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Mechanical properties of the foot are responsible for its normal 
function and play a role in various clinical problems. Specifically, 
we are interested in quantification of foot mechanical properties 
to assist the development of computational models for movement 
analysis and detailed simulations of tissue deformation. Current 
available data are specific to a foot region and the loading sce
narios are limited to a single direction. A data set that incorpo
rates regional response, to quantify individual function of foot 
components, as well as the overall response, to illustrate their 
combined operation, does not exist. Furthermore, the combined 
three-dimensional loading scenarios while measuring the com
plete three-dimensional deformation response are lacking. When 
combined with an anatomical image data set, development of ana
tomically realistic and mechanically validated models becomes 
possible. Therefore, the goal of this study was to record and dis
seminate the mechanical response of a foot specimen, supported 
by imaging data. Robotic testing was conducted at the rear foot, 
forefoot, metatarsal heads, and the foot as a whole. Complex foot 
deformations were induced by single mode loading, e.g., compres
sion, and combined loading, e.g., compression and shear. Small 
and large indenters were used for heel and metatarsal head load
ing, an elevated platform was utilized to isolate the rear foot and 
forefoot, and a full platform compressed the whole foot. Three-
dimensional tool movements and reaction loads were recorded 
simultaneously. Computed tomography scans of the same speci
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men were collected for anatomical reconstruction a priori. The 
three-dimensional mechanical response of the specimen was non
linear and viscoelastic. A low stiffness region was observed start
ing with contact between the tool and foot regions, increasing with 
loading. Loading and unloading responses portrayed hysteresis. 
Loading range ensured capturing the toe and linear regions of the 
load deformation curves for the dominant loading direction, with 
the rates approximating those of walking. A large data set was 
successfully obtained to characterize the overall and the regional 
mechanical responses of an intact foot specimen under single and 
combined loads. Medical imaging complemented the mechanical 
testing data to establish the potential relationship between the 
anatomical architecture and mechanical responses and to further 
develop foot models that are mechanically realistic and anatomi
cally consistent. This combined data set has been documented and 
disseminated in the public domain to promote future development 
in foot biomechanics. 

Keywords: foot biomechanics, heel, metatarsal heads, tarsometa
tarsal joint, arch properties, plantar tissue deformation 

1 Introduction 

The foot is the interface between the body and ground or foot
wear during locomotion, and undergoes large loads and deforma
tions. Knowledge of its mechanical response potentially elucidates 
the causative factors of mechanical dysfunction as a result of ab
normal tissue structures and mobility of foot joints. Description of 
foot mechanics also forms the basis to establish its representation 
in computational analysis that focuses on the investigation of hu
man movement [1]. In a similar manner, predictive exploration of 
foot disorders [2] and therapeutic or performance related interven
tions, applied to the foot or its components [3], is possible. 

The passive load-deformation behavior of the foot is dictated 
by plantar tissue properties and the properties of foot joints. Nu
merous studies have been conducted to investigate the overall 
stiffness of the foot and the arch [4]. Structural testing studies also 
quantified stiffness properties of various foot joints [5]. Testing of 
intact regions of the foot, e.g., heel [6,7], identified regional re
sponse due to the underlying plantar tissue. Mechanical loading of 
tissue samples extracted from the heel [8] or the forefoot [9] aided 
in reconstruction of material models for plantar tissue [9,10]. The 
majority of previous studies tested only the region of interest, it 
being the whole foot [4,11], the heel [12], or the forefoot [13], in  
isolation. Characterization of a foot, including its overall response 
and the response of its key individual components, is lacking. 
Loading modes were also limited to a single direction, commonly 
compressing the tissue [8,9] or the foot [7,11]. While this ap
proach establishes foot response in a dominant loading case of 
daily activities, three-dimensional representation of foot stiffness 
and the material properties of its tissues can be critical for predic
tive purposes [14,15]. 

Association of the anatomical details of the foot to mechanical 
data is also important from a modeling perspective. The value of 
such an association has been recognized [13], yet, a comprehen
sive testing scheme has not been employed. Anthropometric data, 
relative joint positions, and regional description of tissue stiffness, 
for example, are critical in building realistic and validated models 
of the foot for gait analysis [16] and musculoskeletal simulations 
[17]. Tissue level geometric detail when supported by mechanical 
response obtained using the same foot is indispensable in realizing 
accurate models for finite element analysis [18–21]. It is common  
that in many foot models [2,18–20], the source of structural 
and/or material properties does not match that of the anatomical 
reconstruction. 

Our goal was to quantify the detailed mechanical response of a 
foot, supported by medical imaging for anatomical reconstruction. 
In the spirit of similar studies conducted for musculoskeletal 
simulations [22–24], this data set is also targeted to become a 
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Fig. 1 „a… The foot specimen used for mechanical testing and anatomical imaging. „b… A 
cross-sectional image at the level of mid metatarsals as obtained from computed tomog
raphy. „„c… and „d…… Volumetric reconstruction of computed tomography scans for the 
foot boundary and the bones. 

reference while building foot models representative of its me
chanical response. Portrayal of intact response was aimed rather 
than testing of regions in full isolation, in order to recognize the 
potential to establish contribution of individual regions to the 
foot’s overall response. Rear foot testing was aimed to record 
plantar tissue response whereas forefoot testing was targeted at 
measuring overall deformation characteristics of the arch. Loading 
of metatarsal head regions provided mechanical response of the 
individual rays of the foot. Whole foot deformations quantified 
foot mechanics as a complete entity. The final objective of this 
work was to disseminate the data set in full detail, with the intent 
to expedite prospective studies in foot biomechanics. 

2 Methods 

The specimen was a right foot from a male Caucasian donor 
(Fig. 1(a)). At the time of death, the age of the donor was 58 
years; bodyweight and height were 79.4 kg and 1.73 m, respec
tively. Foot length was 0.24 m, measured from the posterior as
pect of the heel to the tip of the second toe. Foot width was 0.09 
m and its height was 0.08 m. The width of the foot corresponded 
to the distance between the medial aspect of the first metatarsal 
head and the lateral aspect of the fifth metatarsal head. Foot height 
was measured when the foot was resting on its own weight, from 
resting surface to the superior aspect of the navicular. 

Prior to mechanical testing, computed tomography scans were 
obtained while the foot was resting on its own weight on a flat 
surface (Fig. 1(b)). Before imaging, a registration phantom was 
screwed in the talus. The phantom was made out of Plexiglas and 
filled with water with the intent to register anatomical images with 
coordinate systems of mechanical testing. Axial images (a total of 
288) were recorded using a Siemens computed tomography sys
tem (SOMATOM Sensation 64, Siemens Medical Solutions USA, 
Inc., Malven, PA) at a resolution of 512X512 pixels. The pixel 
size was 0.365234 mm and the spacing between the images was 1 
mm. In this study, the three-dimensional visualization of com
puted tomography scans (Figs. 1(c) and 1(d)) were accomplished 
with VolSuite.2 

Mechanical testing was conducted on a six degree of freedom 
parallel robotic system (Rotopod R2000, Parallel Robotic Systems 
Corp., Hampton, NH) controlled with stepper motors (Fig. 2(a)). 
The robot base contained a stationary coordinate system (R) and 
the platform of the robot had a moving coordinate system (P) 
relative to the base (Fig. 2(a)). At a zeroed state, approximately at 
the midpoint of the range of the robot, these coordinate systems 
were coincident and aligned at the center of the platform. The 
z-axis pointed upwards, and the x- and y-axes defined the plane of 
the platform. The range of motion of the robot was ±0.1 m in the 
x- and y-axes with a rotation capacity of ±10 deg. In the z-axis 
the range was ±0.1 m and ±720 deg. The factory specified move
ment accuracy of the robot was 50 ,m, with a repeatability of 

25 ,m [25]. The desired robot trajectory (position and orienta
tion) was provided at a sample rate of 50 Hz and was recorded. 

The reaction forces and moments, generated on the specimen 
during the experiments, were recorded using a spatial load cell 
(Theta, ATI Industries Corp., Apex, NC). The load cell was at
tached to the main frame of the experimental setup, with the ori
gin of its coordinate system (L) at the transducer center and ori
entation was as illustrated in Fig. 2 based on the description of the 
supplier. The load cell had 0.5 N (1.1 N in the z-direction) and 
0.07 N m force and moment measurement resolutions, respec
tively. During experimentation, load cell data were recorded at a 
sampling rate of 1000 Hz. 

For experiments, the foot was first prepared by removing excess 
tissue around the talus (Fig. 1(a)). The talus and calcaneus were 
fixed relative to each other by passing screws through both. In 
following, the superior part of the rear foot was firmly attached to 
an aluminum fixture, using denture base and repair resin 
(NATURE-CRYL® POUR, GC America, Inc., Alsip, IL). An alu
minum support rod attached the fixture to a steel load cell inter
face component (Fig. 2(a)). 

Various tools were placed on the robot platform to test desired 
regions of the foot, or the whole foot (Fig. 2(a)). For indentation, 
large and small steel spheres were used (0.0254 m and 0.0127 m 
in diameter, respectively). Rear foot and forefoot isolations were 
accomplished with an elevated platform with the dimensions of 
0.086X0.051X0.151 m3 (widthXheightX length). A full plat
form effectively covered the surface of the robot platform to fa
cilitate whole foot testing. For the indenters, y-axis of the tool 
coordinate system (T) was parallel to the z-axis of the platform 
coordinate system and the origin was located at the tip of the 
indenter. For the elevated platform, the origin of the tool coordi
nate system was at the corner of the tool, y-axis in parallel with 
the z-axis of the platform coordinate system, x-axis along the 
width, and z-axis along the length of the tool. For the whole 
platform, the origin of the tool coordinate system was an arbitrary 
point and the y-axis was in parallel with the z-axis of the platform 
coordinate system. 

A three-dimensional digitizer (Microscribe G2L, Immersion 
Corp, San Jose, CA; 130 ,m resolution and 430 ,m accuracy) 
was used to establish transformation matrices obtained from the 
relative position and orientation of stationary coordinate systems 
[25,26]. For this purpose, points were sampled on the robot, plat
form, load cell, and tools in the digitizer coordinate system (M) 
[25,26]. As the platform position and orientation were prescribed 
by the robot, utilization of these transformation matrices allowed 
tool position and orientation as well as load cell measurements to 
be represented in any desired coordinate system. The digitizer was 
also utilized to record points on the anterior, superior, and lateral 
surfaces of the registration phantom for alignment with the com
puted tomography coordinate system. In addition, four anatomical 
landmarks were collected on the foot: posterior aspect of the heel 
approximately at the calcaneal tuberosity, tip of the second toe, 

2http://www.osc.edu/archive/VolSuite/. medial aspect of the first metatarsal head, and lateral aspect of the 



Fig. 2 „a… Experimental setup illustrating assembly of all testing components and the foot, with their associated right-
handed coordinate systems „R: robot; P: platform; T: tool; L: load cell; M: Microscribe three-dimensional digitizer „Immer
sion Corp., San Jose, CA……. „b… Anatomical landmarks digitized on the foot in relation to load cell coordinate system. This 
coordinate system was used to report foot loading and tool movement data. 

Table 1 Mechanical tests conducted on the foot specimen. Mode denotes dominant loading direction induced by tool movement. 
Range „min/max… corresponds to the reaction loads measured at the origin of the load cell coordinate system. Whole foot loading 
data sets involve multiple orientations of the tool relative to the foot. All data were represented in the load cell coordinate system. 

Loading Ranges 

Region Tool Mode 
Fx 
(N) 

Fy
(N) 

Fz 
(N) 

Mx 
(N m) 

My 
(N m) 

Mz 
(N m) 

Forefoot EP CS -24.8/2.3 -7.7/33.0 -3.2/147.3 -0.09/20.49 -3.42/0.01 -0.21/3.30 
Forefoot EP CS -29.9/1.4 -11.3/48.0 -2.7/158.7 -0.25/19.81 -4.49/-0.03 -0.16/3.83 
Forefoot EP CS -67.2/1.8 -2.8/99.4 -3.5/347.3 -0.11/41.03 -9.25/-0.03 -0.16/8.62 
Forefoot EP C -29.8/1.8 -3.2/23.8 -1.9/168.4 -0.15/19.38 -4.32/-0.00 -0.21/4.08 
Forefoot EP C -79.6/1.3 -2.8/95.6 -2.7/396.3 -0.10/35.59 -11.38/-0.04 -0.14/10.14 
Metatarsal Head 1 SI C -1.3/1.9 -11.5/0.6 -3.1/45.1 -0.11/9.14 -0.78/-0.01 -0.31/0.25 
Metatarsal Head 2 SI C -0.7/3.3 -2.3/2.3 -2.7/42.6 -0.06/5.67 -0.46/0.58 -0.23/0.20 
Metatarsal Head 3 SI C -2.0/2.5 -6.2/1.4 -4.0/40.7 -0.08/7.01 -0.42/0.78 -0.09/0.24 
Metatarsal Head 4 SI C -4.1/1.7 -2.6/5.9 -4.1/42.8 -0.15/3.48 -0.52/0.10 -0.14/0.42 
Metatarsal Head 5 SI C -10.0/1.4 -2.0/5.3 -3.3/34.9 -0.09/2.10 -1.23/0.09 -0.07/0.97 
Rear foot EP CS -4.1/1.2 -28.7/4.3 -3.4/87.4 -2.00/6.89 -1.11/0.07 -0.24/0.15 
Rear foot EP CS -10.5/0.8 -69.8/3.0 -1.5/273.8 -4.13/15.46 -3.20/0.04 -0.40/0.06 
Rear foot EP C -2.7/1.2 -11.3/0.8 -1.4/81.6 -0.12/1.87 -0.95/0.06 -0.13/0.18 
Rear foot EP C -8.6/1.5 -31.0/0.9 -1.3/272.1 -0.10/4.73 -3.00/0.02 -0.35/0.22 
Rear foot EP C -16.0/2.4 -54.3/0.6 -0.4/514.0 -0.06/7.58 -5.69/-0.02 -0.65/0.22 
Rear foot LI CS -10.6/1.2 -24.2/8.4 -3.9/58.4 -2.67/5.85 -2.75/0.15 -0.20/0.16 
Rear foot LI CS -66.7/1.3 -93.7/17.3 -2.1/320.2 -7.29/21.11 -16.25/0.03 -0.55/0.19 
Rear foot LI C -5.5/1.2 -7.0/0.4 -3.9/31.7 -0.11/1.31 -1.37/0.08 -0.10/0.19 
Rear foot LI C -21.8/0.8 -24.9/0.8 -2.6/110.5 -0.09/4.73 -5.31/0.11 -0.19/0.21 
Rear foot LI C -21.8/2.9 -25.3/1.5 -2.2/112.1 -0.09/4.88 -5.37/0.06 -0.18/0.21 
Rear foot LI C -36.6/0.8 -42.6/0.8 -3.5/191.2 -0.09/7.87 -9.03/0.08 -0.36/0.19 
Whole foot FP C -8.1/1.7 -1.9/33.4 -2.6/549.4 -1.29/12.59 -1.86/0.09 -0.14/1.29 
Whole foot FP C -35.4/1.3 -3.3/32.7 -2.0/687.4 -0.99/16.42 -9.33/0.06 -0.11/2.50 
Whole foot FP C -1.0/30.5 -31.8/16.6 -0.3/783.3 -0.09/22.95 -0.24/6.04 -0.12/0.62 
Whole foot FP C -35.0/1.9 -2.2/95.2 -1.9/668.2 -0.31/12.60 -8.05/0.04 -0.17/4.22 
Whole foot FP C -7.1/2.5 -2.0/63.8 -2.2/583.3 -0.14/16.88 -1.24/0.02 -0.13/1.91 
Whole foot FP C -60.1/0.9 -2.1/78.9 -1.8/615.0 -0.21/13.85 -13.86/0.02 -0.16/5.45 
Whole foot FP C -124.5/1.3 -1.5/419.1 -0.8/765.7 -14.73/6.47 -25.24/-0.00 -0.18/13.65 

EP: elevated platform; SI: small indenter; LI: large indenter; FP: full platform; C: compression; CS: compression + shear. 



fifth metatarsal head (Fig. 2(b)). These points establish an ana
tomically relevant coordinate system and also aid in registration 
between imaging and mechanical testing data. 

Mechanical testing protocols, in particular, control of robot tra
jectory and data collection, were implemented through a custom 
software written in LABVIEW (National Instruments Corp., Austin, 
TX) [26]. Mechanical testing was conducted on the rear foot, 
forefoot, metatarsal heads, and the whole foot, using the afore
mentioned tools (Table 1). Two types of loading scenarios were 
commonly applied. In a compression dominant test, the tool was 
pressed against the region of interest along a superior direction. A 
combined loading test compressed the region with the tool up to a 
specified point, followed by shear displacement at that level to 
induce multimodal loading. The target position of the tool was 
identified for a desired force accumulation by moving the robot at 
a slow loading rate (0.01 m/s). Once determined, the tool was 
moved to that position at a speed of 0.04 m/s to approximate 
lifelike loading rates [27,12]. Ten cycles were employed, during 
which the tool was retracted to unload the foot region. This study 
reports sample data sets extracted for the tenth cycle and pre
sented in the load cell coordinate system (Fig. 2(b)). All load cell 
data are raw, while the tool position and orientation data were 
resampled at 1000 Hz using MATLAB (Mathworks, Inc., Natick, 
MA). 

3 Results 

Computed tomography provided a clear differentiation of the 
soft tissue boundary of the foot (Fig. 1(b)) and its bones (Fig. 
1(d)). The rear foot and forefoot were tested under single and 
combined loading schemes using multiple tools, with forces 
sometimes exceeding half the bodyweight (Table 1). Metatarsal 
head testing focused on indentation, whereas whole foot testing 
included compression of up to one bodyweight (Table 1). The 
time history of the loading scenarios illustrated the evolution of 
reaction forces and moments as the tool was positioned to interact 
with the foot (Fig. 3). In combined load cases, a coupled loading 
response was apparent as illustrated for rear foot compression and 
shear (Figs. 3(a) and 4). Even in a single loading case, when the 
tool was moved in a dominant direction, coupling was observed, 
potentially due to coordinate system selection and the relative 
alignment of the foot and load transducer (Fig. 3(b)). For forefoot 
regions and the metatarsal heads, the response was a function of 
tissue deformation and arch stiffness. It is likely that this response 
was dictated by the tissue at low forces and the tarsometatarsal 
joint properties at higher forces (Fig. 3(b)). In all tests, the me
chanical response was nonlinear and exhibited hysteresis (Fig. 4). 

4 Discussion 

The mechanical response of a cadaver foot was documented in 
detail, which includes the global and regional tissue responses for 
specific regions of the foot. Deformation was induced through 
single and combined loading modes, using multiple tools, at rates 
representative of daily locomotion. Regional response was quali
tatively similar to those obtained previously, e.g., for the heel [6]. 
To expedite foot biomechanics research, the data are provided in 
full, freely accessible through the means described in the Appen
dix. 

An apparent limitation of the study was the constriction of the 
data to a single specimen. The extent of the viscoelastic response 
was limited to the loading and unloading cases as we did not 
conduct standardized tests to adequately characterize such behav
ior [28]. Yet, the loading rates and scenarios utilized were repre
sentative of daily locomotion [27]. Apart from these limitations, 
the range of mechanical loading and the regions tested for this 
single foot were extensive. Complementing the mechanical re
sponse with anatomical imaging also opens many future possibili
ties. A certain limitation in previous computational studies 
[29–31], even those conducted on the foot [32], was the lack of 
specimen specific mechanical data, from which model parameters, 

Fig. 3 Time history of foot loading and tool movements pre
sented in the load cell coordinate system. Loading corre
sponds to reaction forces and moments recorded at the origin 
of the load cell coordinate system. Kinematics describes the 
position and orientation of the tool coordinate system relative 
to the load cell coordinate system. „a… Rear foot compression 
and shear using the elevated platform. „b… Indentation of the 
second metatarsal head region using a small indenter „12.7 mm 
diameter…. 

e.g., material coefficients, can be estimated, and by which simu
lation results are validated. This study overcomes these limitations 
by providing data from both of these domains to build anatomi
cally realistic and mechanically consistent models of the foot. 

In an attempt to illustrate tool path relative to the computed 
tomography scan of the foot, a registration between mechanical 
testing data and the image set was conducted using a rigid body 
transformation [33]. The process utilized anatomical landmarks of 
the foot collected during testing and also extracted from the image 
sets using VolSuite. In the following, different tool trajectories 
were overlayed on a volumetric reconstruction of the computed 
tomography data using VolSuite (Fig. 5). While this process can 
employ the registration phantom, using foot landmarks accommo
dates potential differences between relative forefoot and rear foot 
position in imaging and mechanical testings. With the advent of 
inverse analysis techniques utilizing anatomically detailed models 



Fig. 4 Reaction forces against tool position. This representation of data from rear foot compression and shear, as applied 
by the elevated platform, points out the nonlinear nature of foot deformation characteristics. Hysteresis is noticeable as 
illustrated by the differences in loading and unloading patterns. Tool movement in the shear direction was applied at a fixed 
tool position in the compression direction. Reaction moments and tool orientation were not shown since tool orientation 
was kept constant during the test. All data were represented in the load cell coordinate system. 

obtained from such image sets [34], the loading data can be used 
to estimate plantar tissue properties and deformation characteris
tics of the joints at the arch of the foot. 

Our future work will benefit from this data set to establish 
comprehensively validated, anatomically detailed, and mechani
cally representative models of the foot using finite element analy
sis. The present work was limited to the passive properties of the 
foot. We envision that muscle function can be represented by ad
ditional line elements, in which force is generated by mathemati
cal models of muscle contraction, e.g., see Ref. [1]. The combi
nation of both techniques will allow musculoskeletal movement 
simulations and for the investigation of foot tissue and joint de
formations [35]. Dissemination of the whole data set will hope
fully facilitate investigators in foot biomechanics to take similar 
paths to accommodate their research needs. 

Fig. 5 Tool trajectories overlayed on volumetric reconstruc
tion of computed tomography data. Paths of the large indenter 
„25.4 mm diameter… during rear foot compression and shear 
and the small indenter „12.7 mm diameter… during compression 
of the first metatarsal head region are illustrated. Registration 
between mechanical testing data and computed tomography 
scans was accomplished using anatomical landmarks mea
sured during robotic testing and extracted from images as well. 
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Appendix 

Full data set, including mechanical testing and computed to
mography, is freely accessible in the “Downloads” section of the 
project website.3 Alternatively, interested parties can contact the 
authors to receive a freely available and open copy of the data set. 
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