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On the Effective Elastic Properties 
of Macroscopically Isotropic 
Media Containing Randomly 
Dispersed Spherical Particles 
A computational scheme for estimating the effective elastic properties of a particle rein
forced matrix is investigated. The randomly distributed same-sized spherical particles are 
assumed to result in a composite material that is macroscopically isotropic. The scheme 
results in a computational efficient method to establish the correct bulk and shear moduli 
by representing the three-dimensional (3D) structure in a two-dimensional configuration. 
To this end, the statistically equivalent area fraction is defined in this work, which de
pends on two parameters: the particle volume fraction and the number of particles in the 
3D volume element. We suggest that using the statistically equivalent area fraction, 
introduced and defined in this work, is an efficient way to obtain the effective elastic 
properties of an isotropic media containing randomly dispersed same-size spherical 
particles. 

Keywords: particle reinforced composites, effective properties, finite element method 

1 Introduction 

Particle reinforced composites are a common form of heteroge
neous material systems used in engineering structures. Significant 
efforts have been directed toward estimating the effective (i.e., 
macroscopic) properties of such multiphase materials based on the 
properties of the individual phases and the internal architecture of 
the microstructure. Reviews of both analytical and numerical pre
diction methods are given for example in Refs. [1–5]. Compared 
with real life testing, utilizing numerical methods provide a cost-
effective method for evaluating how changes in microstructural 
features affect the macroscopic properties of composite materials. 
Schemes employing the finite element method (FEM) are the most 
popular approach to model material samples containing details 
about the internal microstructural architecture. 

To account for the random distribution of the particles in the 
matrix, a sufficient number of configurations must be generated to 
obtain an insight into the statistical distribution of the effective 
properties [6]. Even though computational power constantly in
creases, computing the effective properties for a random three-
dimensional (3D) structure is both cumbersome and time consum
ing to perform. Not only is the time to generate a 3D mesh 
significantly more time consuming than a two-dimensional (2D) 
mesh but a 3D mesh is intrinsically larger than a 2D mesh; i.e., it 
requires more nodes and therefore results in more degrees of free
dom (DOF). Thus, a 3D mesh can become prohibiting since the 
solution time of the FE-simulations depends directly on the num
ber of DOF in the model. In general, the computational time for 
most popular direct FE solvers is approximately proportional to 
the cube of the number of DOF (the DOF3). This estimate comes 
from the so-called Cholesky decomposition—the most time con
suming operation of the solver—which shows that the 
decomposition-time of symmetric, positive-definite matrix is 
governed by n

1Corresponding author. 

a 
3, where n is the dimension of the matrix. The 

actual time depends on the actual solver (i.e., algorithm) used to 2 

solve the FE equations. Consequently, it follows that 3D samples 
are considerably more expensive, approximately a factor of 1000. 
It is therefore common to represent the 3D structure with a 2D 
structure. 

However, it is not obvious how a 3D structure of spheres can be 
represented with a 2D simplification. For example, representing a 
3D matrix reinforced with spherical participles in a 2D approxi
mation results in that the 2D model may actually represent cylin
ders (fibers) instead of spheres if a plane strain approximation is 
used. Moreover, when the particles are randomly distributed, an 
arbitrary cut through the (3D) matrix will not result in (2D) cir
cular particles that are of uniform (same-size) diameters. 

The purpose of this work is to investigate how a 3D structure 
with randomly distributed same-sized particles can be represented 
with a 2D-FEM model when establishing the effective elastic 
properties. To this end, we will in introduce (in Sec. 3) the concept 

¯of the statistically equivalent area fraction Afp. In Sec. 4 we will 
¯show that Afp can be used when reducing a 3D-representative 

volume element (RVE) of a matrix reinforced with same-sized 
spherical particles to an equivalent 2D representative area. Before 
discussing the concept of the equivalent area fraction, we will 
briefly describe how the random samples were generated in the 
numerical simulations. The results are compared with well-known 
analytical approaches, including the Hashin–Shtrikman (HS) up
per and lower bounds [7] and the self-consistent method [8]. A  
range of work shows that experimentally obtained data fall within 
these estimates, e.g., Refs. [9–13]. We will, in future studies, uti
lize the method of statistically equivalent area fraction when in
vestigating more sophisticated structures, such as coated particles 
and damaged structures, with nonlinear and nonconservative re
sponse, where traditional analytical methods may not be appli
cable. 

Generating 3D Samples 

For same-size spheres, the theoretically, largest volume fraction 
of particles is 0.74048 for periodic packing (according to Kepler’s 
onjecture [14]) and about 0.65 for random packing [15]. There 
re several approaches to generate a random distribution of 
pheres in a volume, for example, the random sequential adsorp
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tion (RSA) [16] and the algorithm by Metropolis et al. [17]. The 
algorithm by Metropolis et al. [17] can reach the highest level of 
random packing since the algorithm starts with an ordered ar
rangement of particles (e.g., face centered cubic (FCC) lattice) 
and then randomly (using a Monte-Carlo approach) move each 
particle to a new position. However, to reach a true random dis
tribution, with no trace of the original ordered structure, the algo
rithm theoretically requires infinitely many random moves. In 
computer simulations, this corresponds to a very large number of 
computations, and this is therefore a time consuming algorithm. In 
contrast, the RSA is an algorithm where randomly generated, non-
intersecting spheres of same-size radius are sequentially inserted 
into the cube representing the 3D domain investigated. This 
method is associated with a “jamming limit,” which is reached as 
the domain runs out of free space to place an additional sphere. 
Via computer simulations, Talbot and Schaaf [18] found that the 
“jamming volume fraction” is 0.382. At this volume fraction, the 
nearest-neighbor distance H1 is approximately 1.03d, where d is 
the diameter of the particles [19]. That is, if the diameter of the 
same-size particles is of unit size, the smallest gap between the 
particles is on average 0.03. Thus, the jamming volume fraction 
corresponds to a relatively high practical volume fraction for most 
real particle reinforced materials. We note here that particle vol
ume fractions reported in the literature that are higher than about 
0.35 are almost always nonspherical particles or spherical par
ticles with a broad range of sizes [20]. 

In this work, we implemented an approach based on the RSA 
since this is a relatively fast and simple method and since it rep
resents a broad spectrum of manmade composites. Similar ap
proaches have been employed by other researchers (e.g., Refs. 
[21,22]). Our adoption of the RSA will be discussed next for 
clarity of the ensuing discussion. 

Consider the cubical 3D specimen with sides h. Define the par
ticle volume fraction Vfp by Vfp= 3

4 1r3N /h3, where r is the radius 
of the particles and N is the number of spheres in the specimen. 
The procedure for generating random specimen configurations has 
been implemented using the PYTHON language [23,24]. The 
Mersenne Twister algorithm (which has a period of 219,937 −1) is 
used for random generation [25]. This algorithm is included in 
PYTHON [23]. We employ a Monte-Carlo approach to generate 3D 
samples with random particle distribution, where we consider the 
volume fraction Vfp and the number of particles in the specimen N 
as parameters. The algorithm used is based on the following 
scheme. First, for each particle volume fraction considered, the 
radius of the particles rref is established assuming a single sphere 
(N=1) in a cube of unit volume (h=1) 

1/33Vfprref = (
41 

) (1) 

Next, for each particle volume fraction, the radius rref is kept 
constant, while the 3D specimen is enlarged in order to include 
more inclusions. This approach is referred to as the successive 
domain enlargement and is commonly used, e.g., Refs. [5,26]. The 
size of the specimen is characterized by the length of each side in 
the cubic 3D domain hRVE 

1/341N 
hRVE = rref (2)(

3Vfp 
)

The cubic RVE is considered centered at the origin. An iterative 
routine generates a valid random configuration containing the pre
scribed number of particles N. 

Only cases where the spheres are completely inside the cube are 
considered, i.e., the cube faces do not intersect the particles. This 
simplification is a reasonable assumption for the volume fractions 
considered and eliminates complications related to splitting the 
spheres intersecting the domain boundaries while enforcing a 
given volume fraction. 

To ensure that the spheres are completely inside the cubic RVE, 
the center coordinates (xi , yi ,zi) for each particle i are generated 
according to the uniform distribution 

xi = U(− hRVE/2 +  h + rref,hRVE/2 −  h − rref) 

yi = U(− hRVE/2 +  h + rref,hRVE/2 −  h − rref) (3) 

zi = U(− hRVE/2 +  h + rref,hRVE/2 −  h − rref) 

Equation (3) also ensures that a space greater than  h exists be
tween the sphere and the cube walls. Next, the newly generated 
sphere is validated against the intersection with each of the previ
ously generated spheres, by verifying that the distance between 
the sphere centers is greater than twice that of the particle radius,

 (xi − xk)2 + (yi − yk)2 + (zi − zk)2  2(rref +  h) (4) 

The inequality (4) is applied against any sphere k already added to 
the specimen configuration and enforces that a minimum gap of 
2 h exists between neighboring spheres. Random generation of 
each sphere i is attempted until either Eq. (4) is satisfied, or until 
a user-specified number of attempts per sphere ai is reached. If a 
valid sphere cannot be inserted after ai trials, the generation of the 
entire specimen is restarted. The procedure is repeated until all 
user-specified spherical particles have been successfully inserted 
in the cubic RVE and thus, a valid specimen has been obtained. 
The number of trials necessary to generate a valid specimen 
strongly depend on the volume fraction Vfp. Segurado and Llorca 
[22] utilized the method discussed here for volume fraction up to 
Vfp=0.3. Here, we limit the volume fractions to 0.275 to keep the 
computational time reasonable.1 

3 The Statistically Equivalent Area Fraction 

In this section, we introduce the concept of the statistically 
¯ ¯equivalent area fraction Afp. In Sec. 4 we will show that Afp can be 

used when reducing a 3D-RVE of a matrix reinforced with spheri
cal particles to an equivalent 2D representative area. 

Based on the scheme presented in Sec. 2, a Monte-Carlo type 
approach is used to generate randomly dispersed spherical par
ticles in a cubic (3D) specimen (Fig. 1). The spherical particles are 
assumed to have a constant (same-size) diameter. For simplicity,
 h =0 in Eqs. (3) and (4). Each valid configuration generated by 
this routine is cross-sectioned by three orthogonal Cartesian 
planes XY (z=0), YZ (x=0), and ZX (y =0) (Fig. 1). Each of 
these planes intersects some of the spherical particles in the cubic 
RVE (Fig. 1), forming a plane surface with disks (e.g., the cross 
section of a particle) and the matrix. For each random configura
tion of spheres j, the numbers of disks corresponding to each 

j j jplane are denoted NXY , and NZX. Furthermore, we define the , NYZ 
equivalent area fraction as the total area of the disks resulting 
from the sphere-plane intersection, normalized with the area of the 
plane sections 

1However, this method can be used effectively for area fractions up to 50% for 2D 
problems with circular inclusions (i.e., disks) being inserted into a square. We also 
note that Vfp=0.275 leads to a nearest-neighbor distance of H1=1.06d [19], which in 
practical terms is a relatively closed packed system. 



 

 

 

 
 

 
  

Plane XY 

Plane ZX 

Plane YZ 

Fig. 1 A configuration with 1000 randomly generated noninter
secting spheres representing 25% volume fraction 
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Thus, the equivalent area fraction for each plane Af
j 
,XY, Aj

f ,YZ, and 
, and the number of particles intersected by the three cutting Af

j 
,ZX 

j j jplanes NXY , and NZX, respectively, are determined for each , NYZ 
valid configuration j =1,2 ,  . . . ,C, where C is the number of con
figurations to be generated. C was selected to be sufficient for 
convergence of the mean and standard deviation of the three 
equivalent area fractions. When a sufficient number of configura
tions are investigated, the equivalent area fraction for the orthogo
nal planes converges to one single value (Fig. 2). This implies that 
the morphology of the microstructure is isotropic, and conse
quently the elastic properties will be isotropic. 

For a fixed volume fraction, an increasing number of particles 
(thus larger RVE) requires fewer configurations for the mean of 
the equivalent area fraction to converge (Figs. 2(a) and 2(b)). For 
a fixed number of particles, the convergence rate of the equivalent 
area fraction appears to be independent of the volume fractions 
(Figs. 2(c) and 2(d)). The equivalent area fraction assumes a 
Gaussian distribution (Fig. 3). The mean and standard deviation of 
the distribution depend on both the volume fraction and specimen 
size. 

More insight to the convergence of the equivalent area fraction 
and the number of intersected spheres are obtained by investigat
ing the mean and standard deviation for the distribution of these 
two quantities (Figs. 4 and 5, and tabulated in Table 1 for ease of 
use). Each point in Figs. 4 and 5 is obtained based on 50,000 
randomly generated configurations. Interestingly, the mean of the 
area fraction changes nonmonotonically with increasing volume 
fraction, in particular for volume fractions higher than 20% (Fig. 

4) for samples containing 6–32 particles. Consequently, for sim
plicity we considered in the following only samples with a suffi
ciently high number of particles. 

We define the statistically equivalent area fraction as the mean 
¯value of the equivalent area fraction Afp, and we denote the mean 

of the number of intersected particles N̄. These quantities are sum
¯marized in Table 1. We will show in Sec. 4 that Afp and N̄ can be 

used for estimating the effective elastic properties of a 3D-RVE 
based on 2D-FE models with same-size particles (disks). Table 1 

¯ ¯can be used for future reference to determine Afp and N. The 
statistically equivalent area fraction depends on the volume frac
tion Vfp and on the number of particles included in the specimen 
N. 

4 Effective Properties of a Particle Reinforced 
Medium 

In this section, we will investigate the effective shear and bulk 
moduli of a matrix reinforced with randomly distributed same-size 
spherical particles. We will show that a 2D simulation (employing 
same-sized 2D circular particles) can be used if the particle diam

¯eter is based on the statistically equivalent area fraction Afp (de
fined in Sec. 3). 

To this end, we will adopt a numerical scheme presented by 
Zohdi and Wriggers [6], utilizing FEM, that predicts effective 
elastic properties in multiphase materials with a random disper
sion of same-sized spherical particles. The idea is based on calcu
lating the response for multiple configurations, where the particles 
are distributed randomly in the matrix in each simulation. Based 
on this, the mean and standard deviation for the bulk and shear 
moduli are determined. We extend the method presented by Zohdi 
and Wriggers [6] to investigate both two- and three
dimensional-FE models of randomly distributed particles. 

4.1 Definition of the Finite Element Models. The effective 
bulk and shear moduli for materials assumed macroscopically iso
tropic can be determined by using the commonly employed ap
proach [1,5,6] 

<ukk/3>D3Ka = 
< kk/3>D 

(6) 
<uij: >D<uij: >D2Ga = 
< : >D< : >Dkl kl

The summation convention is assumed in Eq. (6), and 

1
<X> = XdDf
iDi 

D 

where D is the whole domain of the specimen investigated. In the 
context of the finite element method this integral can be seen as 
the sum of integrals over the deformed domain De of each ele
ment, i.e., 

Nelf X(x)dD =  f X(x)dDe 

D e=1 De 

where 

De 

e 
D =  

Using the mapping x =x( ) from the deformed element domain De 

to the so-called parent element domain D 
e , the integral becomes 

eX(x)dDe X(x( ))J dD f = f 
eDe D 

where 
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Fig. 3 Distribution of the equivalent area fraction obtained for 
Vf =0.22 and N=1000 particles by cross-sectioning the 3D cubic 
RVE with the three orthogonal planes. Histograms computed 
using 50,000 random configurations. 
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J = det(  )

 j

is the element Jacobian. Furthermore, the integral over the parent 
element domain can be approximated using a numerical quadra
ture formula. Gauss quadrature formulas are commonly used in 
the FEM and they are also employed in our implementation. De
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Fig. 2 Equivalent area fraction as a function of the number of 
configurations investigated, obtained by cross-sectioning the 
3D-RVE simultaneously with three orthogonal planes for „a… N 
=20 particles and Vfp=0.25, „b… N=1000 particles and Vfp=0.25, 
„c… N=100 particles and Vfp=0.05, and „d… N =100 particles and 
Vfp=0.25 

tails on numerical integration in the context of the FEM can be 
found for example in Refs. [27–29]. Also, in Eq. (6) the deviatoric 
components are defined by uij: = uij − 3

1 ukkoij  and :ij = ij −
1 

kkoij,3
 
where uij  denotes the components of the stress tensor where ukk 
=u11+u22+u33 (thus ukk / 3 is the hydrostatic stress), ij  are the 
components of the strain tensor, where kk = 11+ 22+ 33 and oij  
is the Kronecker delta (oij =1  if  i= j and oij  =0 otherwise). Equa
tions (6) follow from Hooke’s law for isotropic, linear elastic 
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Fig. 4 Equivalent area fraction as the function of the number 
of particles N obtained by cutting the cubic RVE with the XY 
plane, for various volume fractions: „a… the mean value and „b… 
the standard deviation. „Each point is based on 50,000 ran
domly generated configurations.… 

materials, viz. <uij>D =Lijkl< kl>D, where Lijkl  =Kaoijokl + Ga[oiko jl 

+oilo jk − (2 /3)oijokl] is the effective elasticity tensor. 
In order to determine the elasticity tensor for the considered 

RVE, the RVE is typically subjected to selected boundary condi
tions so to relate stress to strain [1,5,6]. To this end, we use the 
prescribed boundary conditions ui i D, which are linear displace
ments given by (assuming summation convention) 

uii D = kijxj, i, j =  1,  . . .  ,Ndim (7) 

where kij  are constants and Ndim=2 for 2D-FE models and Ndim 
=3 for 3D-FE models. In the present study we used kij  =1  
X10−3. Equation (7) offers a convenient way to create various 
deformation states. For example, in 2D, if k12=0, the model is 
subjected to biaxial displacements. The accurate estimation of ef
fective shear modulus requires the off-diagonal terms to be non
zero whereas the effective bulk modulus requires nonzero diago
nal terms [5]. These boundary conditions are applied in the 
commercial program ABAQUS using the user-subroutine DISP 
[30]. 

Two alternative approaches to formulate the mesh will be con
sidered: (i) unaligned mesh or (ii) aligned mesh [5,6,26]. The 
terms aligned and unaligned refer to the orientation of the element 
faces (3D) or edges (2D) with respect to the interface between the 
matrix and the particle [5,6,26]. An aligned mesh implies that the 
interface geometry is modeled explicitly. A schematic of the two 
approaches is presented in Fig. 6 for a 2D model, but one can 
easily imagine the extension to 3D models. 

Both approaches have advantages and disadvantages: The un
aligned mesh (Fig. 6(a)) assumes a structured mesh that is easy to 
generate, since the RVE is usually cubic. However, the unaligned 

0.5 B
0.0 
1 10  102 103 

N (spheres) 

Fig. 5 Number of the particles intersected by plane XY as the 
function of the number of particles N for various volume frac
tions: „a… the mean value and „b… the standard deviation 

mesh requires a large number of elements since the material in
terface is not modeled explicitly. This may lead to prohibitively 
large models for the available computational resources.2 

In the aligned mesh, the interfaces can be modeled accurately, 
but generating an aligned mesh (Fig. 6(b)) is more computation-
ally expensive. However, the resulting FE model is usually 
smaller than for an unaligned mesh since smaller elements can be 
used near the interfaces whereas larger elements can be used in 
regions within the bulk material. Thus, this approach is more 
cost-effective. 

Zohdi and co-worker [5,6,26] used an unaligned meshing ap
proach to simulate 3D specimens. Here, we will extend their pro
cedure for: (i) 2D models with aligned mesh and (ii) 3D models 
with both aligned and unaligned meshes. Trilinear hexahedral el
ements with a 2 X2X2 Gauss integration have been used by Zo
hdi and co-worker [5,6,26] for the elements completely embedded 
in one of the material phases. Here, we use biquadratic serendipity 
(8 node) elements integrated by a 3 X3 Gauss rule for the 2D 
models. For the 3D models, we use trilinear (8 node) elements for 
the unaligned meshes (with a 2X2 X2 integration rule) and qua
dratic (10 node) tetrahedral elements (with a four point integration 
rule) for the aligned meshes. These element formulations are 
available in the commercial software ABAQUS [31]. The generation 
of the geometry follows the description in Sec. 2, and we set h to 

2Special numerical integration rules might be used for the elements crossed by the 
theoretical interface between the materials to alleviate this problem. For example, a 
particular 5X5 X5, the integration rule was used by Zohdi and co-worker [5,6,26] 
for the elements crossed by the interface. However, the application of these higher 
order quadrature rules requires additional programming effort, and is not always 
possible to implement for a commercial FE software (depending on the software 
used). 



Table 1 The mean number of intersected particles and the statistically equivalent area fraction 

Mean of intersected number of particles N̄ Statistically equivalent area fraction Ā fp 

Volume fraction Volume fraction 
No. of spheres 0.05 0.10 0.15 0.20 0.2209 0.25 0.05 0.10 0.15 0.20 0.2209 0.25 

1 0.84 1.00 1.00 1.00 1.00 1.00 0.0925 0.2134 0.3110 0.3938 0.4255 0.4672 
2 1.08 1.55 2.00 2.00 2.00 n/a 0.0738 0.1561 0.2483 0.3306 0.3604 n/a 
3 1.31 1.74 2.12 3.00 3.00 3.00 0.0684 0.1380 0.1989 0.2650 0.2944 0.3269 
4 1.52 1.95 2.24 2.58 2.84 3.57 0.0659 0.1299 0.1840 0.2245 0.2427 0.2783 
5 1.73 2.16 2.42 2.56 2.65 2.85 0.0647 0.1251 0.1742 0.2044 0.2121 0.2231 
6 1.92 2.38 2.60 2.69 2.71 2.77 0.0639 0.1232 0.1693 0.1983 0.2012 0.2040 
7 2.10 2.61 2.81 2.85 2.80 2.73 0.0630 0.1230 0.1677 0.1956 0.1962 0.1872 
8 2.28 2.83 3.02 3.05 2.98 2.80 0.0626 0.1230 0.1674 0.1987 0.2025 0.1927 
9 2.45 3.04 3.25 3.29 3.24 2.97 0.0618 0.1223 0.1691 0.2072 0.2191 0.2141 

10 2.60 3.26 3.50 3.57 3.58 3.48 0.0616 0.1225 0.1715 0.2140 0.2343 0.2541 
12 2.91 3.67 3.98 4.12 4.17 4.23 0.0608 0.1219 0.1747 0.2228 0.2475 0.2836 
14 3.20 4.03 4.45 4.64 4.71 4.80 0.0602 0.1206 0.1769 0.2278 0.2532 0.2927 
16 3.46 4.39 4.90 5.14 5.24 5.34 0.0595 0.1204 0.1780 0.2312 0.2569 0.2975 
18 3.73 4.74 5.33 5.64 5.76 5.89 0.0594 0.1199 0.1782 0.2339 0.2598 0.3015 
20 3.96 5.05 5.72 6.12 6.27 6.46 0.0589 0.1191 0.1777 0.2354 0.2609 0.3038 
24 4.44 5.64 6.42 6.99 7.21 7.55 0.0584 0.1178 0.1759 0.2352 0.2603 0.2993 
32 5.29 6.74 7.67 8.43 8.71 9.11 0.0574 0.1162 0.1729 0.2303 0.2542 0.2815 
48 6.82 8.68 9.87 10.76 11.07 11.38 0.0565 0.1140 0.1696 0.2236 0.2458 0.2726 
64 8.16 10.37 11.82 12.86 13.21 13.65 0.0558 0.1125 0.1680 0.2216 0.2427 0.2730 
100 10.82 13.75 15.69 17.14 17.61 18.25 0.0549 0.1109 0.1659 0.2192 0.2410 0.2712 
200 16.83 21.37 24.47 26.75 27.52 28.59 0.0539 0.1086 0.1627 0.2156 0.2370 0.2672 
400 26.32 33.39 38.21 41.84 43.16 44.79 0.0531 0.1068 0.1602 0.2125 0.2342 0.2638 

1000 47.71 60.47 69.21 75.96 79.37 81.46 0.0522 0.1050 0.1575 0.2093 0.2338 0.2606 

a small positive value to simplify the mesh generation. 
For the 2D simulations, we introduce two modeling ap

proaches: (i) generation of the models based on intersecting the 
3D specimen with the XY-plane and (ii) generation of models 
containing same-size circular inclusions employing the statisti
cally equivalent area fraction (see Sec. 3). 

As an example of mesh sizes in this work, approximate and 
representative mesh sizes are as follows: For 3D meshes: aligned 
meshes typically contain 100,000 nodes (300,000 DOF), and un
aligned meshes 360,000 nodes (1.08X106 DOF). For 2D 
meshes: typical meshes using the direct cutting approach have 
48,000 nodes (144,000 DOF) and using the equivalent area frac
tion 30,000 nodes (90,000 DOF). The CPU computational time 
will depend directly on the platform, but as noted previously the 
computational time is approximately proportional to DOF3. Con
sequently, the 3D samples are considerably more expensive, ap
proximately a factor of 1000. 

In all investigated cases, the specimens consist of an aluminum 
matrix reinforced with boron spherical particles. The material 
properties of the two constituents are taken from Ref. [6] and are 
presented in Table 2. 

To ensure that the routine was properly incorporated, we veri
fied (for both 2D- and 3D-FE models) the implementation by 
considering the entire specimen domain where the matrix and the 
reinforcement have the same material properties (see Table 2). 
Thus, the input bulk and shear moduli were Kinput=77.9 GPa and 
Ginput=24.9 GPa, respectively. The averaging relations (6) 
(implemented as a computational postprocessing procedure) were 
used to compute the output effective material properties. The ac
curacy is very good, with relative errors between the input moduli 
and output effective moduli of order of 10−4% for the bulk modu
lus and of 10−5% for the shear modulus. 

4.2 Effective Properties Based on 2D-Finite Element 
Models. In this section, we present the effective elastic properties 
(i.e., bulk and shear moduli) obtained using 2D-FE models. In all 
2D cases, plane strain elements are used. The effective properties 
are estimated using the computational scheme described in Sec. 3 
for the volume fractions: 0.05, 0.10, 0.15, 0.20, 0.2209, and 0.25. 
For each of the volume fraction studied, 50 random configurations 
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Material 2 
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Material 1 
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Fig. 6 Modeling inclusions using „a… unaligned mesh and „b… 
aligned mesh 



Table 2 Material properties of the matrix and particles 

Bulk modulus Shear modulus 
Constituent Material (GPa) (GPa) 

Matrix Aluminum (Al) 77.9 24.9
 
Particles Boron (B) 230 172
 

are considered. 
Two approaches were used, according to the following. 

(i) Mesh based on cross-sectioning the 3D specimens with the 
plane XY (z=0): A valid 3D-RVE containing 100 spheri
cal particles is first generated using the algorithm de
scribed in Sec. 2 (Fig. 7(a)). The 3D particle configuration 
is cross-sectioned at the XY plane (z=0) and the informa
tion describing the intersections (i.e., 2D circular regions) 
is used to automatically generate the FE model (Fig. 7(b)). 
This modeling approach results in 2D-FE models contain
ing circular particles of various diameters as visualized in 
Fig. 7(b). 

(ii) Mesh containing same-size circular particles using the sta
¯tistically equivalent area fraction Afp, and the average 

number of intersected particles: 2D-FE models containing 
circular particles with a constant diameter are generated. 

¯For each investigated volume fraction, the Afp (Sec. 2) was 
selected to correspond to 100 spherical particles (Fig. 4). 
Similarly, the mean number of intersected particles was 
selected for the same volume fraction and the same num
ber of spherical particles (Fig. 5). Based on the obtained 
value, the closest integer was selected as the radius of the 
particles.3 The circular particles were inserted using the 
approach described for 3D specimens in Sec. 2. 

For the automatic generation of the 2D-FE models we took 
advantage of a developed modeling frame presented elsewhere 
[32]. 

The effective bulk and shear moduli obtained using the two 
2D-FE modeling approaches are compared with the Hashin– 
Shtrikman bounds [7] and the prediction given by the self-
consistent method [8] in Fig. 8. (The Hashin–Shtrikman bounds 
and the self-consistent method are summarized in the Appendix 
for completeness of the presentation.) The two 2D-FE modeling 
approaches produced very close means of the effective bulk and 
shear moduli. Thus, the major influence on the effective properties 
is the statistically equivalent area fraction and not the actual dis
tribution of particle sizes. 

However, a significant difference is noticed in the standard de
viation (indicated in Fig. 8 by the vertical bars). The mesh based 
on cross-sectioning a 3D configuration, as shown Fig. 7(b), results 
in a higher standard deviation, which is driven by the variation in 
the particular area fraction for a specific 2D model. When the 
statistically equivalent area fraction is employed for 2D models 
(with same-size particles, Fig. 7(c)), the standard deviation is 
small since it is only influenced by the random locations of the 
particles. 

4.3 Effective Properties Based on 3D-Finite Element 
Models. Both aligned and unaligned meshes are considered for 
the 3D-finite element models (Fig. 9). The random specimens 
used for the 3D-FE models contained 32 particles completely em

3For example, for a 3D sample containing 100 spherical particles at 25% volume 
fraction, the statistically equivalent area fraction is 0.271 and the mean of the inter
sected number of particles is 18.2 (Table 1). Therefore, the 2D-FE model will contain 
18 circular inclusions of the same-size accounting for 27.1% of the sample area. 
Thus, the radius of the inclusions is the radius of one inclusion representing 27.1% of 
a sample of unit area. The size of the 2D rectangular sample is calculated to accom
modate 18 circular inclusions representing 27.1% of the sample area. 
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Fig. 7 Two-dimensional-FE modeling approaches: „a… a 3D  
configuration containing 100 randomly distributed spherical 
particles „Vf =0.25…, „b… the 2D-FE model obtained by cross-
sectioning the 3D specimen with the plane XY, and „c… the 
equivalent 2D model containing 18 same-size circular particles 
„Af =0.271… 

bedded in the matrix (Fig. 9). Investigating 3D-FE models with 
more particles was found to be computationally prohibitive with 
our current computational resources. 

The effective properties obtained by the two 3D-modeling ap
proaches are presented in Fig. 10. In this figure, the FE results are 
compared with the Hashin–Shtrikman bounds and the estimations 
by the self-consistent method. For the aligned meshes, the effec
tive bulk modulus is very close to the lower Hashin–Shtrikman 
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Fig. 8 Effective elastic properties as a function of volume frac
tion Vf predicted by the 2D-FE models using the two modeling 
approaches, compared with Hashin–Shtrikman bounds and the 
self-consistent method: „a… the bulk modulus Ka and „b… the 
shear modulus Ga. The vertical bars indicate ±1 standard 
deviation. 

bound, whereas the effective shear modulus is close to the esti
mate given by the self-consistent method. The effective properties 
obtained by using unaligned meshes are consistently higher than 
for those resulting from the self-consistent method (Fig. 10). The 
standard deviation was about 1.5 times higher for the unaligned 
meshes than the aligned meshes. 

4.4 Discussion. The 2D numerical approaches both give simi
lar mean values of the effective bulk and shear moduli as the 3D 
approaches (Fig. 11). The effective bulk modulus (i.e., the mean 
based on 50 specimens) is very close to the lower Hashin– 
Shtrikman bound. The effective shear modulus is very close to the 
estimate given by the self-consistent method. However, the results 
from the 2D models based on cross-sectioning a 3D configuration, 
have significantly larger standard deviations. 

An additional comparison can be made to work presented by 
Zohdi and Wriggers [6]. They considered the volume fraction 
22.09% for unaligned 3D-FE meshes only. The effective proper
ties obtained in that work is included in Table 3 (unaligned 

Fig. 9 Three-dimensional-FE models of RVEs containing ran
dom configurations of 32 particles at 25% volume fraction: „a… 
aligned tetrahedral mesh, „b… unaligned hexahedral mesh, and 
„c… cross section along the plane XY. The contour plots show 
Mises stress 

ues provided by the 2D models very closely reproduced the results 
obtained from the 3D models with aligned mesh of quadratic tet
rahedral elements. Even though 3D models may be more realistic, 
they frequently become too large to use in most practical applica
tions. In these cases, 2D models based on the statistically equiva

lent area fraction Āfp can be successfully used to estimate the 
effective properties. To generate a suitable model, our results pre
sented in Table 1 can be used to determine the statistically equivameshes with 24X24X24 elements representing specimens with 

20 particles [6]). The comparison suggests that the unaligned lent area fraction Āfp and the number of intersected particles N̄, for 
mesh overestimate the shear modulus and underestimate the bulk a given volume fraction. 
modulus. In future studies, we will investigate if other microstructures 

Although 3D models are preferred for evaluating the effective and microstructural features (such as flaws) can be investigated 
properties distribution, the comparisons suggest that the mean val- using the concept of statistically equivalent area fraction. 
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Fig. 10 Effective elastic properties as a function of the volume 
fraction Vf predicted by the 3D-FE models using aligned and 
unaligned meshes compared with Hashin–Shtrikman bounds 
and the self-consistent method: „a… bulk modulus Ka and „b… 
shear modulus Ga 

5 Concluding Remarks 

A FEM based computational procedure for estimating the effec
tive elastic properties of a particle reinforced matrix has been 
investigated. The method is applied to a macroscopically isotropic 
medium reinforced with randomly distributed spherical particles 
of uniform diameter, aiming to establish the overall elastic re
sponse. Of particular interest in this study was to investigate if it 
is possible to obtain the correct effective bulk and shear moduli by 
representing the 3D structure in a 2D configuration. 

To this end, a computational scheme was adopted to enable 
both 2D- and 3D-finite element models using particle volume 
fractions in the range of 0.05–0.275. Since the particles are ran
domly distributed, it is not possible to indentify a representative 
volume element with only one particle. Thus, the effective prop
erties were averaged using 50 specimens for all cases considered. 
For the 2D models, we used aligned meshes only, whereas for 3D 
models we used both aligned and unaligned meshes. A RSA based 
Monte-Carlo simulation was initially conducted to establish the 
proposed statistically equivalent area fraction and the average 
number of intersected particles. The statistically equivalent area 
fraction defined in this work depends on two parameters: the vol
ume fraction of the 3D specimen and the number of particles in 
the 3D specimen. The volume fraction investigated here is limited 
to lower volume fractions due to that the selected method for 
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Fig. 11 Effective properties as a function of the volume frac
tion Vf predicted by 2D- „direct generation… and 3D-FE models 
with aligned meshes: „a… bulk modulus Ka and „b… shear modu
lus Ga. The vertical bars indicate ±1 standard deviation. 

randomly generating particles is bounded to this volume fraction. 
However, the concept of statistically equivalent area fraction is 
not limited to this low volume fraction only. 

When the computational procedure was used with 2D-FE mod
els, we found that the distribution of particle sizes has only a 
minor influence on the effective properties. However, the statisti
cally equivalent area fraction directly affects the values of the 
effective properties. 

Using the aligned meshes, the 2D-FE models gave very close 
estimates of the mean of the effective properties to that of the 
3D-FE models. Therefore, when considering a matrix reinforced 
with randomly distributed spherical particles, a 2D modeling ap
proach can be used to estimate the mean of the effective properties 
at a reduced computational cost. We introduced two possible 
methods to create a representative modeling scheme: (i) a mesh 
generated by cross-sectioning the 3D specimens with plane XY 
and (ii) a mesh generated by using the statistically equivalent area 
fraction with same-size circular particles. The data for the latter 
case was generated via the approach presented in Sec. 3, which 
results in the data presented in Table 1. 

Thus, using the statistically equivalent area fraction along with 
the mean number of intersected particles, introduced in this work, 
may be the most efficient way to estimate effective elastic prop
erties. These values are presented in Table 1 and can directly be 
used for future investigations. Ongoing studies are utilizing this 



  
  

Table 3 Comparison of the effective properties for 22.09% volume fraction †6‡ compared with the proposed methods 

Ka Ga 
Case (GPa) (GPa) Comments 

Zohdi and Wriggers [6] using an unaligned mesh with 
24X24X 24 elements 96.17 42.35 Trilinear hexahedral elements 

2D particles generated directly by cross-sectioning the 
2D-FE—direct generation (aligned mesh) 93.93 36.78 3D configuration 
2D-FE—using the equivalent area fraction (aligned 
mesh) 93.65 36.47 2D particles of the same size 
3D-FE—unaligned mesh with 60X60X60 elements 96.24 38.06 Trilinear hexahedral elements (C3D8) 
3D-FE—unaligned mesh with 70X70X70 elements 96.04 37.87 Trilinear hexahedral elements (C3D8) 
3D-FE—aligned mesh 94.64 36.61 Quadratic tetrahedral elements (C3D10) 
Self-consistent method 95.28 36.86 Analytical 

concept for investigating more sophisticated composite structures, 
such as coated particles and damaged structures, with nonelastic 
properties. 

Appendix: Analytical Methods 

The HS bounds [7] are the tightest bounds that can be derived 
without taking into consideration the geometry of the microstruc
ture. They predict that the effective bulk and shear moduli should 

− + − +be bounded by KHS -Ka and GHS -Ga , respectively, -KHS -GHS 
where 

is the lower HS bound on the bulk modulus KHS
− 

− VfpKHS = Km + (A1)
1 3Vfm+ 

Kp − Km 3Km + 4Gm 

+ is the upper HS bound on the bulk modulus KHS 

+ VfmKHS = Kp + (A2)
1 3Vfp+ 

Km − Kp 3Kp + 4Gp 

is the lower HS bound on the shear modulus GHS
− 

− VfpGHS = Gm + (A3)
1 6Vfm(Km + 2Gm)

+ 
Gp − Gm 5Gm(3Km + 4Gm) 

+ is the upper HS bound on the shear modulus GHS 

+ VfmGHS = Gp + (A4)
1 6Vfp(Kp + 2Gp) 

Gm − Gp 
+

5Gp(3Kp + 4Gp) 

In the relations above, Km ,Gm represent the elastic properties of 
the matrix and Kp ,Gp of the particles, Vfp is the particle volume 
fraction, and Vfm=1−Vfp is the matrix volume fraction. 

The self-consistent method [8], applied to media reinforced 
with spherical particles, assumes that the effective bulk and shear 
moduli are the solution of the following system of coupled alge
braic equations [2]: 

−1Ka Ka(Km − Kp) Ka 1 +  va= 1 −  Vfp − 
Km Km(Ka − Kp) Ka − Kp 3(1 −  va) 

(A5)
−1Ga Ga(Gm − Gp) Ga 2(4 − 5va)

= 1 −  Vfp − 
Gm Gm(Ga − Gp) Ga − Gp 15(1 −  va) 

where va = (3Ka −2Ga) / (6Ka +2Ga) is the effective Poisson ratio. 
The solution for Ka ,Ga is obtained using an iterative numerical 
procedure. 
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