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Foot and ankle forces during an automobi le collision: 
the influence of muscles 

E.e. Hardin, A. Su, A.J . van den Bogert' 
DcplIrlmelll of BiOI/Ii'diml En!Jineering. The C/ere/lIIlt/ Clillic "-outu/alion ND-l . 9500 Em;lid AUIIW', Clerdllllli. Oil 44195. USA 

1. Introduction 

Lower limb injuries rrom automobile collisions impair 
and disable people, often permanently (MacKcnsie c( aI. , 
[993; Parenteau et aI., 1996; Pattimore et al.. 1990). 
These injuries have been ranked second in vehicle injury 
cosl (Ma rtin et aI. , 1997; Pletschen et al.. 1990). 
Seat belts and a irbags do lillie to mitigate lower 
extremity injuries (Martin el al .. 2000; Wilson et aI. , 
200 1), and with increasing airbag use in passenger cars. 
injuries 10 the extremities are increasing while those \0 
the head and chest are decreasing (Martin et al. , 1997, 
2000). Some of the most debilitat ing injuries are to the 
foot and ankle. These have been are linked with foot 
pedal use, suggest ing that muscle tensing is part of the 
injury mechanism (Paren teau et a l .. 1996; Partyka and 
Backailis, 1995). 

· Corresponding author. Tel.: + 1-216·444·5566; fax : + 1·216·444· 
9198. 

E-"'(li/ addr('s .•: bogert <8, bmc.ri.cef.org (A.J . van den Bogert). 

Muscle properties can aITecl lower extremity loading 
during a co llision in severa l ways. One way is through 
forces generated by volu ntary muscle activation such 
that as from braking. Secondly, once an impact occurs, 
muscle forces influence the body's movement, and hence 
have an effect on the collision s wilh the vehicle's 
interior. Once collisions occur, muscle forces are not 
consta nt , bUI will increase in response to rapid muscle 
stretch ing Ihal may occur during impact. These 
responses cannot be captured by sim ple models such 
as a spring, or a spring and dash pOI (Winters, 1990). 
The three-element Hill-based muscle model , implemen-
ted as a first-order different ial equation, has been shown 
to predict realistic responses of muscles to rapid streich 
(Co le et al. , 199Gb). 

The influence of muscle tension on ankle and rearfoot 
injuries from an automobile collision has been investi -
gated with cadavers and numerica l simulat ions (Cappon 
et al. , 1995; Funk et aI. , 2002; Kitagawa el al. , 1998a. b; 
Manni ng et a1.. 1998; McMaster et a l. , 2000). In lieu of 
active muscles, forces have been applied to cada veric 
Achilles tendons. but Ihis neglects Ihe mechanical 

http:bogert<8,bmc.ri.cef.org
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properties of active muscle tissue. Also, these experi­
ments do not include whole body movement following 
impact. Most computational models only include triceps 
surae musculature and omit muscle’s well-known 
mechanical properties, such as force-length and force-
velocity relationships. Instead, muscles are modeled 
using spring elements with unknown stiffness property 
values (Kitagawa et al., 1998a, b), and nonlinear tension 
elements in parallel with Maxwell elements (Dubbeldam 
et al., 1999), incorporating viscoelasticity. More re­
cently, lower extremity ligaments and the Achilles 
tendon have been modeled with finite element models 
(FEM), but still exclude the mechanical properties of 
muscle (Beillas et al., 2001; Iwamoto et al., 2000; 
Tamura et al., 2001). 
A Hill-based muscle model was recently implemented 

in commercial software and used to simulate forces 
during a footwell intrusion (Cappon et al., 1999). This 
muscle model did not include series elasticity, which may 
have resulted in overestimation of impact forces on the 
skeleton. Vehicle deceleration was not simulated in this 
model, and the influence of muscle activation on forces 
caused by vehicle deceleration thus remains unclear. 
The aim of this study was, therefore, to use a realistic 

muscle model and determine how muscle activation 
influences the foot and ankle forces during an auto­
mobile collision. Impact responses were predicted for 
three activation states, no muscle activation, minimal 
muscle activation, and maximal muscle activation. The 
specific dependent variables were the peak external 
rearfoot force, Achilles tendon force, and ankle joint 
force. 

2. Methods 

A 2-D musculoskeletal model was created which 
simulated braking with the right leg (Fig. 1). The model 
had two legs consisting of three rigid bodies each, the 
right and left thighs, right and left lower legs, and right 
and left feet. The pelvis, trunk, arms and head were 
represented by one segment (Winter, 1990). Segment 
lengths were obtained for a 50th percentile male 
(Robbins, 1983) having a body mass of 76.6 kg and 
height of 1.75 m. Segment masses and inertial properties 
were based on Dempster’s work (Dempster, 1956; 
Winter, 1990). All segments were connected by friction­
less hinge joints. The model had nine kinematic degrees 
of freedom and equations of motion were generated 
using SD/FAST (PTC, Needham MA, USA). The 
model was implemented with forward dynamics to 
simulate motion under the influence of automobile 
deceleration and muscle activation. 
Six right-side muscle groups were included in the 

model, the glutei, hamstrings, rectus femoris, vasti, 
gastrocnemius, and soleus. Each muscle group was 

represented by a Hill-based model with two compo­
nents, a contractile element (CE) and series elastic 
element (SEE, Fig. 2). Muscles were given constant 
moment arms and properties (Table 1) that have been 
used previously (Gerritsen et al., 1998). Passive elastic 
properties were modeled as torques in hip, knee and 
ankle joints that were functions of two joint angles 
(Reiner and Edrich, 1999), thus including the passive 
coupling between joints which is characteristic of 
biarticular muscles. 
Vehicle contact surfaces were modeled as line 

segments and the vehicle interior was modeled according 
to dimensions for a 1992 Ford Taurus from Ford Motor 
Company (Detroit, MI, USA; Fig. 1). Contact between 
each foot and the toepan and floorpan was modeled by 
22 discrete contact elements, each producing a force 
perpendicular to the surface depending on penetration p 

and its velocity p’ (Wright et al., 1998): 

d eFnormal ¼ a pb þ c p  p’ : ð1Þ 

Fig. 1. The seven body segments represented in the model (gray), the 
six muscles (black), the contact surfaces and the seat restraints. The 
passive left leg is resting on the toepan and the active right leg (gray) is 
braking. The model is shown while braking prior to the crash during 
minimal muscle activation. 

neural stimulation 

a 

boneCEbone 

SEE  

Lmuscle 

Mechanical properties: State equation: 
FCE = f1 (LCE, dLCE/ dt, a) f1 (LCE, dLCE / dt, a) = f2 (Lmuscle - LCE) 

FSEE = f2 (LSEE) 

Fig. 2. The Hill-based muscle model, consisting of a contractile 
element (CE) and a series elastic element (SEE). Activation level of the 
muscle is designated by a. 
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Table 1 
The muscle properties for the models MN and MX. Fmax is the maximal isometric force of the CE. LCEopt is the optimal length of the CE. Width is the 
maximal relative length change of the CE; Lslack is the slack length of the SEE; Lmuscle is the length of the muscle when the hip, knee and ankle are 
positioned at 0 degrees; MAhip; knee; ankle are the constant moment arms of the muscles at the hip, knee or ankle 

Muscle Fmax (N) LCEopt (m) Lslack(m) Width (proportion of LCEopt) Lmuscle (m) MAhip (m) MAknee (m) MAankle (m) 

Glutei 
Hamstrings 
Rectus femoris 

1705 
1770 
663 

0.200 
0.104 
0.081 

0.157 
0.334 
0.398 

0.625 
1.197 
1.443 

0.271 
0.383 
0.474 

�0.062 
�0.072 
0.034 

0 
�0.034 
0.050 

0 
0 
0 

Vasti 
Gastrocnemius 
Soleus 

7403 
1639 
3883 

0.093 
0.055 
0.055 

0.223 
0.420 
0.245 

0.627 
0.888 
1.039 

0.271 
0.404 
0.201 

0 
0 
0 

0.042 
�0.02 
0 

0 
�0.053 
�0.053 

The parameters for each contact point were chosen to 20 

optimally fit force-deformation data from a dynamic 
10impact test on the heel with soft shoe (Aerts and De 

Clercq, 1993): a ¼ 8839; b ¼ 1:066; c ¼ 376:8; d ¼ 
0:4456; e ¼ 0:3896; with F ; p and p’ expressed in N, m, 0 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

-40 

-50 

Time (s) 

Fig. 3. The deceleration pulse applied to the contact surfaces of the 
model obtained from the National Highway Transportation and 
Safety Administration (NHTSA, crash #2075). 

the gastrocnemius with all of the other muscles not 
activated. Each model was placed on the vehicle contact 
surfaces using initial segment positions and velocities, 
and muscle contractile element lengths that existed at 
the end of the simulation of static braking with minimal 
muscle activation (MN) with the exception of MX. It 
was necessary to set the LCE at slack length for MX in 
order to decrease muscle force transients. To simulate a 
frontal crash, vehicle deceleration data were obtained 
from the National Highway Transportation and Safety 
Administration (NHTSA, http://www-nrd.nhtsa.dot. 
gov/database/nrd-11/veh db.html, test no. 2075; 
Fig. 3). This test was a vehicle-to-vehicle frontal impact 
test of a 1992 Ford Taurus LX with a speed of 
61.5 kmh�1 and was used in a previous lower extremity 
injury study (Digges et al., 1995). The data were twice 
integrated and used to generate horizontal displacement 
of the vehicular contact surfaces. Toepan intrusion was 
not included in the model. Crashes were simulated with 
each of the three models (Fig. 4) and the following 
variables were calculated (Fig. 5): peak rearfoot ground 
reaction force (FRF), peak Achilles tendon force (FAT), 

and ms �1, respectively. Contact between the thigh 
segments and seat pan was modeled with 30 discrete 
contact elements in each thigh. The contact model 
between the torso and the seat back was composed of 2 
discrete contact elements. These seat pan and seat back 
contact elements were linear viscoelastic elements with 
elastic properties determined by assuming a total seat 
deformation of 2 cm under full body weight 
(kseat pan ¼ 657:12 N m�1; kseat back ¼ 19; 715 N m�1) and 
critical damping properties (cseat pan ¼ 57:92 N s m�1; 
cseat back ¼ 1737:5N sm�1). Forces parallel to the surface 
of all contact points were generated with a Coulomb 
friction model approximation (Cole et al., 1996a), using 
a friction coefficient of 1.0. The lap belt restraint was 
modeled as linear spring between vehicle and torso 
allowing 15% deformation at 11,120 N (Code of Federal 
Regulations, 2000), providing a force to the maximum 
abdominal protrusion (Robbins, 1983). The shoulder 
belt restraint was modeled as a spring which permitted 
100% deformation at 11,120 N and provided a force to 
the substernum (Robbins, 1983). 
Initial conditions were obtained by performing a 4-s 

simulation of static braking without vehicle decelera­
tion. Suitable static muscle stimulation levels were found 
by minimizing the sum of the six muscle activation 
levels, while requiring a final steady state with pedal 
force of 400 N (Mazzae et al., 1999) and a distance 
between heel and toepan of 5 cm. This represented a 
realistic driving posture (Robbins, 1983), with braking 
performed by the forefoot only (Manning et al., 1998) 
and with minimal effort (Fig. 1). The optimization was 
performed with a simulated annealing algorithm (Goffe 
et al., 1994). 
Three models were tested: maximal muscle activation 

(MX, panic braking), minimal muscle activation (MN), 
and no muscles (NM). Muscle activation levels for the 
MN model, found using the optimization described 
above, were 20.4% for the vasti group and 22.5% for 
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http://www-nrd.nhtsa.dot.gov/database/nrd-11/veh_db.html
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muscle stimulation patterns 

initial 
position 

& 
velocity 

FORWARD DYNAMIC 
MODEL 

Vehicle motion (NHTSA, crash #2075) 

simulated movement external forces, muscle forces, joint forces 

Fig. 4. Data flow in the forward dynamics analysis which simulated body motion under the influence of automobile deceleration and muscle 
activation. Vehicle motion data were applied to the contact surfaces and the model was given initial conditions that were solved previously with the 
optimization of minimal muscle activation for the static driving task. 
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Fig. 5. Free body diagram of the forces on the foot. The dependent 
variables were peak external rearfoot force (FRF), peak Achilles tendon 
force (FAT), and peak ankle force (FAJ), where FAT ¼ Fgastrocnemius þ 
Fsoleus and FAJ ¼ Fmuscles across ankle þ Fbone-on-bone at ankle: 

and peak ankle joint force (FAJ). Ankle joint force was 
calculated as the resultant force on the joint 

~(FAJ ¼ jFFmuscles across ankle þ FF~bone-on-bone at anklej). 

0	 0.05 0.1 0.15 0.2 0.25 
Time (s) 

Fig. 6. External force on the rearfoot (FRF) during initial braking and 
during the crash simulation for all models. Peak FRF force was greatest 
for the model with no muscles (NM) and smallest for the panic braking 
model (MX). The time of vehicle impact is indicated. 

7000 

3. Results 
6000 

There were large differences in external and internal 
force responses between the three models. The peak 
external force (FRF) was greatest for the models with 
minimal muscle activation (MN) and no muscles (NM) 
(1202 N and 1178 N, Fig. 6). These produced peak 
values that were twice that of the panic braking model 
(MX, 629 N, Fig. 6). Muscle activation changed the 
Achilles tendon force dramatically. The panic braking 
model (MX) produced a peak Achilles tendon force four 
times that exhibited by the model with minimal muscle 
activation (MN), 6445 N versus 1430 N (Fig. 7). In both 
cases, the impact resulted in a doubling of tendon force, 
relative to the force that existed during braking, prior to 
impact. Muscle activation had notable effects on the 
ankle joint force as well. The greatest peak ankle force 
occurred in the MX model (10,120 N) whereas the 
lowest was found in the NM model (1451 N, Fig. 8). 

1000 

0 

Time (s) 
0 0.05 0.1 0.15 0.2 0.25 

Model 

Peak 
Achilles 
tendon 

force (N) 
MX 6445 

MN 1430 

Impact 
↓ 

Fig. 7. Achilles tendon force (FAT) during initial braking and during 
the crash simulation for the models with muscles. The panic braking 
model (MX) produced greater than four times the peak FAT exhibited 
by the model with minimal muscle activation (MN). The time of 
vehicle impact is indicated. 
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Minimal activation of the muscles caused intermediate 
values of peak ankle force (3327 N, Fig. 8). 
The crash simulations provided a reasonable qualita­

tive reproduction of a rigid body model kinematic 
response to frontal impact compared to other computa­
tional models (Fig. 9; Crandall et al., 1996; Kitagawa 
et al., 1998a, b). Comparison between the kinematic 
response (Fig. 9) and the force responses (Figs. 6–8) 
shows that the peak force occurs very early in kinematic 
response. With maximal muscle activation, the forward 
motion of the trunk is less than during minimal-effort 
braking, and there is increased deformation in the 
contact between forefoot and toepan (Figs. 9d and h). 

A
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le
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e 

(N
) 

12000 

10000  

8000  

6000  

4000  

2000  

0  

Time (s)  

Model 

Peak 
ankle 

force (N) 
MX 10120 

MN 3327 

NM 1451 

Impact 
↓ 

0 0.05 0.1 0.15 0.2 0.25 

Fig. 8. Ankle force (FAJ) during initial braking and during the crash 
simulation for all models. The greatest peak FAJ existed in the panic 
braking model (MX) whereas the lowest was found in the model with 
no muscles (NM). The time of vehicle impact is indicated. 

4. Discussion 

The aim of this study was to determine how muscles 
influence foot and ankle forces during an automobile 
collision. We found that including muscle properties in a 
rigid body model affected peak external and internal 
force in the foot and ankle, and that muscle activation 
magnitude greatly intensified peak internal forces while 
lessening peak external force on the rearfoot. 
To focus on the role that muscle properties play in 

foot and ankle injuries we limited this study to the 
sagittal plane. A similar planar model was capable of 
predicting external forces during running (Cole et al., 
1996a), but was not validated for seated impacts. A 
previous collision research study which modeled lower 
extremity muscles as Hill models validated their model 
with pendulum impacts to human subjects (Cappon 
et al., 1999), but this validation would be more 
relevant to toepan intrusion than to vehicle deceleration. 
Our results are representative for accidents with fairly 
severe deceleration from vehicle-to-vehicle frontal im­
pact at 61.5 km h�1. Intrusion was not simulated 
because deceleration alone is an injury risk factor 
(Burgess et al., 1995; Crandall et al., 1998) and because 
foot and ankle injuries seem to occur prior to intrusion 
(Kitagawa et al., 1998a, b). In the modeling of the 
vehicle interior, pedal geometry was not separately 
represented and contact between the knee and the 
instrument panel was not modeled. Such contact could 
lead to additional injuries at the knee, but at a later time 
than the peak forces in foot and ankle (Fig. 9). Although 
our model was limited by a rigid foot, the contact 
between the foot and toepan was compliant to account 
for all deformation in the foot. Simulation of the role of 
foot inversion and abduction during braking (Parenteau 

t = 0.048 s t = 0.080 s t = 0.112 s t = 0.144 s 

t = 0.048 s t = 0.080 s t = 0.112 s t = 0.144 s 

(a) 

(e) 

(b) 

(f) (g) (h) 

(c) (d) 

Fig. 9. Kinematic response of the model during minimal muscle activation (a–d) and during maximal muscle activation (e–h). Vehicle impact 
occurred at 0.064 s. At maximal muscle activation, there is slightly less forward motion of the trunk. There is also increased force, and hence 
deformation, between foot and toepan in that condition. 
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et al., 1996; Rudd et al., 1998) would require a more 
complex three dimensional model. 
A modification to our previous muscle model (Cole 

et al., 1996a; Neptune et al., 2000) was made by 
replacing the parallel elastic element (PEE) with passive 
joint moments, leaving a two component Hill-based 
model. This was mechanically equivalent to placing the 
PEE in parallel to the CE and SEE (Jewell and Wilkie, 
1958), and lumping together all PEE effects of muscles 
crossing the same joint. The advantage to this approach 
was that the passive properties of the limb could be 
modeled directly using recently published comprehen­
sive data (Reiner and Edrich, 1999), while still repre­
senting the passive coupling between joints due to 
passive forces in biarticular muscles. We numerically 
simulated to what extent this rearrangement of muscle 
passive elements may have influenced the response of an 
active muscle to constant velocity stretch (Cole et al., 
1996b). We found a small (o5%), but constant 
difference and concluded that this limitation would 
not influence our results. It should also be noted that 
passive muscle force was not included in the calculation 
of Achilles tendon force and ankle joint force. Fig. 9, 
however, shows that the joints have not moved much 
from their initial angle at the time of peak force, 
suggesting that passive muscle forces are still low at that 
time. 
In initiating a simulation with active muscles, the 

initial conditions must represent a steady state of the 
model. Steady state initial conditions, i.e. all forces in 
equilibrium, were guaranteed for MN because of the 4-s 
pre-impact simulation. Because it was important to use 
the same driving posture in all simulations, the MX and 
NM simulations were started from the same initial 
condition. While this was not a steady state, a new 
equilibrium was approached prior to the time of vehicle 
impact (Figs. 6–8). The MX model was slowly pushing 
itself out of the seat, but due to seat friction this was 
sufficiently slow that it did not interfere with the goal of 
using the same initial posture in all simulations. 
Our NM and MN results were similar to peak ankle 

forces in other numerical models (Kitagawa et al., 
1998a, b; Rudd et al., 1998). Our panic braking model 
(MX) produced over two times the highest ankle force 
(10.1 kN) previously predicted by numerical simulations 
(Kitagawa et al., 1998a, b; Rudd et al., 1998). This 
discrepancy may signify a previous underestimation 
from how muscles were modeled, such as only including 
joint rotational stiffness due to muscles (Rudd et al., 
1998) or representing muscles as Kelvin elements 
(Kitagawa et al., 1998a, b) whereas our MN and MX 
models included tensile forces on the skeleton as well as 
muscle properties. On the other hand, a previous model 
which incorporated Hill-based muscle properties (Cap­
pon et al., 1999) at an activation level of only 30% 
exhibited a similar peak ankle force to that of our panic 

braking model (100% activation), but this was a 
simulation of toepan intrusion rather than deceleration. 
Furthermore, the model of Cappon et al. (1999) did not 
include a SEE, which could have resulted in infinite 
short-range muscle stiffness (Cole et al., 1996b) and 
overestimation of impact forces. 
Panic braking (MX) produced a peak ankle force of 

10.1 kN which is within the range of failure loads 
obtained from cadaver tests. Cadaveric fracture loads 
vary widely due to specimen age and bone mineral 
density (Kitagawa et al., 1998a, b; Seipel et al., 2001; 
Yoganandan et al., 2000). For instance, calcaneal 
fracture loads ranged from 3.6 to 11.4 kN with 50% 
probability of fracture from 5.5 to 9.3 kN (Crandall 
et al., 1996; Seipel et al., 2001). Calcaneal fractures also 
occurred at distal tibial loads of 7.8–8.1 kN (Kitagawa 
et al., 1998a, b; Yoganandan et al., 2000), while pylon 
(compression) fractures of the tibia happened at slightly 
lower loads (B7 kN) (Kitagawa et al., 1998a, b; 
Yoganandan et al., 2000). Our results show that panic 
braking during such a collision can produce a tibial 
pylon fracture as well as rupture of the Achilles tendon. 
The mechanism of Achilles tendon failure is a combina­
tion of strong triceps surae contraction and external 
loading on the foot (Wren et al, 2001) at tendon loads 
ranging from 2.1 to 6.5 kN signifying that rupture or 
avulsion was likely during our panic braking simulation 
(peak FAT ¼ 6:4 kN). 
We found that muscle activation greatly intensified 

peak internal forces while lessening the peak external 
force on the rearfoot. Obviously, muscle activation level 
could exacerbate axial loading injuries, such as tibial 
fractures, as has been shown by others using cadaver 
surrogates and numerical simulations (Cappon et al., 
1999; Crandall et al., 1996; Funk et al., 2002; Kitagawa 
et al., 1998a, b; McMaster et al., 2000; Parenteau et al., 
1996; Rudd et al., 1998). The relationship between 
muscle activation and the subsequent external and 
internal forces during a collision was complex. Even a 
low magnitude of muscle activation (MN) had a strong 
effect on internal forces, but not on external forces. For 
example, peak ankle forces after impact from MN were 
more than double that of the model without muscles 
(NM, Figs. 8 and 10), yet external forces were similar 
(Figs. 6 and 10). Furthermore, when muscle activation 
went from minimal to maximal, there was a greater than 
fourfold increase in Achilles tendon force after impact 
(Figs. 7 and 10), yet joint loading only tripled, primarily 
due to the decreased external reaction force accompany­
ing greater muscle activation (Figs. 6–8). Muscle forces 
reduced the external force (FRF) because the foot was 
held in plantarflexion on the pedal, thus slowing 
the motion of the heel towards the toepan and 
mitigating external impact force. This mechanism can 
be observed in cadaver experiments and may result in 
fewer calcaneal fractures, but more pylon fractures of 
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Fig. 10. Peak external and internal forces in each of the three models. 

the tibia (Funk et al., 2002). The quadrupling of peak 
Achilles tendon force from MN to MX is due not only 
to increased activation, but also to the force-velocity 
and force-length relationship in muscle, specifically 
during an eccentric contraction when high force 
production is possible. This force increase in activated 
muscle due to rapid stretching caused by impact might 
be called an ‘‘active response’’, though activation is not 
changed. These internal and external force relationships 
highlight the potentially complex effects of muscles on 
forces and kinematics on the driver’s lower extremity 
during a vehicle collision. 
The influence of muscle properties thus appears to be 

significant. Manipulating muscle activation or contrac­
tile element behavior is one unique advantage of 
computational musculoskeletal models in predicting 
the influence of muscle properties on collision injuries. 
Cadaver models do not only lack muscle activation and 
muscle properties, but also the influence of the whole-
body response on foot and ankle forces. 
In light of our findings, we conclude that (1) active 

braking could exacerbate lower extremity injuries during 
vehicle collisions, and (2) active braking can lead to an 
inverse relationship between external and internal forces 
in the lower extremity during a vehicle collision. 
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