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Model-based estimation of muscle forces exerted during movements 

Ahmet Erdemir ", Scott McLean n, Walter Herzog b, Antonie J. van den Bogert <t, • 
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I. Introduction 

The fo rce output of cardiac muscle can be quantified by 
simply recording arteria l pressure. It is far more difficult to 
obtai n clinically relevant information on the function of 
skeletal muscles. Imagine what could be done with such 
information. In the treatment of cerebral palsy, the cli ni
cian co uld "see" which muscle is responsible for an abnor
mal gait pattern, and that muscle cou ld then be directly 
targeted for surgery. In an athlele with a recurrent overuse 
injury, we could "see" the loads being plaeed upon bones 
and joints during movement and how these loads are 
altered during rehabilitation. There a re many ot her neu ro
logical and orthopaed ic problems where knowledge of 
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muscle forces could enhance clinical decision ma king. In 
this paper, we will review what methods currently exist, 
and 10 whieh extent Ihey are ready for clinical applicati ons. 

Direct measu rement of muscle forces ill vivo is usually 
lim ited to minimally invasive measu rements in superficial 
tendons such as the Achilles (Finni et aI., 1998: Komi 
et aI., 1992). Otherwise, ill vivo measuremen ts can be con
ducted in the operation room where a force transducer 
can be placed on a tendon, following data collection and 
the removal of the device before the completion of the sur
gery, e.g. fl exor tendons of fingers d uring su rgeries of carpal 
tunnel (Dennerlein et a l., 1998; Dennerlein et al ., 1999; Den 
nerlein, 2005; Schuind et aI., 1992). Such approaches may 
not necessarily be feasi ble in a clinical sett ing; therefore 
such tendon force measurement techniques have been uti
lized mostly in research laboratories (R avary et al .. 2004; 
Fleming and Beynlloll. 2004). Non-invasive methods rely 
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on the basic principle that muscles produce skeletal move
ment and ground reaction forces. Clearly, none of these 
observable variables provides information on any single 
muscle. Instead, a technique known as inverse dynamic 
analysis has been developed, based on computational mod
eling of the dynamics of linked body segments. The analysis 
produces estimates of joint torques, each of which repre
sents the resultant action of all muscles crossing a joint. 
While inverse dynamic analysis has become a routine tool 
in clinical gait analysis (Vaughan et al., 1992; Winter, 
2005), muscles are not represented and the approach 
provides no information on muscular load sharing, ago
nist–antagonist activity, energy transfer between joints via 
biarticular muscles, and dynamic coupling (van den Bogert, 
1994; Zajac et al., 2002). Electromyograpy (EMG) data can 
support a clinical inverse dynamic analysis to more effec
tively interpret joint torques, but there are no estimates of 
individual muscle forces (Zajac et al., 2003). 

Actual estimates of muscle forces can only be obtained 
with computational models in which the skeleton and mus
cles are both represented. Implemented in a variety of 
forms, musculoskeletal models have been used in conjunc
tion with non-invasive measurements to obtain individual 
muscle forces during a number of movement tasks. Within 
the current article, we have attempted to critically evaluate 
those studies that have combined musculoskeletal models, 
optimization methods and movement data to estimate indi
vidual muscle forces. A review of literature is first provided 
with the necessary methodological background, followed 
by the applications of the various techniques with a discus
sion of limitations. Novel strategies that attempt to improve 
understanding of muscle function are also presented. We 
will conclude with recommendations, for clinical applica
tions and for further research that may increase the applica
bility and validity of these techniques in clinical practice. 

2. Musculoskeletal dynamics 

Dynamic human motion is achieved via activation of the 
muscles, which subsequently produce force and in turn, 
move the joints in a controlled fashion to accomplish the 
predetermined task requirements. Quite often, these tasks 
are also required to take place against the action of exter
nal forces. The outcome of this entire process largely 
depends on the force-generation properties of the muscles, 
the anatomical features of the skeletal system (e.g. anthro
pometric properties, muscle paths) and the underlying neu
ronal control system. It is thus critical to understand the 
coupling between these mechanisms if one wishes to exam
ine the success and applicability of various muscle force 
estimation techniques. A brief explanation on modeling 
these various components is thus presented below. 

2.1. Equations of motion 

For illustrative purposes, we will consider a musculo
skeletal system where the kinematic degrees of freedom 

(DoF) are a set of n joint angles q. The relationship 
between movement and muscle forces in a musculoskeletal 
model (Fig. 1A) can be expressed in matrix form by Eq. (1) 
(Pandy, 2001). 

MðqÞ€q þ Cðq; q_Þ þ GðqÞ þ RðqÞF MT þ E ¼ 0; ð1Þ 

where M(q) is the system mass matrix (n · n); Cðq; q_ Þ is the 
centrifugal and coriolis loading (n · 1); G(q) is the gravita
tional loading (n · 1); and E represents external forces. 
R(q)FMT represents muscular joint torques (n · 1), where 
R(q) is the matrix of muscular moment arms (n · m) and  
FMT are the muscle forces (m · 1, m: number of muscles). 

The system is usually redundant, with the number of 
unknown muscle forces exceeding the number of equations 
(m > n). In order to estimate muscle forces therefore, one 
must either reduce m by combining muscles (Pierrynowski 
and Morrison, 1985); or use a methodology relying on opti
mization principles (described below). In its simplest form, 
the reduction approach converges to the standard gait 
analysis protocol where the muscular torque at each joint 
is calculated from movement data and the ground reaction 
forces (Otten, 2003; Fig. 1B). In that case, the generalized 
system equations reduce to allow one-to-one correspon
dence between degrees of freedoms and muscular loading: 

MðqÞ€q þ Cðq; q_Þ þ GðqÞ þ T MT þ E ¼ 0; ð2Þ 

where TMT are the muscular joint torques (n · 1) which are 
equal to R(q)FMT. 

2.2. Muscle–skeleton coupling 

The origin and insertion sites of the muscles of interest 
define the associated moment arms at the joints that they 
span. This moment arm, multiplied by the force generated 

Fig. 1. (A) A musculoskeletal model of the lower extremity utilized in 
forward dynamics solutions. Muscle forces generate the movement of the 
hip, knee, and ankle joints. (B) A joint torque-driven model of the lower 
extremity commonly used for inverse dynamics analysis of gait data. 
Lower extremity was simply illustrated as an example; similar models exist 
for upper extremities and other body segments. 



by the muscle, is the magnitude of the muscle force contri
bution to the resultant joint torque which generates joint 
rotation. Moment arms are classically defined as the dis
tance between a muscle’s line of action and the joint’s axis 
of rotation. As indicated in Eq. (1), this distance may be 
joint angle dependent. 

A more general definition of moment arms is provided 
using the principle of virtual work (e.g., An et al. 
(1984b)). If Rij(q) for example, is the moment arm of mus
cle j with respect to joint axis i, the following equation 
holds: 

@LjðqÞRijðqÞ ¼ - ; ð3Þ 
@qi 

where Lj(q) is the origin–insertion length of muscle j as a 
function of all joint angles q. Considering this relation
ship, a musculoskeletal model that is used for estimating 
muscle forces must necessarily incorporate accurate and 
anatomical descriptions of the muscle insertions and the 
three-dimensional path of the muscle relative to the moving 
skeleton (Delp and Loan, 1995; Herzog, 1992). 

2.3. Muscle modeling 

The magnitude of the muscle force depends on its acti
vation level (from the activation dynamics, Eq. (4a)) as well 
as its force-generation properties defined by force–fiber 
length and force–fiber velocity relationships (Eq. (4b), 
Fig. 2). Also important are the properties of the tendon, 
which is serially attached to the muscle and completes the 
musculotendon unit (Zajac, 1989). Zajac (1989) presented 
the widely known Hill-type muscle model in a generic fash
ion as two differential equations: 

a_ ¼ f1ðu; aÞ; ð4aÞ 
_lM ¼ f2ðlM; lMT; aÞ; ð4bÞ 

where u is the muscle excitation and a is the muscle activa
tion. lM is the muscle fiber length and lMT is the musculo
tendon unit length. Muscle force (FMT) is the by-product 
of the solution of these dynamic equations. It is common 
practice to represent any musculotendon unit by defining 
the following model parameters: maximum isometric force 
(F0), optimal fiber length (l0 ), maximum shortening veloc-M

ity (vS), tendon slack length (lTS) and pennation angle (a) 
(Zajac, 1989). For a given state, all these intrinsic muscle 
properties influence the magnitude of the muscle force, 
and therefore define the boundaries of maximal muscle 
force during muscle force estimations. This model has been 
widely accepted and used in many large-scale musculoskel
etal models as well as commercially available software such 
as SIMM (Musculographics, Inc., Chicago, IL, USA; Delp 
and Loan (1995)). 

2.4. Forward solution 

The system equations (Eq. (1) or Eq. (2)) provides the 
relationship between skeletal motion and muscle forces or 
joint torques occurring during the movement under inves
tigation. How this equation is used depends on the 
research/clinical problem and the availability of the exper
imental data or a priori information related to the move
ment. When muscle excitations or joint torques are 
available or assumed, a forward dynamics approach can 
be utilized that integrates the system equations to calculate 
the movement patterns (Fig. 3A): 

€ ½Cðq; _ ð5Þq ¼ MðqÞ-1 qÞ þ GðqÞ þ T MT þ E]: 

The approach is advantageous in that the movement is 
predicted. Yet, accurate (a priori) knowledge of muscle 
excitations (forces) or joint torques is rare, eliminating 
the stand-alone application of this technique. This method, 
however, can be utilized in combination with optimization 
to estimate muscle forces. Examples of this will be reviewed 
below. In forward solutions, E is usually obtained using a 
viscoelastic contact model (Eðq; q_ Þ; e.g., McLean et al., 
2003). A less common alternative is to use measured exter
nal loads as input (E(t)) but this can lead to unstable 
solutions. 

2.5. Inverse solution 

The inverse dynamics approach has been a frequent 
component of muscle force estimation routines, due to 
the availability of the joint kinematics data and ground 
reaction forces following a standard gait analysis. Given 
the time history of these variables, it is possible to calculate 

Fig. 2. Commonly used musculotendon model for musculoskeletal simulations. The contractile element (CE) of the muscle is in parallel with the passive 
element (PE); all in series with the tendon. Force generation capacity of the muscle was defined by the force–length and force–velocity properties of the 
contractile element and the nonlinear spring properties of the passive element. In the most general form, tendon elasticity is assumed to be nonlinear and 
pennation angle (a) is included in the calculations. 



A 

B 

Fig. 3. (A) Data flow in a musculoskeletal model during forward dynamics simulations. At each time step, the integration scheme calculates muscle forces 
and joint kinematics using muscle and kinematic states of the previous time step. (B) Data flow in a joint torque-driven model for inverse dynamics 
simulations. Time history of joint kinematics and external loading are fed into linear algebraic equations to solve for joint torques. 

muscular joint torques at each instant of the movement by 
re-arranging Eq. (2) (Fig. 3B): 

T MT ¼ MðqÞ€q þ Cðq; q_ Þ þ GðqÞ þ E: ð6Þ 

Although Eq. (6) is a straightforward representation of the 
system dynamics to solve for muscular joint torques, it is 
rarely used in practice. Instead, muscular joint torques 
are typically derived from equations of motion of a single 
segment, working recursively from distal to proximal (Win
ter, 2005). A notable exception is the work by Kuo (1998), 
who applied Eq. (6) to a whole body model. Such an ap
proach was found to be advantageous since there are typ
ically fewer unknown joint torques than equations 
(degrees of freedom) in a whole body model. q includes 
translational and rotational degrees of freedom for the 
body relative to the ground where the forces and moments 
are known to be zero. 

The inverse dynamics technique has also been utilized to 
evaluate gait changes as a result of pathology or treatment 
(Davids et al., 2004). These types of investigations are 
descriptive, not predictive, and interpretation at the muscu
lar level is necessarily based on a total muscular joint tor
que, and also possibly on EMG data. With the help of 
optimization techniques described in the following sec
tions, the methodology can be used to estimate muscle 
forces, therefore providing an in-depth evaluation of mus
cle function during the measured movement. 

3. Muscle force estimation 

Model-based estimation of muscle forces usually requires 
optimization regardless of the strategy (inverse or forward 
dynamics) selected to solve for the equations describing 
the musculoskeletal system (Pandy, 2001; Tsirakos et al., 
1997). The redundancy of muscular load sharing can be 
addressed by minimizing a cost or objective function appro
priately selected for the movement under investigation. The 
adoption of either an inverse or forward dynamics approach 

is typically dependent on the availability of the experimental 
data or the clinical/research question to be answered. 

3.1. Inverse dynamics-based static optimization 

Muscle force estimation using gait data combined with 
inverse dynamics and static optimization has been prac
ticed for almost three decades (Tsirakos et al., 1997). First, 
joint torques are calculated from joint kinematics and 
ground reaction force data using Eq. (6). The muscular 
load sharing problem is then solved for each instant in 
time, by minimizing an objective function J (e.g. total mus
cle force) subject to constraints representing the equality of 
the sum of individual muscular moments to the joint tor
ques calculated from the inverse dynamics analysis 
(Fig. 4A, Eq. (7)). The individual muscular moment is cal
culated from the muscle force (the unknown of the optimi
zation problem) and muscle moment arms, which are 
derived from musculoskeletal anatomy and may or may 
not depend on joint angles. Usually, the maximum possible 
muscle forces are limited by physiological values as an 
additional boundary constraint (Eq. (7)). Muscular dynam
ics can be implicitly implemented by deriving time-depen
dent bound constraints on muscle force from lower and 
upper bounds of excitation levels fed through a dynamic 
muscle model (Happee, 1994; Happee and van der Helm, 
1995). The optimization problem may be subject to addi
tional constraints (g,h) depending on the specifics of the 
joint under investigation, e.g. constraints on the direction 
of joint contact force to prevent dislocation of the glenoid 
joint during simulations (van der Helm, 1994). 

minimize JðF MTÞ 
subject to RðqÞF MT ¼ T MT; ð7Þ 

0 6 F MT 6 F max ; 

gðF MT; qÞ 6 0; 

hðF MT; qÞ ¼ 0: 
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Fig. 4. (A) Inverse dynamics-based static optimization. A joint torque-driven model solves for joint torques. Initial muscle force values are fed into a 
musculoskeletal model that calculates muscular moments. Muscle forces are iteratively updated by an optimization scheme until the objective function J 
(e.g. total muscle stress) is minimized and equality constraints between experimental joint torques and muscular moments are satisfied. (B) Forward 
dynamics assisted data tracking. Initial values for muscle excitations are used to calculate muscle forces and joint kinematics using forward dynamics. 
Muscle excitations are iteratively updated by an optimization algorithm to minimize tracking error between experimental data and model predictions (the 
objective function J) and satisfy additional constraints. Measured external forces may also be included in tracking error calculations. (C) Optimal control 
strategies. Initial muscle excitations are used to calculate muscle forces and joint kinematics in a forward dynamics fashion. Muscle excitations are 
iteratively updated by an optimization scheme to minimize a physiologically based (e.g. metabolic energy consumption) or to maximize a performance-
based (e.g. jumping height) objective function J and satisfy task constraints g. Experimental data are solely needed for evaluation of results. 

Inverse dynamics-based static optimization has been equality and boundary constraints of muscle forces are typ
commonly applied to estimate muscle forces in the lower ically linear and proper selection of an objective function 
extremity during walking (Table 1). Several investigators can further increase cost-effectiveness by reducing the opti
tested the sensitivity of the results on objective function mization problem into linear programming, e.g. total mus
selection (e.g., Glitsch and Baumann, 1997; Collins, cle force (Rohrle et al., 1984; Pedersen et al., 1987). 
1995), as well as model parameters, (e.g. Glitsch and Bau- Although limited, the linear programming can be imple
mann, 1997; Herzog, 1992; Brand et al., 1986). Many sim- mented into standard movement analysis in a straightfor
pler models and movements were also investigated for ward fashion. In particular, a double linear programming 
these purposes (Table 1). Static optimization is computa- formulation (spinal compression force subject to mini
tionally efficient since it does not require multiple integra- mized maximum muscle intensity) was frequently used 
tions (solution of Eq. (6) instead of Eq. (5)). The moment for the analysis of spinal forces (Table 1) and implemented 



Table 1 
Estimation of muscle forces using inverse dynamics-based static optimization 

Activity Model Objective Validation Notes	 Reference 

Walking	 31 MGs 
7 Segments 

27 MGs 
4 Segments 

31 MGs 
7 DoFs 

47 MGs 
3 Joints 

42 MGs 
6 DoFs 

47 MGs 
3 Joints 

7 MGs 
3 Joints 

47 MGs 
3 Joints 

47 MGs 
3 Joints 

Minimize sum of muscle 
forces + 4 * (sum of joint moments) and 
also original + weighted hip joint force 

Minimize sum of muscle stresses 

Minimize sum of muscle forces and also 
mechanico-chemical power output of 
muscles (a function of muscle rest length, 
endpoint velocity and zero force velocity) 
Minimize sum of nth power of muscle 
stresses (n = 1, 2, 3, 4 and 100) 

Minimize sum of muscle forces 

Maximize endurance by minimizing sum 
of muscle stresses cubed 

Minimize sum of muscle forces/muscle 
forces squared/muscle stresses/ligament 
forces/contact forces/instantaneous muscle 
power 

Minimize sum of muscle forces/muscle forces 
squared/muscle stresses/muscle stresses 
squared/muscle stresses cubed 

Minimize sum of muscle stresses cubed 
(maximize endurance) 

EMG, comparison of hip joint forces with 
literature 

Temporal validation of muscle force 
predictions via EMG 

EMG, predicted muscle forces must not 
exceed physiological muscle stress capability, 
muscle force gait patterns should not display 
excessive inter-subject variation 
EMG 

Comparison of model outputs to previous 
literature. Sensitivity analysis of muscle and 
joint forces to changes in muscle origin/ 
insertion coordinates 
Comparison of three solution sets of muscle 
forces and hip joint forces 

EMG 

EMG 

Comparison of model predicted femoral 
head contact forces to previously reported 
direct outputs from an instrumented 
prosthesis 

Predicted muscle load sharing and lower 
limb joint reactions. Modifying objective 
function to include minimization of joint 
reactions resulted in a limited reduction in 
joint forces 
Accurate determination of hip joint contact 
and muscle forces was sensitive to hip center 
location 
Biggest source of error in present gait models 
was depicted as the incomplete information 
on the physiologic function and role of 
individual muscles during the gait cycle 
n = 3 was found to be appropriate. Muscular 
force patterns were not sensitive to small 
changes in n 
Geometrical changes or errors in hip muscle 
idealization had a greater influence on 
muscle forces than joint forces at the hip 

Illustrated the sensitivity of muscle force 
predictions on physiologic cross-sectional 
area of muscles 
All objectives except the principal of 
minimum total ligament force afforded 
successful predictions of muscle activation. 
All minimization principles failed to 
accurately predict antagonistic activity at the 
hip and knee 
Internal loading was found to depend on the 
description of joint kinematics. Muscle 
stresses squared combined with less 
constrained joints predicted synergistic and 
antagonistic muscle activities 
Provided information on the magnitudes and 
directions of pelvic muscle forces and 
acetabular contact forces during normal gait 

Seireg and 
Arvikar (1975) 

Crowninshield 
et al. (1978) 

Patriarco et al. 
(1981) 

Crowninshield 
and Brand (1981) 

Rohrle et al. 
(1984) 

Brand et al. (1986) 

Collins (1995) 

Glitsch and 
Baumann (1997) 

Pedersen et al. 
(1997) 



Knee flexion 

Running 

Clenching 

3 MGs 
1 DoF 

10 MGs 
3 DoF 

4 MGs 
1 DoF 

47 MGs 
3 Joints 

26 MGs 
6 DoFs 
16 MGs 
6 DoFs 

10 MGs 
1 to 3 DoFs 

Minimize sum of muscle forces/muscle 
stresses 

Minimize sum of muscle forces/joint 
moments/muscle stresses cubed/muscle 
activations 

Minimize sum of muscle activations 
squared/shifted muscle activations squared 

Minimize sum of muscle forces/forces 
squared/muscle stresses/stresses squared/ 
stresses cubed 

Minimize sum of muscle forces/joint reaction 
forces 
Minimize relative activity of the most active 
muscle 

Minimize joint loads/sum of muscle forces/ 
forces squared/muscle stresses/stresses 
squared 

None 

EMG 

None 

EMG 

Muscle, joint and bite forces were compared 
to literature 
Previously published literature 

Ability to predict joint morphologies and 
muscle outputs with reasonable trends 

Predicted load sharing depended on the Dul et al. (1984) 
choice of decision variable in the objective. 
When forces were used, activation preference 
for muscles with large moment arms 
observed. When stresses were used, 
activation preference for muscles with 
product of large moment arms and cross-
sectional area were noticed. Linear load 
sharing criteria predicted orderly muscle 
recruitment that might apply to onset of 
muscle action. Non-linear criteria predicted 
synergistic muscle action 
All (linear, non-linear and physiological) Li et al. (1999) 
optimization criteria predicted antagonistic 
muscle contraction. Methodology was found 
to be more sensitive to kinematic 
information than selection of particular 
optimization criteria 
A parameter was subtracted from muscle Forster et al. 
activation to represent stability of the joint (2004) 
and to control antagonistic activity. Co
contraction was predicted through the use of 
this shift parameter 

Internal loading was found to depend on the Glitsch and 
description of joint kinematics; muscle stress Baumann (1997) 
squared combined with more flexible joints 
predicted synergistic and antagonistic 
activities 

Minimization of sum of muscle forces were Osborn and 
consistent with in vivo observations Baragar (1985) 
Magnitude of bite forces were calculated for Koolstra et al. 
a range of bite point locations and bite force (1988) 
directions. The magnitude of maximum 
possible bite force was found to depend on 
bite location and direction 
Minimization of joint load appeared to be Trainor et al. 
more important for morphological (1995) 
development of the temporomandibular 
joint 

(continued on next page) 



Line missing

Table 1 (continued) 

Activity Model Objective Validation Notes	 Reference 

Spinal 22 MGs 
compression 

4 MGs 
2 DoFs 

10 MGs 
2 DoFs 

10 MGs 
3 DoFs 

10 MGs 
3 DoFs 

11 MGs 
2 Segments 

10 MGs 
3 DoFs 

Minimize maximum EMG Prediction of muscle forces and lumbar spine loads 
muscle contraction stress during isometric tasks imposing extension, bending 
required to satisfy and twisting; isometric heavy exertions; and level 
equilibrium walking 

Minimize maximum None A multi-objective, double linear programming 
muscle intensity/spinal approach was proposed as an alternative scheme to 
compression force solve for muscle forces. In the later study 
subject to minimized co-contraction was modeled as an incremental 
maximum muscle increase in the lower bounds of muscle forces 
intensity 

Minimize sum of cubed EMG Predictions minimizing muscle stresses cubed were 
muscle stresses/squared closest to EMG. Muscular contributions to spinal 
muscle stresses/ compression force were highly dependent on objective 
minimum stress- function selection 
compression/eigenvector 
synergy 

Minimize maximum EMG Inability of both models to reliably predict measured 
muscle stress and spinal EMG activity suggested that neither could adequately 
compression (double represent the neural mechanism responsible for 
linear programming)/ generating muscle activation patterns for tested 
sum of muscle stresses loading conditions (maximum voluntary contractions 
cubed of trunk flexion and twisting) 

Minimize intensity- None Influence of objective function selection on peak spinal 
compression/muscle compression force during mildly asymmetric lifting 
intensity cubed tasks was found to be minimal 

Minimize sum of muscle Comparison against EMG literature	 Combined finite element analysis with optimization 
stresses cubed	 protocol. Illustrated the importance of muscular 

loading on the stability and stress distribution 
of the lumbar spine. Latter study extended similar 
methodology to 66 muscles spanning 5 lumbar joints 
to investigate spinal loading 
during static sagittal plane lifting 

Minimize muscle Sensitivity analysis, EMG Various load combinations of flexion and bending. 
intensity (force/area) Reasonable variations of muscle lines of actions (due 
cubed to anatomical differences and modeling approaches) 

affected model predictions, particularly shear loading 
on the spine. Latter study explored Artificial Neural 
Network classification of muscle recruitment against 
optimization results 

Schultz et al. (1983, 
1987) 

Bean et al. (1988) 
Hughes et al. (1995) 

Hughes et al. (1994) 

Hughes and Chaffin 
(1995) 

Hughes (2000) 

Goel et al. (1993) 
Kong et al. (1998) 

Nussbaum et al. 
(1995) 
Nussbaum and 
Chaffin (1997) 



8 MGs 
6 DoFs 

30 MGs 
6 Joints 

46 MGs 
6 Segments 

12 MGs 
3 DoFs 

180 MGs 
6 Segments 

Minimize muscle force 

Minimize maximum 
muscle contraction 
intensities/squared 
muscle stress 
Minimize sum of muscle 
stresses/muscle stresses 
cubed/local shear forces 

Minimize muscle stress 
cubed 

Minimize muscle stress 
cubed/+lateral bending 
moment squared (for all 
segments)/+maximize 
self-correcting lateral 
bending moments (above 
and below curve apex) 

None 

Published EMG data 

Comparison against literature 

None 

None 

Lumbosacral joint loads and muscle forces were 
predicted for walking at slow, preferred and fast 
speeds 

Cheng et al. (1998) 

Transfer of spinal forces to pelvis and leg was 
examined 

Hoek van Dijke 
et al. (1999) 

Coupled with finite element analysis to represent 
nonlinear passive response of the lumbar spine. The 
latter study included another segment and ten more 
muscles to represent the thoracic cage and extended 
the study to standing postures with and without 
loading 

Shirazi-Adl et al. 
(2002, 2005) 

Walking (specifically the instant of peak lumbar joint 
force) was investigated. Forces were input to a finite 
element model of the lumbar spine 

Ezquerro et al. 
(2004) 

Spinal loading during scoliosis was found to be a 
function of muscle activation strategy 

Stokes and Gardner-
Morse (2004) 

52 MGs 
3 DoFs 

Minimize muscle forces 
cubed/intervertebral 
forces (L4–L5 level) 
squared 

EMG Objective functions were tested for isometric loading 
with and without a stability level constrained to a 
target predicted from regression equations. Inclusion 
of the stability constraint provided more realistic 
antagonistic activity and spinal compression in 
agreement with EMG-based estimations 

Brown and Potvin 
(2005) 

Neck 
movements 

14 MGs 
3 DoFs 

Double linear 
programming 
minimizing maximum 
muscle contraction 
intensity and vertebral 
compression force with 
maximum muscle 
contraction intensity as 
an upper bound 

EMG Linear relationship between model predicted forces 
and EMG signals were less prominent than those 
previously reported for the lumbar region 

Moroney et al. 
(1988) 

Finger 
movements 

11 MGs 
4 DoFs 

Minimize sum of muscle 
stresses squared 

Published EMG data Rapid pinching, hypothetical disk rotation. Finger 
considered as an isolated system 

Brook et al. (1995) 

(continued on next page) 



Line missing

Table 1 (continued) 

Activity Model Objective Validation Notes	 Reference 

Wrist	 4 MGs 
2 DoFs 

Elbow 9 MGs 
movements 2 DoFs 

3 MGs 
1 DoF 

3 MGs 
1 DoF 

4 MGs 
1 DoF 

5 MGs 
1 DoF 

Minimize sum of muscle 
forces 

Minimize upper bound 
for muscle stresses/sum 
of muscle forces/muscle 
forces squared/muscle 
stresses/muscle stresses 
squared 

Minimize sum of nth 
power of muscle forces/ 
muscle stresses/relative 
muscle forces (n = 1,  2,  
3, 10, and 100) 

Minimize sum of muscle 
stress squared/muscle 
stress cubed/normalized 
muscle force squared/ 
normalized muscle force 
cubed 

Minimize weighted sum 
of muscle forces squared 

Minimize sum of nth 
power of weighted 
muscle forces (n = 2–10 
with a variety of weight 
constants) 

Previously published EMG 

Previously published EMG data 

Comparisons against a validated muscle 
model driven by maximal muscle activation 

Elbow torque during maximal muscular 
activity 

None 

None 

One of the earlier articles using linear 
programming principles 

All objectives predicted the same number of 
active muscles. Minimizing upper bound of 
muscle stresses was proposed as a linear 
programming problem that considered 
individual muscle effort 

Maximally loaded elbow flexion was 
investigated. Estimated muscle forces were 
not physiologically realistic when compared 
to predictions of muscle model. Constant 
relative force for all muscles (when using 
relative muscle forces as an objective) was 
proposed as an alternative for realistic 
predictions 
Submaximal isometric, submaximal 
dynamic, and maximal dynamic elbow 
flexions investigated under three separate 
upper bounds on muscle forces: (i) 
maximum isometric force, (ii) maximal force 
as predicted by force–length curve, (iii) 
maximum muscle force as predicted by 
force–length and force–velocity curves. 
Upper bounds were found to be effective on 
predicted forces 
Introduced Lagrange multipliers to enforce 
positive and continuous solutions for muscle 
forces. Also developed a generalized model 
of the upper limb with 7 DoFs, 30 MGs 
Muscle lever arms (due to different ways of 
muscle force modeling) exerted a great 
influence of muscle force predictions. Joint 
reaction force and muscle forces were not 
influenced by objective function. Weighting 
constants for agonistic antagonistic groups 
were required to have different signs and 
their magnitude depended on the direction 
of the net external joint moment. 
Optimization criterion was formulated for 
non-negative muscle forces and continuity 

tirow20ptPenrod 
et al. (1974) 

An et al. (1984a) 

Challis and 
Kerwin (1993) 

Challis (1997) 

Raikova (1992) 

Raikova (1996) 



5 MGs 
1 DoF 

5 MGs 
1 DoF 

6 MGs 
3 DoFs 

Arm and 
shoulder 
movements 

19 MGs 
6 DoFs 

20 MGs 
7 DoFs 

2 MGs 
1 DoFs 

Minimize sum of 1 nth 
power (2,3) of weighted 
muscle forces/2muscle 
activations/3 nth power 
(2) of muscle stress/4 nth 
power (2) of normalized 
muscle force/5a weighted 
combination of error between 
desired joint torque and torque 
obtained by summing the 
individual moments of all 
motor unit twitches, muscle 
activation and total muscle 
force 

Minimize a weighted 
combination of error 
between desired joint 
moment and moment 
obtained by summing the 
individual moments of all 
motor unit twitches, muscle 
activation and total muscle force 

Minimize sum of muscle stress cubed 

Minimize muscle stresses squared 

Minimization of muscle 
forces squared1/muscle 
stresses squared2/normalized 
muscle forces squared3/ 
maximum muscle stress4 

Minimize weighted sum of muscle forces 
squared/cubed 

None 

EMG 

Sensitivity analysis 

Published EMG and shoulder 
loading data 

EMG 

EMG 

2,3included calculation of force from a Raikova and 
muscle model including force–length, force– Aladjov (2003) 
velocity relationships. Maximum muscle 
force used for normalization is a function of 
force–length, force–velocity relationship in 4 . 
Muscle models incorporated the distribution 
of motor unit twitches (fast, intermediate, 
slow). 5incorporated individual motor units. 
Hill-type models were found to be suitable 
for calculating maximum possible forces 
that can be used as weighting factors. 
Incorporation of individual function of 
motor units was promising to explore motor 
control including co-contraction and the 
role of fast and slow twitches 
Explored learning fast elbow flexions. Raikova et al. 
Muscle models incorporated the distribution (2005) 
of motor unit twitches (fast, intermediate, 
slow). Objective function incorporated 
individual motor units 

Elbow modeled as spherical joint with zero Pierce and Li 
joint moments. Neglecting the joint reaction (2005) 
moment made the results sensitive to the 
origin of the coordinate system 

EMG results were not satisfactory. The Karlsson and 
direction of glenohumeral joint force was Peterson (1992) 
identified as a prospective constraint for 
future studies 
Direction of glenohumeral joint force was van der Helm 
constrained in order to guarantee joint (1994) 
stability. 1leads to an overuse of favorably 
located muscles. 2allows distribution of 
muscle forces based on muscle cross-
sectional area and is computationally 
efficient. 3provides the influence of force– 
length properties of the muscle. 4prevents 
high muscle stresses but is numerically 
unstable. EMG cannot identify the best 
criterion 
Predicted coordinated control of an agonist/ Happee (1994) 
antagonist muscle pair in goal-directed 
movements. Muscle dynamics was 
implemented in the form of dynamic 
boundary constraints on possible muscle 
forces 

(continued on next page) 



Table 1 (continued) 

Activity Model Objective Validation Notes Reference 

20 MGs 
7 DoFs 

30 MGs 
8 DoFs 

Minimize metabolic cost (muscular energy 
consumption) 

Minimize sum of muscle forces squared 

EMG 

EMG 

Maximal fast goal-directed arm movements 
in the sagittal plane. Direction of 
glenohumeral joint was constrained for joint 
stability. Muscle dynamics was implemented 
in the form of dynamic boundary constraints 
Load sharing patterns between shoulder 
muscles during isometric flexion tasks 

Happee and van 
der Helm (1995) 

Nieminen et al. 
(1995a) 

30 MGs 
9 DoFs 

Maximize the endurance time of an activity 
combined with minimization of muscle 
forces squared 

EMG Investigated fatiguing static contractions. 
Model predicted order of fatigue 
corresponded to EMG signals 

Nieminen et al. 
(1995b) 

30 MGs 
8 DoFs 

16 MGs 
2 Joints 

20 MGs 
7 DoFs 

13 MGs 
3 DoFs 

Minimize ratio of current muscle stress and 
time-dependent maximum muscle stress 

Minimize sum of muscle forces squared/ 
muscle stresses squared/muscle stresses 
cubed/normalized muscle force cubed/ 
fatigue 

Maximize hand force in a given direction 
(linear programming) 

Minimize muscle stress squared 

None 

EMG 

Comparison against measured maximum 
pull strengths 

Previously published muscle forces 

Novel muscular synergy principle for 
computing shoulder muscle load sharing. 
Studied relation between muscle stiffness 
requirement and muscle co-contraction level 
Isometric joint loading of the arm. Muscle 
coordination patterns highly depended on 
the number of balanced DoFs at the elbow. 
Influence of cost function on results were 
minimal. Cost functions were adequate to 
represent actual muscle activity at the wrist 
but not at the elbow 
Isometric arm loading during pulling at 
maximal strength. An arm strength 
prediction model based on individual muscle 
strength was provided 
Possible to identify muscular function in 
relation to stages of wheelchair propulsion 

Niemi et al. (1996) 

Buchanan and 
Shreeve (1996) 

Hughes et al. 
(1999) 

Lin et al. (2004) 

31 MGs 
Not specified 

Minimize muscle stress None Investigated the influence of tetraplegia and 
paraplegia on glenoumeral joint and muscle 
forces while using wheelchairs. Tetraplegic 
subjects had significantly higher joint contact 
forces 

van Drongelen 
et al. (2005) 

MG: muscle group; DoF: degree of freedom. For studies not reporting number of DoFs, total number of joints or segments is shown. 



into ergonomics design software (3D SSSP, University of 
Michigan, Ann Arbor, MI, USA). Inadequate kinematic 
models to represent the motion of interest (Glitsch and 
Baumann, 1997), and inaccuracies of experimental data 
have been identified as weaknesses of the methodology. 

Muscle force patterns are typically compared to EMG 
activity patterns to validate the results of the static optimi
zation approach (Table 1). In many cases, similarities have 
been noted but controversy existed while predicting co
contraction of muscles (Herzog and Binding, 1992; Herzog 
and Binding, 1993; Herzog and Leonard, 1991; Hughes 
et al., 1995). Minimizing the sum of cubed muscle stresses 
as proposed by Crowninshield and Brand (1981) to maxi
mize endurance has been widely accepted for lower extrem
ity analysis and used to predict muscle forces during 
walking regardless its formulation as a nonlinear optimiza
tion problem (Table 1). For the investigation of muscular 
loading of the upper extremity, minimizing sum of squared 
muscle forces seems to be more common (Table 1). A vari
ety of performance criteria based on muscle forces has also 
been tested and compared (Collins, 1995; Li et al., 1999). 
The computational cost of the technique is small, which 
allowed sensitivity analyses to be performed in almost all 
studies (Table 1). 

3.2. Forward dynamics assisted data tracking 

Another approach that exploits gait data to estimate 
muscle forces is forward dynamics assisted data tracking. 
Rather than solving the inverse dynamics problem (Eq. 
(6)), an initial set of muscle activations are fed into a for
ward dynamics model of the musculoskeletal system (Eq. 
(5)). The solution is compared against experimental data 
and the process is iterated by updating the muscle activa
tions that best reproduce the experimental kinematics and 
in some cases kinetics, e.g. ground reaction forces, as 
depicted by the objective J (Fig. 4B, Eq. (8)). Muscle exci
tations are always limited to unity bound constraints (Eq. 
(8)) 

minimize Jðq - qexpÞ ð8Þ 
subject to 0 6 u 6 1: 

A typical cost function is J = kq - qexpk, i.e. least squares 
fitting of experimental kinematics. Measured external 
forces may also be included, J(q - qexp, E - Eexp). The 
technique has been used in a variety of activities and partic
ularly found its applications for high pace movements of 
sports biomechanics (Table 2). A common use has been 
to find a set of muscle activations that can reliably repro
duce the movement pattern, and subsequently perturb 
parameters of the optimal solution to explore injury mech
anisms (McLean et al., 2004; McLean et al., 2003). This 
strategy is advantageous due to the more straightforward 
inclusion of muscle dynamics within the solution when 
compared to inverse dynamics-based static optimization 
(Happee, 1994). Although the dynamics of the muscle (acti

vation and force generation properties) might not be influ
ential for low pace movements, muscle force estimation for 
activities of high performance might benefit from this prop
erty of forward dynamics assisted data tracking. 

Unlike the inverse dynamics case, kinematic data is 
incorporated within the forward dynamics model approach 
in a somewhat weak fashion, allowing muscle force estima
tions to be less sensitive to measurement errors in kine
matic inputs. Regardless of these advantages, however, 
the technique is computationally involved due to multiple 
integrations to obtain optimal joint kinematics. Consider
ing these facts, direct application of the forward dynamics 
assisted data tracking approach to the clinical setting may 
be difficult, where a rapid output response is often neces
sary. Recently an efficient technique was proposed to solve 
the tracking problem (Thelen et al., 2003), which should 
result in muscle force estimates which are consistent with 
measured joint torques as well as with known muscle 
properties. 

The forward dynamics methodology is commonly 
assessed by its performance while tracking experimental 
data (Table 2). In a majority of the presented cases, the 
agreement between model predicted movements and kine
matic measurements was good. Additional evaluation 
involved comparison of untracked experimental data (such 
as pedal forces by Neptune and Hull (1999)) with model 
predictions. In terms of muscle forces, the validation was 
solely based on comparing EMG data with estimated mus
cle activation patterns (Table 2). It is possible that multiple 
solutions exist to track the same experimental data. Many 
investigators also explored minimization of a physiological 
variable, e.g. muscle stress (Yamaguchi and Zajac, 1990), 
in addition to the tracking error. This multi-objective crite
rion probably increased the tracking errors in favor of esti
mating muscular forces based on task objectives. The 
validity of such an approach and the extent of weighting 
in between these objectives are not yet known. 

3.3. Optimal control strategies 

Occasionally the experimental data might be incomplete 
or the movement related investigations require predictive 
simulations of the musculoskeletal system in novel situa
tions for which no movement data are available. Under 
these circumstances, optimal control strategies that use for
ward dynamics are alternatives to solve for muscle excita
tions (and forces as by-products) during movements 
(Pandy, 2001; Pandy et al., 1992). Given an initial set of 
muscle excitations, system equations are first solved in a 
forward dynamics fashion (Eq. (5)). Then, the objective J 
of the movement and task related constraints h, e.g. 
static equilibrium at final time, are calculated (Fig. 4C, 
Eq. (9)). The objective J can be a function of muscle force 
and kinematics, can be related to task performance, e.g. 
maximum height jumping, and it is usually represented 
in an integral form to introduce dependence on time his
tory. Muscle excitations are always limited to unity bound 



Table 2 
Estimation of muscle activations using forward dynamics assisted data tracking 

Activity Model Objective Validation Notes Reference 

Walking 9 MGs 
3 DoFs  

Minimize tracking error and metabolic energy 
consumption 

Comparison with static 
optimization, comparisons with 
EMG estimates from literature 

Swing phase only, continuous controls Davy and 
Audu (1987) 

10 MGs 
8 DoFs  

9 MGs 
9 DoFs  

Minimize tracking error and sum of cubed muscle 
stresses (�muscle fatigue) 

Minimize kinematics and kinetics tracking error 

Kinematics, GRF, EMG against 
normative data in literature 

Kinematics and kinetics, EMG 

Exploration of normal gait simulations as a baseline for 
functional neuromuscular stimulation 

Followed by induced acceleration analysis to quantify 
individual contributions of ankle plantar flexors to 
support, forward progression and swing initiation, 
controls modeled as a block pattern (onset, duration 
and magnitude) 

Yamaguchi 
and Zajac 
(1990) 
Neptune et al. 
(2001) 

Cycling 15 MGs 
2 DoFs  

15 MGs 
2 DoFs  

9 MGs 
2 DoFs  

Minimize tracking error in pedal forces1/crank torque2/ 
joint torques3/crank torque and pedal angle4/2 and 35/ 
1, 3 and 46/1, 3, 4 and timing of muscles7 

Minimize tracking error in kinematic and kinetic data 
and timing of muscles 

Minimize tracking error in pedal forces, crank torque, 
joint torques 

Kinematics, kinetics, EMG 

Pedal forces and crank torque 

Pedal forces 

Performance criteria of tracking all variables7 provided 
the best agreement, controls modeled as block pattern 
with duration and magnitude 
Preferred cycling rate selection in endurance cycling 
based on neuromuscular quantities (e.g. muscle stress, 
endurance), controls modeled as block pattern with 
duration and magnitude 
Comparison of optimization algorithms, controls 
modeled as block pattern with duration and magnitude 

Neptune and 
Hull (1998) 

Neptune and 
Hull (1999) 

Neptune 
(1999) 

Jumping 9 MGs 
3 DoFs  

Minimize tracking error and neuromuscular values of 
muscle excitations 

Kinematics, EMG One-legged jump; controls approximated by 
polynomials 

Spagele et al. 
(1999) 

Running 14 MGs 
20 DoFs 

Minimize tracking error in segment kinematics and 
GRF 

Joint kinematics, GRF, EMG Stance phase of heel–toe running, controls modeled as 
block pattern with duration and magnitude 

Neptune et al. 
(2000) 

Side 
stepping 

11 MGs 
12 DoFs 

Minimize tracking error in kinematics and GRF Joint angles, vertical GRF, muscle 
activation comparisons with 
literature 

Prediction of knee joint loading; perturbation to 
simulation inputs to model subject variability and 
evaluate potentially hazardous knee joint loading, 
linear interpolation of controls 

McLean et al. 
(2003) 

Landing in 
skiing 

8 MGs 
6 DoFs  

Minimize tracking error in kinematics Joint angles Injury simulation by muscular over stimulation with 
respect to optimal solution, constant controls during 
the entire movement 

Gerritsen et al. 
(1996) 

Muscle forces are by products of the solution technique. MG: muscle group; DoF: degree of freedom. 



constraints (Eq. (9)). The process is iterated until an opti
mal set of muscle excitation patterns is found that mini
mizes the objective and satisfies the constraints (Eq. (9)) 

minimize JðF MT; qÞ 
subject to 0 6 u 6 1; ð9Þ 

hðqÞ ¼ 0: 

Optimal control approaches have been used to investi
gate muscular function during the activities of daily living 
such as walking and sit-to-stand, under more physically 
demanding tasks like jumping and running and for goal-
directed movements of the upper limb (Table 3). The tech
nique allows for changes in motion and adaptations at the 
muscular control level following alterations in the system. 
This major advantage can lead to predictive simulations 
to assess changes in control of muscles and muscle forces 
as a result of therapeutic interventions, surgery and reha
bilitation (e.g., plantar fasciotomy by Erdemir and Piazza 
(2004)). 

Muscle activations and movements predicted by the 
optimal control strategies are usually evaluated by compar
isons to joint kinematics data, ground reaction forces and 
EMG data (Pandy, 2001). In most of the cases, the model 
predictions are qualitatively in agreement with measured 
data. However, the selection of an objective function can 
still be controversial; the criterion is clear for movements 
that aim for optimal performance (e.g. maximal height 
jumping) but for other activities (that rely on physiological 
function) such as walking at different speeds and non-bal
listic movements, this selection relies on the investigators’ 
preference. It is possible that different objective functions 
lead to similar movement patterns and muscle forces 
(Pandy et al., 1995). Testing multiple criteria, however, is 
not always feasible, particularly due to excessive computa
tion time. Computational complexity and implementation 
difficulties also prohibit the routine use of this technique 
in clinical settings and limit its use to research 
environments. 

3.4. Alternative strategies 

Inaccuracies of inverse dynamics analysis and high com
putational cost associated with multiple forward dynamics 
simulations have directed many investigators to search for 
alternative strategies to estimate muscle forces. This section 
highlights some of these studies which preferred including 
EMG data into calculations rather than using the informa
tion solely for validation purposes, as well as studies that 
focused on combining methodologies or fine-tuning algo
rithms to speed up the solution process. 

Using prescribed muscle activations (e.g. maximal acti
vation), a single forward dynamics simulation provides 
the joint movements and muscle forces. Such an approach 
was particularly common to investigate jaw mechanics 
(Koolstra and van Eijden, 1997; Koolstra and van Eijden, 
2005; Langenbach and Hannam, 1999). Muscle activations 

can be prescribed in an educated manner by directly incor
porating EMG data into an EMG-driven forward dynam
ics model, as pioneered by Hof and van den Berg (1981). 
The approach was also used to investigate elbow motion 
(Koo and Mak, 2005) and knee movements during the 
swing phase of walking (Piazza and Delp, 1996) and a 
step-up task (Piazza and Delp, 2001). The analysis is com
monly performed by prescribing the trajectory of some 
joint angles, e.g. hip and ankle, and predict the remaining 
from the EMG-driven forward dynamics, e.g. knee move
ments (Piazza and Delp, 1996; Piazza and Delp, 2001). It 
is likely that the muscle forces predicted via such 
approaches suffered from inaccuracies of the muscle model 
parameters and the processing of the EMG. 

EMG data have also been used in combination with the 
inverse dynamics approach to estimate muscle forces across 
a series of joints. This process usually involves the calibra
tion of musculoskeletal models and adjusting of muscular 
gains by minimizing the difference between measured joint 
torques and those calculated by the EMG-driven model 
(e.g., Amarantini and Martin (2004)). The methodology 
was particularly popular to estimate muscle and joint 
forces during spinal loading (Cromwell et al., 1989; Cho
lewicki and McGill, 1994; Cholewicki et al., 1995; Cholew
icki and McGill, 1996; Granata and Marras, 1995; 
Nussbaum and Chaffin, 1998; Thelen et al., 1994; van 
Dieen et al., 2003; Marras et al., 1999). It has also been 
used for muscle force prediction during arm movements 
(Manal et al., 2002; Langenderfer et al., 2005; Soechting 
and Flanders, 1997), isometric tasks of the elbow (Manal 
and Buchanan, 2003; Wang and Buchanan, 2002) and the 
wrist (Buchanan et al., 1993). Utilization of the method 
for the lower extremity included walking (Amarantini 
and Martin, 2004) and running (Lloyd and Besier, 2003). 
These studies usually required additional experimentation 
to obtain the relationship between isometric EMG and 
joint torque, e.g. ‘‘isometric calibration’’ by maximal iso
metric effort testing, isometric knee flexion and extension 
contractions at 20–80% of maximum voluntary contraction 
with increments of 20% (Amarantini and Martin, 2004). 
The influence of EMG processing on the estimation of joint 
moment under dynamic conditions was addressed in detail 
(Amarantini and Martin, 2004), support for linear EMG to 
muscle force processing was provided (Raschke and Chaf
fin, 1996), and novel approaches including processing using 
neural networks were also proposed (Wang and Buchanan, 
2002). Gagnon et al. (2001) compared the ability of EMG-
based methods and inverse dynamics-based static optimiza
tion to predict spinal loads and trunk muscle forces. 
Although spinal compression was similar among the 
approaches, only EMG-based methods detected individual 
trunk muscle strategies. 

Static optimization has also been implemented with for
ward dynamics. Koolstra and van Eijden (2001) predicted 
jaw trajectory and muscle forces during goal-directed 
movements of the jaw, by finding a rest force that maxi
mizes the movement to the desired position at each step 



Table 3 
Estimation of muscle activations using optimal control strategies 

Activity Model Objective Constraints Validation Notes Reference 

Walking 54 MGs 
23 DoFs 

Minimization of metabolic energy 
expenditure per unit distance traveled 

Bilateral symmetry, 
fixed final time, 
temporal symmetry 

Kinematics, GRF, 
EMG 

Linear interpolation of controls Anderson and 
Pandy (2001b) 

Jumping 8 MGs 
4 DoFs  

8 MGs 
4 DoFs  

Maximum height 

Maximum height 

Bilateral symmetry 

Bilateral symmetry 

Jump height, lift
off time, 
qualitative 
comparisons 
Kinematics, GRF, 
EMG 

Bang-bang (on–off) controls 

Bang-bang (on–off) controls 

Pandy et al. 
(1990) 

Pandy and Zajac 
(1991) 

8 MGs 
4 DoFs  

Maximum height Bilateral symmetry Kinematics, GRF, 
EMG 

Linear interpolation of controls Pandy et al. 
(1992) 

54 MGs 
23 DoFs 

Maximum height Bilateral symmetry Kinematics, GRF, 
EMG 

Linear interpolation of controls Anderson and 
Pandy (1999) 

6 MGs 
3 DoFs  

Maximum height Bilateral symmetry Joint kinematics Controls were defined by time onset of maximal 
activation 

Bobbert (2001) 

20 DoFs 
32 MGs 

Maximum height Bilateral symmetry None Controls modeled as a series of step function with 
constant duration. Investigated counter 
movement jump 

Nagano et al. 
(2005) 

Cycling 15 MGs 
3 DoFs  

Maximize crank progress (speed) Bilateral symmetry Crank kinematics, 
crank forces, 
EMG 

Bang-bang (on–off controls) Raasch et al. 
(1997) 

15 MGs 
2 DoFs  

Minimize summed integrated muscle 
activation and average endurance 

Bilateral symmetry, 
average pedaling rate of 
90 rpm 

Pedal forces and 
crank torque 

Controls modeled as block pattern with duration 
and magnitude 

Neptune and 
Hull (1999) 

Posture 10 MGs 
3 DoFs  

Minimize sum of squared derivatives of 
adimensional muscle forces (� minimize jerk 
or maximize smoothness) 

Final limb angles and 
angular velocities set to 
zero 

None Linear interpolation of controls (small time steps) Menegaldo et al. 
(2003) 

Rising on toes 6 MGs 
6 DoFs  

Minimize squared muscle stress Bilateral symmetry, 
fixed final time, static 
equilibrium at final time 

Pelvis kinematics, 
GRF, EMG 

Linear interpolation of controls Erdemir and 
Piazza (2004) 

Rising from a 
chair 

8 MGs 
3 DoFs  

Minimize squared muscle stress (normalized 
muscle force)/minimize squared time 
derivative of normalized muscle force/ 
combination 

Bilateral symmetry, 
static equilibrium at 
final time 

Vertical GRF and 
seat forces, EMG 

Linear interpolation of controls; better 
performance of combined criterion 

Pandy et al. 
(1995) 

Kicking 5 MGs 
2 DoFs  

Minimum time kicking Constant final hip and 
knee angle and zero 
knee angular velocity 

Comparison of 
results from 
different muscle 
models 

Continuous controls Audu and Davy 
(1985) 
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of forward dynamics integration. Formulations of static 
optimization coupled with forward dynamics has also been 
provided to minimize tracking error of movements (Yam
aguchi et al., 1995; Thelen et al., 2003). In these protocols, 
a single forward dynamics simulation is performed, thereby 
avoiding the time consuming process associated with stan
dard forward dynamics assisted data tracking. Yamaguchi 
et al. (1995) calculated muscle forces during arm move
ments by minimizing the sum of the cubed muscle stresses 
(Crowninshield and Brand, 1981) at each instant in time, 
while achieving muscle-induced accelerations that pro
duced a desired trajectory. Thelen et al. (2003) imple
mented static optimization into a feedback control system 
to minimize tracking errors in joint kinematics during 
cycling by minimizing the sum of the squared muscle acti
vations at each step of the forward dynamic solution. Sen
sitivity of results on the selection of objective function 
while using these cost-effective tracking algorithms has 
not been addressed yet. 

3.5. Validation 

Studies of muscle force predictions usually compare 
muscle loading or activation patterns against EMG data 
as an estimate of validity (Tables 1–3). Although evaluat
ing the temporal characteristics and intensity of muscle fir
ing during a movement is useful, such comparisons cannot 
verify the magnitude of the calculated muscle force. Fortu
nately, alternative and more advanced analyses exist, which 
incorporate the quantification of muscle force sensitivity on 
modeling parameters and comparisons of muscle forces 
against direct measurements of tendon loading. 

Some critical model parameters are associated with the 
force generation properties of the muscle. Maximum iso
metric force and physiological cross-sectional area of mus
cles have been shown to affect the magnitude of muscle 
force estimates, particularly during inverse dynamics-based 
static optimization (Brand et al., 1986). Force–length, 
force–velocity properties and activation dynamics can have 
significant effects when using forward dynamics assisted 
data tracking or optimal control solutions (Audu and 
Davy, 1985). Also important, as noted earlier, are the ori
gin, insertion, and path of muscles relative to the skeleton. 
These variables determine the moment arms for each mus
cle; an increased moment arm would result in a decreased 
muscle force estimate while producing the same moment 
at a given joint (Raikova and Prilutsky, 2001). 

Descriptions of joint mechanics also have impacts on the 
distribution of muscular forces. A variety of joint types are 
available for modeling, from simple hinge joints to the 
three-dimensional spherical joints. The joint type defines 
the constraints of movements and has been found to influ
ence muscle force calculations (Buchanan and Shreeve, 
1996; Glitsch and Baumann, 1997). For example, in a 
spherical joint, all joint torques need to be balanced by 
muscular moments, whereas for a hinge joint, out of 
plane torques are balanced by reaction torques at the joint. 



Consequently, muscle forces can be overestimated when 
the physiological joint constraints are not imposed, e.g. 
modeling the ankle joint as a spherical joint (Burdett, 
1982). Related to kinematics, a two-dimensional musculo
skeletal model will give different results than a three-dimen
sional model as a result of enforcing joint movements, 
which are naturally three-dimensional, to be in a plane 
(Glitsch and Baumann, 1997). A recent study also illus
trated the dependence of muscle force estimations on coor
dinate system definitions (Pierce and Li, 2005). 

Among simulation parameters, selection of the objective 
function might have an effect on the prediction of muscle 
forces. Multiple physiological criteria have been tested 
while calculating muscular loading using inverse dynam
ics-based static optimization (Table 1). Although a wide 
variety of these objective functions resulted in similar mus
cle forces, some seemed to work better depending on the 
movement pattern under investigation (e.g. Crowninshield 
and Brand (1981)), and when predicting co-activation of 
muscles (Forster et al., 2004; Li et al., 1999; Hughes 
et al., 1995). Objective function definition is clear for for
ward dynamics assisted data tracking. Further, models 
incorporating tracking of both kinematic and kinetic vari
ables (e.g. external forces) were less erroneous than those 
including kinematic variables only (Neptune and Hull, 
1998). Identification of a performance criterion is critical 
in optimal control simulations as a result of the generated 
movement depending on that criterion as well as the con
straints of the task. The movement patterns are supplied 
in inverse dynamics-based static optimization and forward 
dynamics assisted data tracking. Pandy et al. (1995) have 
shown that similar movement patterns can be obtained 
using optimal control simulations with different objective 
functions while investigating non-ballistic activities, but 
the muscle activation patterns might be different. 

Accuracy of the experimental data used within the 
model is paramount for accurate muscle force estimations. 
Errors in joint kinematics and calculated joint torques for 
example, are known to significantly alter modeled muscle 
force magnitudes, particularly when the calculations are 
done using inverse dynamics and static optimization (Li 
et al., 1999; Glitsch and Baumann, 1997). Anderson and 
Pandy (2001a) illustrated that it is possible to predict sim
ilar muscle forces and joint reaction forces for walking 
using the inverse dynamics-based static optimization 
approach and the optimal control simulation approach. 
They used the joint kinematics and torques calculated from 
the forward dynamics simulation of the optimal control 
problem as input to the inverse dynamics-based static opti
mization. The consistency observed in these muscle force 
predictions suggests that if experimental accuracy can be 
improved, then resultant muscle forces might not depend 
on the simulation characteristics. 

Direct validation of predicted muscle forces is possible 
by comparing them against the tendon forces measured 
experimentally. Typically, direct validations are limited to 
simple musculoskeletal models, e.g. with one or two 

degrees of freedom (Binding et al., 2000), and tendon force 
measurements are performed on animals by surgical 
implantation of tendon force measurement devices (Herzog 
and Leonard, 1991; Landjerit et al., 1988). Nonetheless, the 
results of these studies can be used to assess the validity of 
objective functions used in inverse dynamics-based static 
optimization and the load sharing between synergistic mus
cles (Binding et al., 2000). Validation data for pathological 
conditions however do not currently exist and unfortu
nately, direct validation in humans using current in vivo 
tendon force transducers is limited. The devices are inva
sive (Ravary et al., 2004; Fleming and Beynnon, 2004), 
can only be placed on extrinsic tendons (e.g., the Achilles 
tendon by Komi et al. (1992)) or used in the operation 
room during surgery (Dennerlein et al., 1998; Dennerlein 
et al., 1999; Dennerlein, 2005; Schuind et al., 1992), possess 
measurement errors inherent to transducer design (Ravary 
et al., 2004), and transducer calibration remains a largely 
unsolved problem. In large-scale musculoskeletal models, 
validity of muscle force estimates has been assessed indi
rectly by comparing measured joint reaction forces against 
those predicted by modeling. Brand et al. (1994) compared 
hip forces predicted by a musculoskeletal model to direct 
measurements from an instrumented hip implant. They 
reported that muscle forces were apparently overestimated 
due to the lack of realistic wrapping of muscle paths 
around the hip joint, making moment arms smaller than 
they should have been. 

4. Induced acceleration analysis 

The effect of muscular loading on joint kinematics is 
clear for uniarticular muscles and for simple movements. 
However, the influence of individual muscle forces on kine
matics may not be identified easily when the movement 
pattern is complicated and contains musculoskeletal cou
pling and the involvement of multiple muscles and joints, 
e.g. walking. Induced acceleration analysis (IAA) provides 
a platform to establish the link between an isolated change 
in a muscle force and the corresponding changes in the 
movement. The induced accelerations of muscle j is defined 
as the contribution of muscle j to all system accelerations: 

IAAj ¼ MðqÞ-1RðjÞðqÞF MTj ð10Þ 

where R(i)(q) is the ith column of the muscular moment arm 
matrix R(q). Zajac and Gordon (1989) showed that the ele

R(j)ments of the matrix M(q) -1 (q) in Eq. (10) are non-zero. 
This implies that each muscle contributes to motion of all 
joints. This ‘‘coupled dynamics’’ representation can explain 
some of the counterintuitive functions of biarticular mus
cles, such as the gastrocnemius functioning as knee exten
sor for specific conditions (Zajac and Gordon, 1989). 
Usually, the analysis is based on forward dynamics solu
tions obtained through data tracking or by optimal control 
(Anderson and Pandy, 2003; Neptune et al., 2001; Zajac 
et al., 2003). However, data can also be entered directly 



into Eq. (10) through the measured kinematics (q(t)). If the 
musculoskeletal model includes contact with the ground, 
special care is needed to avoid incorrect results (Neptune 
et al., 2001; Kepple et al., 1997). 

A common IAA variable is the trunk acceleration. Its 
vertical component provides the contribution of individual 
muscles to keep the trunk supported during locomotion; 
the horizontal component gives a measure of contribution 
to forward progression (Neptune et al., 2001). IAA has also 
been presented in the form of induced position or velocity 
analysis. In that case, a small time-step integration of Eq. 
(10) is needed to quantify the influence of an individual 
muscle on the kinematic variable of interest; for example, 
knee flexion (Anderson et al., 2004) and knee flexion veloc
ity (Goldberg et al., 2004). Vertical ground reaction force 
has also been used to implicitly evaluate the contribution 
of each muscle to support the body center of mass (Ander
son and Pandy, 2003). 

5. Recommendations for clinical applications 

The ability to obtain quantitative estimates of muscle 
forces during movement has significant clinical potential, 
which has not yet been realized. Before considering such 
clinical applications, it is important to balance the potential 
usefulness of this approach against its limitations. 

Clinical estimation of muscle forces can be compared to 
the more traditional techniques of EMG and inverse 
dynamics (quantification of joint moments). While EMG 
is a direct measurement of individual muscle activity, the 
magnitude of the signal is affected by electrode placement 
and tissue conductivity (De Luca, 1997), which makes it 
difficult to use EMG as an indicator of muscle force when 
comparing between patients and control subjects, or 
between testing sessions such as before and after treatment 
(Clark et al., in press). Surface EMG is only applicable to 
superficial muscles. Intramuscular EMG does not have this 
limitation but is even less correlated to muscle force, limit
ing its use to studying the timing of muscle activity. Inverse 
dynamic analysis is well established but it only provides an 
estimate of the total joint torques produced by all muscles 
that cross a joint. Interpretation of joint torques often 
involves a decision process about which muscles could be 
responsible for the observed results. This interpretation is 
typically done for one joint at a time, and can be incorrect 
unless the clinician has a good understanding of functional 
anatomy and is experienced in combining the joint torques 
of the entire limb and possible contributions from each 
muscle. For instance, if a knee extensor moment is small, 
this is usually attributed to an abnormally small quadriceps 
force (Berchuck et al., 1990). An equally plausible interpre
tation, however, is that the hamstrings force is abnormally 
large. One would have to examine the hip extensor moment 
to resolve the ambiguity, but even then, this is not straight
forward because the hamstrings are not the only muscles 
contributing to the hip joint torque. Any technique which 
estimates individual muscle forces, such as those reviewed 

in this article, automatically includes all these consider
ations. Therefore, we recommend that estimation of muscle 
forces should be considered if the clinical question requires 
an interpretation in terms of individual muscle forces, and 
when a useful interpretation cannot be obtained from joint 
torques or EMG. Typically this would be the case when the 
clinical problem involves co-contraction of antagonistic 
muscles and a case-control or longitudinal study design 
where EMG is not applicable. Muscular co-contraction is 
important in injury prevention and rehabilitation (Hurd 
et al., 2006) and in applications where articular forces must 
be estimated (Crowninshield et al., 1978). On the other 
hand, if the clinical question can be answered with EMG 
or joint torques alone, we recommend pursuing that path, 
rather than introducing the additional complexity and 
uncertainty of estimating individual muscle forces. 

Once a specific clinical need for estimating muscle forces 
has been established, the clinical potential must be balanced 
against the many limitations of the methodology. First, 
there are currently no user-friendly software systems that 
allow estimation of muscle forces from kinesiological data. 
Vendors of data acquisition systems typically provide soft
ware to evaluate joint angles and joint torques, which still 
require significant post-processing in order to obtain muscle 
forces. In the above review, we have pointed out the impor
tance of using a model with the appropriate number of 
degrees of freedom in order to avoid overestimation of mus
cle forces. This means that the standard 3D joint torques are 
not necessarily a good starting point. We refer to Table 1 for 
guidance on the design of appropriate models and algo
rithms for the various subsystems in the body. The lack of 
software means that clinical researchers will likely require 
help from programmers, but also scientific input into the 
design of the mechanical models. Second, there is a need 
for preliminary research to establish and validate a suitable 
method for estimating muscle forces in each particular 
application. Previous research (Table 1) has quantified sen
sitivity of muscle force estimations and resulted in qualita
tive or semi-quantitative (EMG-based) validations for 
specific muscles, specific movements, and mostly in healthy 
populations. In addition, most optimization algorithms are 
based on the notion that muscles are coordinated according 
to a minimal effort principle. In a patient with pain, muscle 
coordination may be guided more by the desire to avoid 
mechanical stress on the painful tissue. In a patient with a 
neurological disorder, muscle coordination may be affected 
by spasticity or paralysis, which would no longer allow the 
central nervous system to use a minimal energy principle. 
Nevertheless, estimates may still be adequate if muscle 
forces predictions are constrained sufficiently by measured 
kinematics or joint torques. As discussed in this paper, force 
estimates may be constrained even more by considering 
known mechanical properties of muscle and measured 
EMG signals. Therefore, the validity of muscle force esti
mation, or at least its sensitivity, must be established for 
each clinical application with the intention to estimate 
study-specific error margins. 
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6. Recommendations for research 

This review of literature points towards opportunities 
for research in three areas: clinical, computational, and 
experimental. 

Clinical research is necessary in order to develop and 
encourage important applications. This includes develop
ment of clinical protocols and their validation, as discussed 
in the previous section. Once such protocols are estab
lished, it would also be important to perform clinical stud
ies aimed at demonstrating that such analyses may lead to 
improved clinical decision making and ultimately, a better 
health outcome or lower cost of treatment. Without such 
research, cost reimbursements for eventual clinical applica
tions will remain problematic. 

Development of user-friendly computational tools is 
important to support clinical applications. These tools 
might combine existing algorithms and musculoskeletal 
models (e.g. Table 1) and make them accessible to a 
broader group of users. Several commercial initiatives are 
currently being undertaken, such as by Musculographics, 
Inc. (Chicago, IL), the Anybody Group (Aalborg, Den
mark), and Biomechanics Research Group, Inc. (San Cle
mente, CA) but their use is still limited to research. 
Clinical applications have not been reported, possibly 
because the software is still difficult to use and lacks scien
tific validation. 

Research on new algorithms is also warranted, espe
cially in optimal control methods to predict movements 
from optimization principles without use of measurements. 
This type of application is important for surgical planning 
(e.g. tendon transfers) and in prosthetic design. If move
ment can be predicted, there is an opportunity for a true 
computer-aided design of the human–machine system. 
Current movement prediction algorithms are extremely 
computer-intensive (Anderson and Pandy, 2001a,b) which 
necessitates parallel computing (Neptune, 1999; Anderson 
et al., 1995; van Soest and Casius, 2003; Koh et al., 
2004). A promising approach lies in collocation methods 
(Kaplan and Heegaard, 2001), which may solve the move
ment prediction problem on standard desktop hardware. 
Computationally effective tools are also evolving for data 
tracking which combines static optimization with a single 
forward dynamic simulation (Yamaguchi et al., 1995; The
len et al., 2003; Thelen and Anderson, 2006). In a mature 
state, these tools should allow for integration of kinemat
ics, external forces, and EMG to improve the reliability 
of muscle force estimations. 

A third area of computational research is in musculo
skeletal modeling. It is not known to which extent it is 
important to obtain patient-specific model parameters, 
such as muscle moment arms, skeletal anatomy, and mass 
properties. Subject-specific models may be especially 
important in clinical populations with bone deformities 
or altered muscle properties (Arnold et al., 2000, 2001). 

Experimental studies are needed to further establish the 
validity of muscle force estimations by comparison to 

direct measurements or EMG. Direct measurements are 
currently only possible by transducers that are implanted 
and difficult to calibrate (Ravary et al., 2004; Fleming 
and Beynnon, 2004). A less invasive technique based on 
ultrasound is a promising alternative (Pourcelot et al., 
2005). With appropriate statistical techniques, such as cor
relation, uncalibrated transducers and semi-quantitative 
measurements (e.g. EMG) can be effectively used for vali
dation of model-based muscle force estimates (De Zee 
et al., in press). There is especially a need for validation 
in clinical populations in which the minimal effort assump
tions may not be valid. On a more fundamental level, such 
research may be done in animal models. 
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