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Introduction 

Adaptive Surrogate Modeling for 
Efficient Coupling of 
Musculoskeletal Control and 
Tissue Deformation Models 
Finite element (FE) modeling and multibody dynamics have traditionally been applied 
separately to the domains of tissue mechanics and musculoskeletal movements, respec­
tively. Simultaneous simulation of both domains is needed when interactions between 
tissue and movement are of interest, but this has remained largely impractical due to the 
high computational cost. Here we present a method for the concurrent simulation of 
tissue and movement, in which state of the art methods are used in each domain, and 
communication occurs via a surrogate modeling system based on locally weighted 
regression. The surrogate model only performs FE simulations when regression from 
previous results is not within a user-specified tolerance. For proof of concept and to 
illustrate feasibility, the methods were demonstrated on an optimization of jumping move­
ment using a planar musculoskeletal model coupled to a FE model of the foot. To test the 
relative accuracy of the surrogate model outputs against those of the FE model, a single 
forward dynamics simulation was performed with FE calls at every integration step and 
compared with a corresponding simulation with the surrogate model included. Neural 
excitations obtained from the jump height optimization were used for this purpose and 
root mean square (RMS) difference between surrogate and FE model outputs (ankle force 
and moment, peak contact pressure and peak von Mises stress) were calculated. Optimi­
zation of the jump height required 1800 iterations of the movement simulation, each 
requiring thousands of time steps. The surrogate modeling system only used the FE model 
in 5% of time steps, i.e., a 95% reduction in computation time. Errors introduced by the 
surrogate model were less than 1 mm in jump height and RMS errors of less than 2 N in 
ground reaction force, 0.25 Nm in ankle moment, and 10 kPa in peak tissue stress. 
Adaptive surrogate modeling based on local regression allows efficient concurrent simu­
lations of tissue mechanics and musculoskeletal movement. 

Keywords: finite element modeling, multibody dynamics, surrogate modeling, movement 
optimization 

Computational biomechanics has largely been separated into 
two distinct modeling domains: finite element analysis (FEA) 
(e.g., Refs. [1,2]) and multibody dynamics. Due to computational 
efficiency, muscle driven multibody models have been the pri­
mary method used in the optimization of movement patterns [3]. 
While predicting resultant joint loads and muscle forces, muscu­
loskeletal models generally do not provide a detailed representa­
tion of soft tissue structures. Therefore, the distribution of muscle 
forces and joint loads at tissue levels and effects of tissue proper­
ties on human movement cannot be studied. Conversely, studies 
focusing on soft tissue structures have historically utilized finite 
element (FE) methods that required significant computational 
resources and well-defined boundary conditions [4,5]. From 
analyzing a specific structure, such as a medial collateral ligament 
(MCL) in the knee, to modeling a whole joint or organ, such as 
the foot, FE methods have the ability to yield important soft tissue 
information [6–10] not found in musculoskeletal simulations. 
There is, however, currently no method for incorporating me­
chanical or sensory effects of soft tissue deformations into predic­

1Corresponding Author. 
Contributed by the Bioengineering Division of ASME for publication in the JOUR­

NAL OF BIOMECHANICAL ENGINEERING. Manuscript received February 29, 2008; final 
manuscript received August 21, 2008; published online November 26, 2008. Review 
conducted by Mohamed Samir Hefzy. 

tive musculoskeletal simulations. Creating a framework that spans 
both domains would allow simulations of this coupled behavior of 
muscle actuated multibody dynamics with realistic soft tissue 
models. 

Combining the benefits of two domains, especially for use in an 
optimization scheme (usually required for predictive movement 
simulations), is a methodological and computational challenge. At 
a similar scale, the development of multidomain analyses incor­
porating fluid-solid interactions and structural analysis techniques 
for automotive crash analysis, aerospace applications, and fatigue 
have illustrated the possibility of multidomain simulations 
[11–15]. In musculoskeletal biomechanics, attempts have been 
made to apply multidomain techniques but these usually consisted 
of nonconcurrent simulations. Typically, soft tissue FE models 
were driven with boundary conditions supplied by a musculo­
skeletal simulation and effectively served as a postprocessing tool 
[16]. This does not allow the prediction of how tissue may affect 
skeleton movement, either through mechanics (e.g., joint laxity) 
or through neural pathways (e.g., osteoarthritic pain). 

Of notable exception, Koolstra and van Eijden [17] attempted 
concurrent simulations of the temporomandibular joint and jaw 
structure using muscle activations, rigid body dynamics, and soft 
tissue deformation. An explicit framework was utilized and the 
computational cost for each solution was not reported. A major 
challenge in concurrent domain coupling is that FE simulations 
are required at each time step of a movement simulation. Typi­
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cally, a forward dynamic simulation of movement contains thou­
sands of time steps, and an iterative movement optimization may 
require thousands of such movement simulations until the optimal 
movement is found. This adds up to millions of FE simulations, 
which would thus require enormous computational resources in 
order to solve just one movement optimization problem. In order 
to obtain solutions, modelers typically focus on one of the mod­
eling domains, while simplifying the other. For instance, surface-
surface penetration has been used within multibody dynamics to 
compute reaction loads in the knee [18] or between the foot and 
the ground [19]. This is a good approximation when tissue defor­
mation is limited to a surface layer but not generally applicable. 

Under conditions where the analysis requires iterative simula­
tions of a computationally expensive model, surrogate modeling is 
often employed. In general, surrogate modeling approaches can be 
classified as global or local methods. Global methods fit a statis­
tical regression model to a defined set of input/output sets. Accu­
racy of a global method depends on the number of available data 
sets and the goodness of fit of the approximation over the whole 
domain. Examples include response surface techniques and neural 
networks. Lin et al. [20] developed a response surface approxima­
tion of knee joint contact mechanics and demonstrated its feasi­
bility for potential use in optimization routines. This promising 
work showed a significant reduction in computational cost asso­
ciated with the use of the surrogate model but requires an a priori 
estimate of input data ranges for response surface fitting. In addi­
tion, for higher dimensional input spaces, response surface ap­
proximations of complicated or highly nonlinear behavior are dif­
ficult to capture with a low-order polynomial or other function 
approximators. User input would also be required to produce a 
new approximating function whenever the underlying model is 
changed or updated, such as for patient specific models of joint 
contact or soft tissue restraint. Local methods use a set of neigh­
boring points only and include locally weighted regression, spline 
fitting, or radial basis functions. Lazy learning [21] is one form of 
locally weighted regression based on linear or polynomial fits to 
neighboring points. It is particularly attractive because it retains 
all the original data and can provide error estimates to drive an 
adaptive sampling scheme for generating additional data. This al­
lows unimportant areas of the domain space to be avoided and the 
highly nonlinear areas can be densely sampled to accurately de­
scribe the response. 

The objective of this study was to illustrate that finite element 
analysis of tissue deformations can be coupled to musculoskeletal 
movement simulations concurrently and effectively by the use of 
an adaptive surrogate modeling scheme. To realize this possibility 
and to assess feasibility, an optimal control solution for maximum 
height jumping was obtained using a musculoskeletal model of 
the lower extremity, a finite element model of the foot, and a 
corresponding adaptive surrogate model representation of the fi­
nite element model. We specifically explored answers to the fol­
lowing questions. (1) Is it possible to perform a forward dynamic 
movement optimization using this system? (2) How comparable is 
the movement simulation when using the surrogate foot model 
against that fully coupled with the FE model? (3) How much 
computation time is required when using the surrogate foot 
model? 

Methods 

Musculoskeletal Model. The musculoskeletal model has been 
described previously [22,23]. The model contained seven body 
segments: trunk, thighs, shanks, and feet. Joints were assumed to 
be ideal hinges, and there were no kinematic constraints between 
the feet and the ground, resulting in a total of nine kinematic 
degrees of freedom. Eight muscle groups were included in each 
lower extremity: iliopsoas, glutei, hamstrings, rectus femoris, 
vasti, gastrocnemius, soleus, and tibialis anterior. Each muscle 
was represented by a three-element Hill model, as described in 
McLean et al. [24], with muscle properties from Gerritsen et al. 

Fig. 1 Coupled simulation of musculoskeletal movements and 
tissue deformations focusing on the adaptive surrogate model­
ing approach. The components of q represent talus rotation 
and vertical position and Q are the corresponding loads. Note 
that when a finite element analysis is requested Q is returned 
back to the musculoskeletal model for movement simulations 
and also to the surrogate model with the corresponding q to 
expand the database. Data handling was performed in 
Matlab „Mathworks, Inc., Natick, MA… where a script was devel­
oped to link the musculoskeletal model with the FE through file 
input/output and with the surrogate model representation of 
the foot complex directly. 

[22], and simulated with a custom C code. This model has 50 state 
variables: 9 generalized coordinates, 9 generalized velocities, 16 
muscle contractile element lengths, and 16 muscle activations. 
Equations of motion were generated by SD/Fast (Parametric Tech­
nology Corp., Needham, MA): 

M(q)q̈ + C(q, q̇) + G(q) + R(q)FMT + QFEA(qFEA(q)) = 0  (1) 

where M is a mass matrix, C are centrifugal and coriolis effects, G 
represents gravity, and FMT are the muscle forces, applied via a 
matrix of moment arms R. The final term represents reaction loads 
applied to the foot segment by the finite element model of the 
foot, which will be introduced below. In the absence of friction 
and viscoelastic effects, these loads are only dependent on kine­
matic boundary conditions qFEA, which are a known function of 
skeleton pose q. 

The model was configured in an initial squat position, where 
the joint angles were chosen to prevent excessive passive force 
contribution from extensor muscles. The vertical position and 
trunk orientation were then calculated in order to satisfy static 
equilibrium conditions (Figs. 1 and 2). An optimal steady state, 
which minimized neural excitation values while maintaining zero 
accelerations, provided state variables of the muscles (activation 
and muscle length) that will be used as the initial condition (along 
with rigid body degrees of freedom) for all forward dynamic 
simulations. 

Finite Element Model of the Foot. A plane strain foot model 
(Figs. 1 and 2) was implemented in ABAQUS (Simulia, Providence, 
RI). A sagittal plane cross section along the second ray of the foot 
was used to represent the bone and tissue geometry. Out-of-plane 
thickness was set to an approximate adult foot width of 80 mm. 
Selection of a thickness value allows adequate representation of 
ground reaction forces from predicted contact pressures. Bones 
were modeled as rigid and the soft tissue was assumed to be a 
nonlinearly elastic (hyperelastic) incompressible material. More 
specifically, coefficients of an Ogden material model, which mini­
mized the differences between the model predicted and the experi­



Fig. 2 Movement of the lower extremity during jumping ob­
tained from the simulation with maximum jump height predic­
tion. von Mises stress distributions within the FE model of the 
foot are also illustrated for three time points during the 
simulation. 

mental response of the heel pad under indentation were used [25]. 
Bones other than the phalanges were combined into one rigid 
segment, which was controlled by prescribing the vertical position 
and the orientation of the talus relative to the ground. These were 
the kinematic boundary conditions needed to run finite element 
simulations. In effect, the FE model of the foot and the muscu­
loskeletal model were directly coupled by sharing boundary con­
ditions at a point in the talocrural joint and thus, the ankle is 
modeled as a hinge joint. The phalanges were represented as an­
other rigid segment, which was free to move during simulations. 
Soft tissue surrounding the metatarsophalangeal (MTP) joint 
served to restrain the movements of this segment during passive 
toe flexion. Elements between the metatarsal head and the proxi­
mal phalanx also contributed to passive MTP joint stiffness and 
were modeled as linearly elastic (E=1X 106 Pa, v=0.3). Contact 
between the plantar aspect of the foot and the ground was mod­
eled as frictionless, eliminating the need to prescribe the horizon­
tal translation of the talus during simulations. Once the vertical 
translation of the talus and its orientation was passed to the finite 
element model, the FE simulations were capable of returning the 
vertical reaction force and moment at the talus to the musculosk­
eletal model. Stress-strain distribution within the soft tissue and 
plantar pressures were by-products of the finite element analysis 
that can be used to control movement in future studies. 

The two-dimensional (2D) finite element model was developed 
to align with the neutral position of the foot in the musculoskeletal 
model. Ankle joint coordinates, qFEA, were directly coupled be­
tween the FE and musculoskeletal models. Coupled time-domain 
boundary conditions, such as acceleration and velocity, were not 
necessary as the FE model did not include mass, inertial effects, or 
time-dependent material properties. 

Surrogate Modeling Method. The Lazy Learning Toolbox 
[21,26] for Matlab (Mathworks, Inc., Natick, MA) was used as the 
surrogate modeling tool with two inputs, ankle vertical position 
and plantar/dorsiflexion rotation, and four outputs, vertical load, 
plantar/dorsiflexion moment, peak plantar pressure (PPP), and 
peak von Mises stress. Lazy Learning is a local interpolation 
method based on the use of the nearest neighbor input/output sets 
present in the database. The linear regression option was utilized 
and a leave-one-out cross validation error (CVE) was computed, 
based on a regression model using the nearest N neighbors. The 
distance from the query point Xq to candidate neighbors Xi was 
defined as the “Manhattan” distance 

m 

d(Xi,Xq) = 2 wjIXij  − Xqj  I (2) 
j=1 

where Xij  and Xqj  are the jth coordinates of the database point and 
query point, respectively. In the present application, m=2 is the 
number of dimensions in the input space and wj are the weighting 
factors that define its metric distance. In the present application, 
weights were set to 1.0 and inputs were normalized on the data­
base range, which has units of meters (translation) and radians 
(orientation). The number of nearest neighbors was allowed to 
range from 7 to 20 and for each of the four model outputs, the 
number of neighbors was selected based on the minimization of 
CVE. 

Cross validation errors of the local regression model were com­
pared to prescribed error tolerances for reaction force and reaction 
moment. Initially tight tolerances were used to populate the data­
base. Thereafter, the tolerances were set to 200 N and 0.2 N m, 
respectively, based on the assessment of surrogate model outputs 
against FE model results using this initial database. When both 
CVE estimates were below the specified tolerances, the local 
linear regression model was used to predict output. When either 
error was above the specified tolerance, an FE simulation was 
completed and the results were supplied to both the musculoskel­
etal model and the database (Fig. 1). A complete description of the 
lazy learning algorithms can be found in Atkeson et al. [21]. 

Movement Prediction. To test the efficacy of the multidomain 
simulation, an optimization was performed to generate a maximal 
height jumping movement. Left-right symmetrical neural excita­
tion patterns for the eight muscles were parameterized as 32 pa­
rameters along simulation time: the excitation values for four time 
points of 0.09 s, 0.18 s, 0.225 s, and 0.27 s. Time values were 
chosen based on our preliminary jumping simulation studies and 
included a neural excitation parameter near the expected toe-off 
(0.225 s). It is possible to select a larger number of nodes to 
identify a finer jumping control scheme but it is not necessary to 
illustrate the concurrent simulation framework. To start the 
optimization, control variable neural excitations were set to 0.5. 
Bounds were prescribed on the neural excitations to only allow a 
range of 0.01–1.0. A lower bound of 0.01 was specified to avoid 
an inherently unstable condition, if the muscles were to impart 
zero force. It should also be noted that once the tolerance values 
were chosen, the initial database was cleared. This allowed the 
true contribution of the surrogate model to be assessed over the 
optimization routine. 

Each objective function evaluation consisted of one complete 
forward simulation using a parameter vector p containing the 32 
neural excitation parameters. The forward simulation was termi­
nated at the beginning of the flight phase at which time the objec­
tive function was calculated as the center of mass jump height: 

2vyJ(p) = y + (3)
2g 

where y and vy are the vertical position and velocity of the center 
of mass, respectively, when the feet leave the ground, and g is the 
gravitational acceleration. The bounded maximization problem 
was solved using sequential quadratic programming (SQP, Matlab 
Optimization Toolbox, Mathworks, Inc., Natick, MA). The con­
vergence criteria for the objective function was set to 1/10th of a 
millimeter. 

As a verification of the surrogate model, neural excitation val­
ues from the optimized jump were utilized to compare results 
from a directly coupled musculoskeletal and FE model simulation 
and a corresponding simulation with the surrogate model in­
cluded. FE results were utilized at every integration step for the 
directly coupled simulation. RMS errors were calculated between 
the two simulations to compare the objective function (jump 
height) and the foot model outputs (reaction loads and tissue 
stress). 



Fig. 3 Jump height with respect to function call throughout 
the entire optimization process. 

Results 

The optimization routine successfully achieved a center of mass 
jump height of 18.2 cm with respect to a standing configuration 
(Figs. 2 and 3). During the optimization, approximately 1800 
movement simulations were performed, each requiring several 
thousand evaluations of the foot model. A total of 51 optimization 
iterations were performed, with each iteration consisting of an 
initial model evaluation followed by 32 forward simulations for 
gradient calculations, and a few more simulations to find the mini­
mum for the iteration. Average percentage FEA runs were calcu­
lated over all 51 iterations for initial function evaluation and cal­
culation of individual components of the gradient (Fig. 4). As  an  
iteration proceeded from function evaluation to gradient calcula­
tion, the number of FE simulations decreased from 13% to 2% 
(Fig. 4). This demonstrates that for the relatively small changes to 
the control variables during the gradient calculations, the surro­
gate model was effective in learning a specific area of the input 
space. Over the whole optimization, the utilization of the surro­
gate model resulted in an average reduction of 95% in the number 
of potential FE simulations, compared to the direct coupling 

Fig. 4 Percent FE analysis for each successive function call 
averaged over all optimization iterations. The horizontal axis 
represents an iteration during the optimization with 33 function 
calls „one initial forward dynamic simulation for function evalu­
ation plus 32 gradient calculations…. Additional function evalu­
ations during line search were not included in this graph due to 
the inconsistent number of evaluations per iteration. It should 
be noted that in direct coupling of the musculoskeletal and FE 
models, FE simulations will be conducted 100% of the time. 

Fig. 5 Scatter plot of inputs „talus rotation and vertical ankle 
position… used to generate the database of FE simulations 
„top…. Isometric view of the database for the ankle moment 
„middle…, and vertical load „bottom… as a function of the two  
inputs. Database points were graded to represent steep „red/ 
lighter… to flat „blue/darker… areas of the data set. 

between the FE model and musculoskeletal model (Fig. 4). This 
reduction allowed the movement prediction simulations to com­
plete in approximately 4 weeks on a Linux based dual processor 
Intel® Xeon 3.4 GHz machine with 6 Gbytes of memory. 

The final database contained over 140,000 FE input/output sets. 
Each FE simulation required from 4 s to 50 s to converge, de­
pending on foot position and orientation. Graded input/output sets, 
based on a calculated slope using the ten closest neighbors, high­
lighted the nonlinear nature of the FE foot model (Fig. 5). As this 
is a maximal effort simulation many data points were required in 
high load, and thus very stiff, areas of the database. These points 
tended to be added in the later stages of the movement optimiza­
tion. 

Accuracy of the surrogate model simulation was within 1 mm, 
obtained from the difference in predicted jump height versus that 
obtained using FE simulations at every integration step. Optimal 
neural excitation values were utilized during one forward simula­



Fig. 6 Peak pressure plot „top… and ankle vertical load „bot­
tom… as a function of time for the optimal solution. The plot 
portrays close agreement between surrogate model results and 
those obtained from FE analysis. Toe-off occurred at approxi­
mately 0.25 s and peak pressure values represent the foot-floor 
interaction. Contour plots for von Mises stress were included 
in Fig. 2 with peak values yielding a very similar behavior as 
peak pressure. 

tion for the comparison. Surrogate model predicted ankle reaction 
loads were acceptable when compared to the FE results through­
out the maximal height jumping simulation with RMS errors of 
1.59 N for the vertical load and 0.244 Nm for the plantar/ 
dorsiflexion moment (Fig. 6). Peak contact pressure and von 
Mises stresses were also predicted throughout the jumping simu­
lations and showed very good agreement between surrogate model 
predicted values and FE results with RMS errors of 2 kPa and 
7 kPa (0.7% and 1.0% of the maximum value predicted during 
jumping), respectively. 

Discussion 

The presented modeling methodology successfully optimized 
the jump height, using neural excitation patterns as control vari­
ables, with a coupled musculoskeletal lower extremity model and 
FE model of the foot. The FE model results were stored in a 
database, from which a surrogate model attempted to predict sub­
sequent FE results using local regression. When the estimated 
error of the regression model was below the specified tolerance, 
the surrogate model output was used, otherwise a new FE simu­
lation was performed. As expected, this surrogate modeling 
scheme was able to gradually eliminate the need for FE simula­
tions, thus removing its computational cost that appears to be a 
bottleneck in concurrent simulations of musculoskeletal move­
ments and tissue deformations. Furthermore, we have shown that 
the optimized jumping simulation using the surrogate foot model 
sufficiently reproduced the same neuromuscular movement simu­
lation directly coupled to the actual FE model. Finally, we 

demonstrated that the surrogate modeling method provided good 
estimates of tissue level variables, such as peak stress. 

Maximal height jumping has been extensively studied in the 
literature and was also chosen for this study because of its 
straightforward objective to be used as a test problem. Utilizing 
two-dimensional models, Pandy et al. [27] achieved a jump height 
of 33 cm and van Soest et al. [28] a height of 39.2 cm, with the 
jump height defined by the vertical displacement of the center of 
mass relative to the standing configuration. Compared to the jump 
height of 18.2 cm in this study, the difference in performance may 
be partly due to differences in muscle properties, including a gen­
erally lower maximum force producing capability for individual 
muscles of our study. Additional differences include the choice of 
control variables and the assumption of frictionless contact, which 
has been shown to reduce the predicted jump height [29]. Passive 
toe flexion also likely reduced the maximum achievable jump 
height but we do not exclude the possibility that the gradient 
based SQP algorithm did not reach to a global optimum. We 
should therefore consider this solution to be a local optimum, and 
future work will explore implementation using a global optimiza­
tion routine. Nevertheless, this movement optimization served 
as a good vehicle to demonstrate the feasibility of utilizing a 
multidomain simulation in a computationally intensive optimiza­
tion of movement. 

Further advances to the presented model will include the incor­
poration of friction along with validated 2D and 3D FE foot mod­
els. Interface loads and peak plantar pressures are influenced by 
friction and the path taken to a given foot-ground orientation will 
affect the deformation of the plantar tissue. Simulated jumping 
does not necessitate friction whereas other movement patterns, 
such as gait, require the shear force supplied by the foot-ground 
interaction. When friction is included, path dependent kinematic 
variable(s) will need to be incorporated into the estimation for 
accurate approximations using a surrogate model. As one might 
expect, the dimension of the input space, and the number of data 
points, will grow substantially as these features are included. The 
local regression approach with adaptive sampling has the potential 
to avoid the “curse of dimensionality” by only generating data­
base points where needed. In practical applications, database man­
agement can be costly and more sophisticated neighbor searching 
methods [30] will be useful as the complexity of the model in­
creases. Even in this study, with the final database size of over 
140,000 points (Fig. 5), database management contributed signifi­
cantly to the overall computational time. 

Computational benefits of the surrogate model were assessed 
based on literature reported run times and in-house simulations. 
Computation times for the optimization were not reported by 
Pandy and Zajac [31] for two-dimensional jumping simulation. 
When the model was further developed in three dimensions, the 
optimization routine for maximal jumping required between 
1 month and 2.5 months (for the single processor machines) [32]. 
As more complex models and movement patterns are adopted, the 
computational expense further increases with one study citing 
10,000 h of computational time for a gait cycle optimization [33]. 
McLean et al. [24] reported 37 h of computational time to simu­
late a cutting maneuver and Neptune et al. [34] required 660 h to 
optimize a simulation of running. We are aware that all these 
simulations considered a different number of muscles and nodal 
parameters for muscle excitations and were conducted using vari­
ous computational platforms. Nevertheless, it is clear that move­
ment prediction takes considerable computational time even when 
one does not consider soft tissue deformations through coupling. 
None of the studies cited above attempted concurrent simulations. 
As stated earlier, the complete optimization routine for this study, 
even using a surrogate model of foot deformations, required ap­
proximately 4 weeks of computational time (672 h). Computa­
tional expense for the forward simulations during the optimization 
routine varied dramatically, from �1 min up to multiple hours, 
depending on the percentage of FE simulations and the database 
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size. It would not have been feasible to perform a movement 
optimization without the surrogate model. One forward simulation 
using neural excitations from the optimized jump with direct FE 
analysis at every integration point required 9.3 h of computational 
time. If direct coupling had been implemented for the movement 
prediction problem, FE analyses would be performed at every 
integration point during the 1800 function calls (each represent­
ing one forward simulation). The associated expense for the com­
plete optimization routine in this study would have required ap­
proximately 698 days (16,752 h) of computational time. 
Obviously, computational expense is a central consideration when 
performing optimizations of movement patterns and becomes 
even more important when soft tissue deformation is included. 

The performance of the locally weighted regression method 
will depend on algorithm parameters, such as polynomial order, 
the number of neighbors considered, distance metric in input 
space, and the tolerance value for adaptive sampling. For this 
study we selected a set of values that provided reasonable local 
regression characteristics but an extensive parameter tuning is 
warranted to decrease requested FE simulations without diminish­
ing regression accuracy. Based on the errors found in the surrogate 
model after completion of the movement optimization, we suspect 
that the cross validation error estimates are overly pessimistic and 
that fewer FE simulations, possibly by relaxing the tolerances, 
would have been sufficient to achieve good results. While the 
0.244 Nm RMS error for the ankle moment output metric ap­
peared to be relatively high, peak errors occurred at the high load 
areas of the database and still represented less than 1% of the 
applied moment. Sensitivity of the jump height and accuracy of 
the surrogate model to changes in the interpolation parameters 
remain a future direction of this work. Regardless, the linear ap­
proximation method proved to be accurate, and through succes­
sive refinement in the database, it reduced the potential number of 
FE simulations during an optimization iteration by 95% (Fig. 4). 
As a result, the disproportionate computational cost associated 
with the FE model was overcome, while the coupled behavior of 
the musculoskeletal and tissue models was retained. Implementing 
a higher order regression technique could lessen the computa­
tional FE burden, and thus the number of database points, but may 
require more time to perform each regression. 

Exploration of the ankle-foot complex has clinical applications 
in the prevention of diabetic foot ulceration. With the coupled 
simulations, we will be able to explore the closed loop interac­
tions between sensory loss, neuromuscular control, and tissue 
stress and damage. The proposed methodology, however, is not 
limited to this specific case. Any coupled, computationally expen­
sive modeling system could potentially benefit from a surrogate 
modeling approach. The complex behavior of the knee would be a 
very good application where soft tissue effects and joint level 
mechanics could be predicted. Traditionally, computational mod­
els of the knee have required substantial resources and boundary 
conditions that have not included musculoskeletal loading. Mod­
els of shoulder, hip, and other joints of interest could also be 
developed. Of particular clinical interest, the defined geometry 
and material behavior of joint replacements would be well-suited 
to this method. Other applications in biomechanics could include 
tissue-fluid interactions and coupling of cellular mechanics to tis­
sue and organ level models. 

Direct coupling of finite element analysis to a single forward 
dynamics of a musculoskeletal model has been shown to be pos­
sible [17]. However, predictive simulations that require multiple 
solutions of the forward dynamics problem can only be possible 
with a cost-effective approach. To the authors’ knowledge, this is 
the first study to complete a predictive optimization of an active 
movement with a coupled musculoskeletal and FE model of tissue 
level mechanics. A surrogate modeling technique was developed 
to efficiently and adaptively predict the joint reaction loads and 
important soft tissue conditions of a corresponding FE model. Far 
less simplification of the joint behavior versus traditional muscu­

loskeletal modeling is an important benefit of this method, and the 
ability to utilize and predict tissue and joint mechanics adds clini­
cal insight. This optimized muscle loaded simulation helps to fur­
ther advance the state of musculoskeletal modeling and is an im­
portant step toward the development of musculoskeletal 
simulation strategies that are more aware of tissue deformations. 
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