lobster) claw with the endocuticle 3–4 
times this thickness. As a comparison, for the Callinected 
sapidus (Atlantic blue crab) claw, the exocuticle is about 
40–50 μm and the endocuticle 6–8 times thicker [25]. The 
exocuticle and the endocuticle are the major load bearing 
structures of the exoskeleton and are made up of multi­
ple fibrous layers arranged parallel to the surface. The fi­
brous layer consists of chitin-protein (chitin is a biological 
polysaccharide with the generic formula (C8H13O5N)n) 
fibrils bonded by a matrix of minerals and other proteins. 
Each of these fibrous layers is rotated by a small angle rel­
ative to the next layer in parallel, building up to a band of 



Composites, Multifunctional, Figure 3 
The cross-section (top) of the exoskeleton of a Homarus americanus (American lobster) taken from the claw (top right). The outer 
layer (epicuticle) acts as a diffusion barrier while the exocuticle and endocuticle layers are load bearing structures built of mineralized 
fibrous chitin protein. The helicoidal nature of the arrangement of the fibrous layers of the exocuticle and the endocuticle layers is 
shown on the  left. The pore canals and the pore canal fibers in a layer are shown (bottom). Each layer is composed of chitin protein 
fibers (bottom right). Note that the exocuticle layer is denser than the endocuticle layer 

layers that is twisted by 180° to form a helicoidal architec­
ture (Fig. 3). The exoskeleton has through-the-thickness 
holes, pore canals, through which chitin-protein macrofib­
rils fibers, pore canal fibers run perpendicularly to the lay­
ers. Even though some disagreement exists in the litera­
ture, the pore canal fibers appear to run from the bottom 
of the endocuticle to the top of the exocuticle [25,28]. The 
pore canals and the pore canal fibers fill important func­
tions in building the exoskeleton after molting. Moreover, 
Cheng et al. [25] showed that the pore canal fibers are im­
portant for strength of the exoskeleton. In all, the multi-
scaled structure of the exoskeleton, a biomineral compos­
ite, provide the crustacean with a strong structural sup­
port, an impervious defense covering for the body of the 
crustacean, and also serve as a carrying, holding and tear­
ing tool in case of attack or feeding. 

Nacre is another natural biomineral nanocomposite; it 
is also known as mother-of-pearl. It is the iridescent lin­
ing on the inside of the shells of many sea-going bivalves 
and gastropods such as oysters, mussels and abalones. Like 
many other biomineral composites, nacre has a hierar­
chical structure. It is composed of about 95% inorganic 
hexagonal platelets of aragonite (a crystallographic form 
of CaCO3) 5 to 8 μm wide and 0.2 to 0.5 μm thick [6], ar­
ranged in a continuous parallel lamina in 5% organic ma­
trix composed of elastic biopolymers (such as chitin, lus­
trin and silk-like proteins and polysaccharides). The or­

ganic biopolymer is typically 5 to 20 nm thick. Nacre has 
received significant attention in recent years due to its 
high ductility, enhanced toughness and fracture strength, 
along with its low weight, resulting in excellent specific 
properties. Its fracture resistance is about 1000 to 3000 
times greater than that of its component aragonite crys­
tals [30,31]. Its high toughness is as a result of the duc­
tility of the organic matrix in connection with the re­
peated unfolding of the protein molecules. The nanostruc­
ture resembles a brickwork arrangement with a signifi­
cant overlap of the platelets and the organic matrix serv­
ing as the mortal [15]. This architecture is a critical fac­
tor that is responsible for the high fracture strength ob­
served in nacre [6,41]. In addition, Li et al. [59] showed  
that the rotation of the nano-sized grain during loading 
is a key contributor to the high ductility. Many studies 
have been carried out on nacre using various experimental 
and modeling techniques to study its formation, its struc­
ture and morphology, and its deformation and properties, 
especially the mechanical properties [6,16,52,55,62,63,65, 
73,85]. 

Mimicking this material is of interest in the design of 
high performance materials such as impact resistance ar­
mor [7,55,92]. Using layer by layer assembly technique, 
Podsiadlo et al. [84] have been able to prepare a nanostruc­
tured analogue of nacre from nanometer sized sheets of 
montmorillonite clay and a polyelectrolyte. Artificial nacre 



has also been synthesized [103]. Mimicking nacre in cre­
ating one nano-layer of material at a time, Nicholas Kotov 
and his team have evolved a process that allows the cre­
ation of materials one nano-layer at a time. They use this 
process to produce a new material from clay nanosheets 
and a water-soluble polymer that shares chemistry with 
white glue. The material is transparent, very strong, yet 
lighter in weight [64]. 

Animal skeletons are made up of bones which are hard 
and rigid tissues. Bone is self-healing and can continu­
ously regenerate itself. Moreover, bone is relatively stiff 
and tough, and can withstand and adapt over time to local 
stresses. These properties make bone a reliable biological 
structural material. Bone is considered as a nanocomposite 
of minerals and proteins [18,26]: It is composed of a ma­
trix impregnated with calcium carbonate, calcium sul­
phate and small amounts of sodium and magnesium. The 
matrix, consist of collagen fibers impregnated with crystals 
of hydroxyapatite, Ca5(PO4)3(OH), and water. Among the 
functions of the bone is support, locomotion, protection 
for soft and delicate organs (like the skull protecting the 
brain), manufacturing of blood cells and homeostasis. An 
example of bone is the femur; it has a covering of a tough, 
strong membrane, called periosteum which is richly sup­
plied with blood vessels. Next to the periosteum is a layer 
of compact bone and bone forming cells (osteoblasts), ar­
ranged in concentric layers (lamellae) with round small in­
terconnecting canals (the Haversian canals) that contain 
blood vessels, nerves and lymph vessels. Embedded in this 
hard bone matrix are osteocytes, which are associated with 
bone deposition and bone remodeling. Inside the compact 
bone is a thin soft membrane known as the endosteum 
that encloses the marrow cavity that contains soft tissues, 
the yellow marrow [88,108]. The growth and strengthen­
ing of bone is stimulated by mechanical stresses through 
strain detection. This function is carried out by special­
ized cells within the bone that are sensitive to and respond 
to strains. In the absence of mechanical stresses bone be­
comes weak and less developed. Thus, the more the bone 
performs its intended functions the stronger it becomes. 
Mimicking this ability will produce excellent synthetic en­
gineering materials for structural or load-bearing applica­
tions. 

In a study of the sponge Euplectella sp., Aizenberg et 
al. [2] described the structure of its skeleton as being hier­
archical in nature. It has a layered arrangement that gives 
it a high resistance to crack propagation. The skeleton is 
thus composed of a layered biocomposite material. The 
structure is described in Fig. 4, after Aizenberg et al. [2]. 
The microstructure is made up of consolidated hydrated 
silica nanoparticles forming sets of concentric rings glued 

together by an organic matrix to form spicules. This layer 
approach provides toughness and resistance to crack prop­
agation. These spicules are then assembled in parallel into 
bundles within a silica matrix to form struts. The struts are 
arranged to make the cylindrical cage with the ability to re­
sist tensile and shearing stresses and a significant capacity 
for recovery after deformation of the skeleton. 

Aizenberg et al. [1] showed that the tunic spicules of 
the ascidian P. pachydermatina are a biocomposite ma­
terial with well-defined domains of both amorphous and 
crystalline calcium carbonates, separated by an insoluble 
organic layer. The crystalline calcium carbonate is poly-
crystalline calcite, and it forms around the amorphous 
calcium carbonate which serves as the core. The calcium 
carbonate layers contain magnesium and proteins with 
a higher content in the amorphous than in the crystalline. 
The amino acid compositions of macromolecules associ­
ated with the two mineral phases are also quite different. 

Wood is a natural biocomposite material with a multi­
functional capability. It differs from the above mentioned 
bicomposites in that it is not a biomineral  composite.  
Wood is a naturally hard and tough biocomposite mate­
rial that forms the trunk or stem of trees. The material 
consists essentially of elongated hollow cells that carry nu­
trients from the roots to the leaves. The cells make up the 
cellulose fibers that are arranged generally in the grain di­
rection, parallel to the surface of the trunk. Cellulose, with 
a generic chemical formular (C6H10O5)n, is  one  of  the  ma­
jor chemical constituents of wood, others are hemicellu­
lose and lignin. It is a linear polymer with thousands of 
mers in a single molecule and it constitutes about 40 to 
50% of wood. The cross section of wood is composed of 
several layers: the outer bark, the inner bark, the cambium, 
the sapwood, the heartwood, and the pitch. The thickness 
of each layer depends on the age of the tree, the species to 
which it belongs, and on the particular tree. The cambium 
layer is microscopically thin and it grows by cell division 
to increase the diameter of the trunk. The tree trunk in­
creases in diameter by addition of new peripheral growth 
layers that constitute the growth rings. The sapwood layer 
conducts moisture, minerals, oxygen, and nitrogen. As the 
stem (or trunk) grows in diameter, the sapwood progres­
sively forms the heartwood. The heartwood is the thickest 
of the layers and it is the one that provides the structural 
strength. It is usually darker in color because of the min­
eral deposits, gums and resins that are present in it. Cut­
ting across these layers horizontally are tissues called wood 
rays radiating out from the center outward. They help in 
storing and transferring nutrients. Botanically, woods are 
classified as softwoods and hardwoods depending on their 
basic cellular structure and on how moisture moves within 
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Structural analysis of the mineralized skeletal system of Euplectella sp. a Photograph of the entire skeleton, showing cylindrical glass 
cage. Scale bar: 1 cm. b Fragment of the cage structure showing the square-grid lattice of vertical and horizontal struts with diagonal 
elements arranged in a chessboard manner. Orthogonal ridges on the cylinder surface are indicated by arrows. Scale bar: 5 mm. c 
Scanning electron micrograph (SEM) showing that each strut (enclosed by a bracket) is composed of bundled multiple spicules (the 
arrow indicates the long axis of the skeletal lattice). Scale bar: 100 µm. d SEM of a fractured and partially HF-etched single beam 
revealing its ceramic fiber-composite structure. Scale bar: 20 µm. e SEM of the HF-etched junction area showing that the lattice 
is cemented with laminated silica layers. Scale bar: 25 µm. f Contrast-enhanced SEM image of a cross section through one of the 
spicular struts, revealing that they are composed of a wide range of different-sized spicules surrounded by a laminated silica matrix. 
Scale bar: 10 µm. g SEM of a cross section through a typical spicule in a strut, showing its characteristic laminated architecture. Scale 
bar: 5 µm. h SEM of a fractured spicule, revealing an organic interlayer. Scale bar: 1 µm. i Bleaching of biosilica surface revealing its 
consolidated nanoparticulate nature. Scale bar: 500 nm. (Taken from reference [2] with permission from AAAS) 

the living tree. Softwoods are mainly made up of long cells 
of between 3 and 5 mm called tracheids. Hardwoods, on 
the other hand, are mainly made up of two kinds of cells, 
wood fibers (0.7 to 3 mm long) and vessel elements (with 
wide ranging lengths). 

The important physical properties of wood are mois­
ture content, permeability, shrinkage, density. These give 
it the multifunctional capability such as serving as a su­
per-structure, acting as a nutrient storage and transport 
medium, the ability to withstand harsh weather, and 
self-healing. The properties, however, vary greatly across 
species and also depend on factors such as the age of 
the tree, stem form, type of soil and climate. Wood is 
anisotropic with the mechanical properties varying across 
the growth rings and along the height up the tree. The 
mechanical, electrical and thermal characteristics of wood 
make it a popular excellent engineering material over ages. 

Leaf is an organic biocomposite that is flat, broad and 
thin. It is a plant organ in which photosynthesis is carried 
out. The upper surface of the leaf is waxy for the purpose of 
water-proofing. It performs functions such as converting 
sunlight to chemical energy in the mesophyll, transport­
ing glucose, water and minerals through out the plant by 

the vascular bundle; it is water-proof and provides shade 
for the tree. The cross-section is made up of different lay­
ers in this order from the top: upper cuticle, upper epider­
mis, palisade mesophyll, spongy mesophyll, lower epider­
mis and lower cuticle. Embedded in the mesophyll layers 
is the vascular bundle (phloem and xylem) and air spaces 
for the supply of air (carbon dioxide) and moisture that 
comes in through the stomata that dotted the lower epider­
mis through the lower cuticle. The broadness of leaf allows 
it to gather as much sunlight as possible as a supply of the 
energy needed for photosynthesis. Leaf provides a system 
that could be mimicked in designing materials for energy 
conversion and at the same time distributes the product. 

Biocomposites materials produced by nature have 
properties that could be beneficial when reproduced in 
synthetic materials. The design, manufacture from simple 
raw materials, economical use of raw materials and en­
ergy, multifunctionality and degradability of biocompos­
ites are inspirational to biomimetics or biomimicry in the 
design and manufacture of synthetic engineering materi­
als. Another inspiration from nature is the building from 
bottom up, from atomic or molecular level to the macro 
structural level. This provides for efficient use of raw ma­



terials. A thorough study of nature’s biocomposite mate­
rials could, therefore, yield viable procedures and tech­
niques for the design and manufacture of synthetic engi­
neering materials with excellent combination of properties 
that will provide for multifunctionality in them. 

Self-healing Composites 

Biological systems have an outstanding ability in self-heal­
ing; that is, automatically detecting and repairing damaged 
tissue. The repair is made by a material similar to the orig­
inal (causing a scar tissue), or identical tissue (leaving the 
damage area undetectable after repair). For humans, the 
latter can for example be observed in bone, whereas the 
former on skin. Moreover, biological systems can adapt to 
new conditions. Humans build more muscles and bones 
if we increase our daily exercise regime and a tree grows 
branches to find the most sunlight. 

Man-made structures traditionally do not have these 
features. If damage occurs, damage will continue to accu­
mulate until it is detected via human intervention or until 
the structures fails. Today, there are many sophisticated 
means of detecting failures. Even though tremendous ad­
vances have been made towards detecting and repairing 
damage in structures, self-healing materials would signifi­
cantly improve the reliability of structures. During the last 
decade, significant advances have been made towards de­
veloping self-healing composites. The current approaches 
results in a “scar tissue” in the sense that the original ma­
terial is not exactly reproduced, but that the structure will 
function satisfactory. Two materials systems will be dis­
cussed here; (i) ceramic matrix composites and (ii) poly­
mer matrix composites. 

Ceramic materials typically have high strength and 
stiffness, and retain their strength even at high tempera­
tures. Since they are brittle and therefore are considered 
unreliable (tend to break without warning signs that met­
als exhibit, such as plastic deformations, especially under 
tensile stresses) their uses have been limited. To negoti­
ate the brittle response, ceramics can be reinforced. Most 
commonly, ceramics are reinforced with a second ceramic, 
forming a ceramic matrix composite (CMC). The bonding 
between the reinforcement and the matrix is a key parame­
ter that governs the toughness of the CMC. By controlling 
the interface material, referred to as “interphase”, the in­
terfacial bonding can be optimized, allowing for the load 
transfer between the matrix and the fibers, deflects matrix 
cracking and serve as a barrier towards diffusion. When 
considering the strength of the interface material, it must 
be optimized to be “just right,” not too strong and not too 
weak. 

Self-healing of CMCs can be achived through high 
temperature oxidation in silicon carbide based CMCs. Sil­
icon carbide (SiC) reinforced with SiC fiber (SiC/SiC com­
posites) or carbon fibers (SiC/C composites) is mechan­
ically durable up to 1500°C and is therefore considered 
a promising composite for high temperature applications 
such as engines and gas turbines [70]. Even though the 
fibers are brittle in a similar manner as the matrix, the 
fibers and matrix work synergistically to create a ductile 
material. Micro-cracks develop during loading, but these 
micro-cracks are stopped by the microstructural features, 
simulating a non-linear response paralleling yielding in 
metals. When silicon is subjected to elevated tempera­
tures, it quickly forms a protective coating of silica (SiO2). 
Unfortunately, the micro-cracks that are associated with 
the CMC become pathways for oxygen to penetrate into 
the structure, causing internal oxidation. This can weaken 
the structure. By coating the fibers with carefully selected 
materials, the oxidation can be controlled and result in 
self-healing of the micro-cracks. Graphitic carbons (“py­
rocarbons,” “PyC”) and boron nitride (BN) have emerged 
as the most prominent interphase [39,44,70,71,72]. When 
oxygen diffuses through the micro-cracks, a fluid oxide 
is formed due to the oxidation, filling the cracks, Fig. 5. 
These glassy oxides that form can be optimized through 
the interphase. For example, when a borosilica glass is used 
as an additional coating on the fibers, no loss in compos­
ite strength was observed after 200 h at elevated tempera­
tures [39]. Thus, a self-healing mechanism in silicon car­
bide (SiC) matrix composite reinforced with SiC or carbon 
fibers has been observed, which is caused by oxidation at 
high temperatures. The oxidation occurs at temperatures 
above 800°C. The self-healing can continue until the re­
ducing material has been consumed. 

Polymer composites might be the most promising 
systems where self-healing mechanisms can be developed. 
There are several reasons for this. Polymer based sys­
tems are in general less expensive than ceramic based sys­
tems, and tends to be easier to work with. All self-heal­
ing ceramic systems are based on activating the healing 
process through subjecting the material structure to heat. 
Even though some self-healing polymer systems are based 
on heating, the temperature regime for healing polymer 
is significantly lower than for ceramics, thus simplifying 
the process. Furthermore, many self-healing approaches to 
polymer systems are not dependent on heating. Lastly, sev­
eral different approaches for self-healing of polymer have 
been developed so far, thus inviting alternative approaches 
for self-healing. 

One simple concept of healing a damaged structure 
is to subject the material to elevated temperatures as was 
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Examples of interphases used in SiC matrix composites a 
schematic top view of a fiber with a coating (interphase) in a ma-
trix b schematic side view of an advancing crack exposing the 
interphase that oxidizes, resulting in self-healing 

seen for ceramics. This idea is based on that the elevated 
temperature activates a chemical process that results in 
healing. For example, by utilizing a particular thermally 
reversible reaction (e. g., a selected Diels–Alder reaction) 
for cross linking linear polymer chains, a fractured ma­
terial can be healed, as demonstrated by Chen and co­
workers [23,24]. For one material system investigated, af­
ter fracture and subsequent heat treatment, the original 
strength was regained. In this case, the polymer (a furan­
based monomer synthesized with 1.8-bis(maleimido)-3.6­
dioxaoctane) was subjected to mechanical testing lead­
ing to fracture followed by heat treatment at 130°C for 
30 min. In this case, there was no loss in the original 
strength when the structure was re-tested [24]. This ap­
proach to self-healing has the clear advantage that no ad­
ditional material is needed to be added: the material is in­

trinsically self-healing. However, only a very limited set 
of materials that can self-heal by cross-linking the poly­
mer chains upon reheating. An alternative approach for 
healing via heating utilizes an additional material phase 
incorporated into the original material. When subjected 
to sufficient heating, this additional material is activated, 
and can mend the damage structure. For example, a com­
posite made of glass fiber reinforced epoxy retained its 
stiffness after the heated repair [120]. By adding a heat-ac­
tivated material to the composite structure, a design engi­
neer would not be strictly limited to a narrow set of materi­
als. However, a major disadvantage with both of these heat 
activated healing methods is that the healing is not auto­
matic; rather, the structure needs to be treated in a separate 
process. (This may be differentiated from the ceramic self-
healing that was discussed above. The ceramic is operat­
ing at the temperature at which oxidation occurs, but this 
polymer operates at temperature lower than where self-
healing appears.) Nevertheless, depending on the applica­
tion, this approach can be quite useful. 

A more convenient approach to self-healing of a struc­
ture compared to the heat activated systems described 
above is a system that heals itself without active interfer­
ence. Most approaches aiming to achieve this are based on 
introducing one or more phases into the composite ma­
terial. These additional material phases are automatically 
activated when damage occurs. A successful approach 
have been developed by White, Sottos and co-work­
ers, where spherical microcapsules containing a “healing 
agent” and a second phase containing a catalyst are em­
bedded in a polymer matrix composite [12,13,14,53,115]. 
When a crack propagates, the micro capsules in the crack 
path burst and release their healing agent into the crack, 
Fig. 6. As the healing agent fills the crack, it will eventu­
ally contact the catalysts. When this occurs, the healing 
agent will polymerize, filling the crack and effectively heal­
ing the crack. In the work by White, Sottos and co-work­
ers, the agent was a dicyclopentadiene (DCPD) monomer 
and the catalyst a bis(tricyclohexylphoshine)benzylidine 
rethenum (IV) dichloride (a Grubbs’ catalyst) [12,13, 
14,53,115]. This results in a ring-opening metathesis poly­
merization (ROMP) of the DCPD, resulting in a highly 
cross-linked polymer. When stabilized with 100–200 ppm 
p-tert-butylcatechol, the DCPD has a long life and healing 
can be achieved even for aging structures. The micro cap­
sules containing the DCPD ranged from 40–240 μm and 
were made with poly-ureaformaldehyde. In early work, 
curing for 48 h was required to retain 45% of the initial 
strength (if the curing occurred at 80°C, up to 80% of ini­
tial strength was achieved) [12,115]. Subsequent studies 
showed that 10 h were sufficient to achieve full polymer­
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Schematic of a propagating crack in a polymer with micro-cap-
sules filled with a healing agent 

ization (full healing or full strength), and that the fatigue 
life can be increased with over 200% if the structure is 
allowed to rest sufficiently for the healing agent to poly­
merize [13,14]. Most engineering structures are allowed 
to “rest” between operations. For example, cars are nor­
mally used for commuting to work and get sufficient time 
to “rest,” both day and night, whereas airplanes are sched­
uled for regular maintenance that keeps them grounded 
for many hours that may be sufficient for the polymer­
ization to take place. Thus, this system is a promising ap­
proach towards extending the lifetime of polymer matrix 
composites. 

The micro-sphere approach  has  the clear  advantage  of  
being possible to be incorporated into a range of materials, 
and that no particular treatment is needed to activate the 
healing processes. There are, however, some drawbacks. 
These include that  the shell  of  the micro-capsules  have to  
be designed so that it breaks when a crack has developed in 
the bulk material, and that the healing agent comes across 
the catalyst. Moreover, the up to 200 μm diameter spheres 
can possibly interfere with the reinforcement of the poly­
mer, including introducing an unwanted waviness of the 
fiber reinforcement. The latter drawback can be addressed 
by replacing the micro-spheres with hollow micro-cylin­
ders [11,36,68,82,83]. The current state-of-the-art for hol­
low micro-cylinders focuses on using commercial hollow 
glass fibers embedded in composite materials [11,82,83]. 
In a similar manner as to the case of micro-spheres, the 
hollow cylinders are filled with a “healing agent” that is ac­
tivated once the fiber breaks. A two-phase epoxy system is 
used, where the epoxy resin is stored in one set of cylin­
ders and the hardening agent is stored in a second set of 
cylinders. In a layered composite material, the hollow glass 
fibers are aligned with the reinforcement fibers, for exam­
ple the fibers with the epoxy resin are aligned with the 0°­
ply and the fibers with the hardening agent with the 90°­
ply. When cracks develop and propagate, the glass tubes 
break, allowing the epoxy and the hardening-agent to fill 
the damaged zone. The materials are selected so that the 
epoxy cures at ambient conditions. The major challenge 
with this approach relates to the difficulty of finding suit­
able glass tubes. Ideally, the properties of the hollow glass 
tubes should match that of the original reinforcement, so 
they can replace or enhance the composite structure. To 
address this, Pang and Bond [83] purchased commercial 
borosilicate glass tubing and using in-house facilities drew 
the fibers to external diameter of 60 μm and inner diameter 
of approximately 42 μm. The fibers were filled with a com­
mercial epoxy repair agent (MY750 Ciba–Geigy) and the 
corresponding hardening agent respectively [83]. In this 
case, about 90% of the strength of the original strength is 
retained after repair, but the strength degrades with time. 

With the exception of the reversible cross linking poly­
mers, the repair schemes discussed so far for polymer 
composites are all based on one-time repairs; once a mi­
cro-capsule or micro-fiber breaks the healing agent is con­
sumed, and no further healing will occur if another crack 
should develop again at the same point. In contrast, self-
healing in biological systems can occur multiple times for 
repeated injuries, assuming a reasonable frequency of in­
juries. In animals,  this is possible  by the  continuous  flow of  
an intelligent mixture of biochemicals in the vascular net­
work, which is related to the circulatory system. Some at­



tempts are made to mimic vascular network for self-heal­
ing [104,107], where a constant supply of healing agent 
could potentially be provided. There are several manufac­
turing issues involved here, and opens up many potential 
research avenues. 

Multifunctional Coatings 

Applying coating on a structure is many time a cost effec­
tive way of obtaining a multifunctional composite mate­
rial. There are many examples that illustrate this, for exam­
ple environmental barrier coatings, coatings for increased 
wear resistance, and thermal barrier coatings. Most coat­
ings combine several functions by having multiple layers 
where each layer contributes a particular function. 

Coatings for corrosion resistance (sometimes referred 
to as environmental coatings) are probably one of the 
most common classes of coatings, for example covering 
steel with zinc to obtain a galvanic protection, (the zinc 
is sacrificed to protect the underlying steel). Even though 
functional, these cannot be categorized as multifunctional 
and will not be discussed here. More advanced coatings 
are now being developed to protect steel and other met­
als. Some of these coatings have multifunctional capaci­
ties. Some particular interesting coating materials are elec­
tropolymerized polymer composites including polyani­
line (PANi) [51,78,93,102] and polypyrrole (PPy) [51,102]. 
Polyaniline (PANi) is formed by polymerizing aniline 
(phenylamine, aminobenzene), C6H5NH2 and polypyr­
role (PPy) is synthesized pyrrole, C4H4NH. The polymers 
are typically deposited through an electrochemical synthe­
sis in which the thickness can be controlled. The corrosion 
resistance depends on the deposition parameters including 
applied potential and the feeding rate of the monomers. 
By producing a composite of PPy and PANi, the corrosion 
rate can be reduced with more than two order of magni­
tudes compared to unprotected materials [51]. To achieve 
this improved rate, it is crucial to ensure a proper bonding 
of the structure of the polymer composites deposited on 
the metal, which must be controlled through the process­
ing parameters [102]. This class of coatings protects in sul­
furic acid (H2SO4), not so well in hydrochloric acid (HCl), 
and not at all in a Sodium chloride (NaCl) solution [93]. 
Thus, care must be taken when using this type of coating 
for corrosion protection, but evidently, it can be quite use­
ful for a range of applications. 

A second class of important coatings is coatings used 
to ensure low friction and increased wear resistance of 
the underlying structure, tribological coatings. These coat­
ings are critical for a range of applications, including mov­
ing contacts (e. g., bearings), materials processing (e. g., 

drilling), and applications where addition of lubricants or 
materials debris from wearing is unacceptable (e. g., food 
processing, medical implants). Also, by reducing friction 
in moving parts in vehicles, the fuel efficiency of the vehi­
cle can be significantly increased. When optimizing a coat­
ing for wear resistance, the goal is to reach as high hard­
ness as possible [110]. When combining wear resistance 
with low friction, many other aspects much be consid­
ered. There are now several systems used as solid lubri­
cants which allows for both low friction and wear resis­
tance. These include diamond and diamond-like carbon, 
graphite, molybdenum disulfide, hexagonal boron nitride, 
boric acid as well as soft metals [37]. An interesting ex­
ample of a low friction wear-resistant coating consists of 
a composite coating made from a titanium nitride ma­
trix, TiN, with molybdenum sulphides, MoSx, dispersed  
as a second phase. Up to 8% (by weight) addition of MoSx 

does not effect the hardness of the coating (thus promoting 
wear resistance), but decreased the coefficient of friction 
with more than a factor of two, and consequently increas­
ing the life up to 500 times compared to the TiN coating 
alone [29]. 

Of high interest is to combine the corrosion resis­
tance coating with the tribological coatings. This multi­
functional coating would then resist both corrosion, wear 
and provide a low coefficient of friction [113,117]. This 
would increase the lifetime of many engineering applica­
tions, and for example, increase the fuel efficiency of ve­
hicles since it reduces energy losses due to friction. Tri­
bological coatings under stress and at the same time in 
aggressive environments degrade at a significantly faster 
rate compared to if they were subjected to wear alone or 
to the aggressive environments alone, since the two con­
ditions aid each other to aggravate the deterioration of 
the coatings, as illustrated in Fig. 7. In a recent review by 
Wood [117] it is clear that this is a research area that re­
quires significant attention in the future. 

The last class of coatings we will discuss is coatings 
used for high temperature protection: thermal barrier 
coatings (TBCs), used to protect the underlying metallic 
substrate. TBCs are commonly used for protecting super-
alloys in gas turbines (both stationary for energy produc­
tion and mobile for propulsion of airplanes). These sys­
tems are a material system with multiple layers, in which 
each layer is optimized for a particular function. It is made 
up of a bond coat being deposited on a metallic base, af­
ter which a ceramic top coat is deposited, see Fig. 8. In  gas  
turbine engines, a thermal gradient over the top coat of up 
to 150°C is achieved from active cooling of the superal­
loy and by selecting top coat materials with relatively low 
thermal conductivities [38,66,79,99,100,118]. The metal­
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Illustration of a degradation caused by combined wear and corrosion of a coated structure. Wear (illustrated by a sphere moving 
on the surface with an applied normal force) causes cracks in the coating. As the cracks develop, the environment can reach the 
substrate and deteriorate the substrate quickly 
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An example of a thermal barrier coating produced by electron-beam physical vapor deposition (EB-PVD). a Sketch of the system; 
b scanning electron microscopy (SEM) image of the cross-section of the top coat, close to the surface; c SEM image of the interface 
between the top coat, thermally grown oxide (TGO) and the bond coat. Note that b and c are of the same scale. The top coat (yttria 
stabilized zirconia) is intentionally made porous to allow for strain tolerance during thermal cycling 

lic bond coat provides oxidation protection to the super- changing the bond coat properties [32,96]. Thus, it is im­
alloy by sacrificing itself by supplying aluminum to form portant to control the chemical content of the materials 
an alpha-alumina scale (˛-Al2O3) between the bond coat since even small amounts of critical trace elements can en­
and the top coat (Fig. 8). As the alumina scale grows, the hance or reduce the  interfacial  fracture  toughness  of  the  
aluminum content decreases in the bond coat, ultimately structure. Even though TBCs have been used for more 



than a decade, improvements of these multifunctional ma­
terials are still critical. By improving their reliability and 
durability, gas turbine powerplants and aircraft engines 
can become significantly more efficient, reducing their fuel 
consumption and reducing the pollution associated with 
energy production and propulsion. 

Other Multifunctional Composites 

Polyaniline (PANi) as discussed earlier has also been used 
as nanoparticles (rather than the matrix) to achieve mul­
tifunctional composites. For example Dispenza et al. [34] 
used PANi particles in a hydrogel matrix obtaining a bio­
compatible nanocomposite with properties suitable for 
the development of optoelectronic devices. The compos­
ite was obtained by a multistep process, starting with water 
dispersion polymerization of aniline, followed by 
 -irradi­
ation. The 
 -irradiation cross links the PANi to the steric 
stabilizers (either poly-vinyl-pyrrolidone, PVP or poly­
vinyl-alcohol, PVA). Depending on the processing condi­
tions, various properties can be obtained, but the PANi 
particles remain spherical [34]. The composites can un­
dergo two optical transitions and the fluorescence signals 
can vary in wave-length as a function of pH-value. 

Composites with 3-dimensional reinforcements have 
been developed in order to eliminate a number of short­
comings like low shear and transverse stiffness and 
strength exhibited by laminated composites, with appli­
cation in areas such as the aerospace industry. 3-dimen­
sional braided reinforcements give reinforcing support 
in all the three directions thereby suppressing delamina­
tion in the composite and giving a higher damage toler­
ance [80,81,119]. 

Another group of composites that are multifunctional 
are the hybrid composite materials. A hybrid composite 
is made by combing two or more types of fibers in a sin­
gle matrix material or in two or more types of matrix ma­
terials. This gives a greater possibility of achieving multi-
functions by changing the combinations of fibers and/or 
matrix materials [111]. However, the interactions of the 
constituent components of a hybrid composite and large 
number of design variables involved make the design of 
such a composite complex. Examples are carbon-aramid 
reinforced epoxy, glass-carbon reinforced epoxy, and car­
bon-Kevlar reinforced epoxy. Lee [58] classified hybrid 
composites as (1) interply or tow-by-tow, in which tows 
of the two or more constituent types of fiber are mixed 
in a regular or random manner; (2) sandwich hybrids, 
also known as core-shell, in which one material is sand­
wiched between two layers of another; (3) interply or lam­
inated, where alternate layers of two (or more) materials 

are stacked in a regular manner; (4) intimately mixed hy­
brids, where the constituent fibers are made to mix as ran­
domly as possible so that no over-concentration of any 
one type is present in the material; (5) other kinds, such 
as those reinforced with ribs, pultruded wires, thin veils of 
fiber or combinations of the above [58]. 

Future Directions 

Biomimetics is seeking to mimic nature to design and pro­
duce materials comparable or better than the ones nature 
has produced. The goal is to be able to synthesize organs 
for replacement in the body. Such organs should be able to 
perform and grow just like the natural one being replaced. 
This will eliminate looking for or waiting for donors want­
ing to donate such a needed organ which, in some cases, 
the body of the patient may reject in the end. 

For non-biological applications, mimicking multi­
functional biocomposites should be directed at design­
ing synthetic composite materials that can simultaneously 
perform more than one function. Self-healing is another 
aspect being targeted to be achieved in material design. 
The future goal is not only to achieve multifunctionality in 
composite materials but also such materials should be self-
healing. One great lesson from nature is that nature does 
not waste materials in building its structures yet with in­
credible relevant properties. This is because nature builds 
from bottom up, from molecular level to macro level. Abil­
ity to control the design and structure of the material 
on the molecular level will allow production and fabrica­
tion of components, devices and structures with incredi­
ble properties and functionalities without excessive use of 
material or energy inputs. This is a great advantage in con­
servation of material and energy. 
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