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internal stresses [10], and to evaluate plantar pressure distribution riety of testing conditions. Both in vivo and in vitro experimental 
studies have been performed to quantify the mechanical properties 
of the heel pad at structural and tissue levels. In vivo studies gen-
erally used indentation [
Typically performed 
tests helped quantify force-deformation behavior at high loading 
rates and indentation tests quantified the response at low loading 
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1 Introduction 

A Three-Dimensional Inverse 
Finite Element Analysis 
of the Heel Pad 
Quantification of plantar tissue behavior of the heel pad is essential in developing com
putational models for predictive analysis of preventive treatment options such as foot
wear for patients with diabetes. Simulation based studies in the past have generally 
adopted heel pad properties from the literature, in return using heel-specific geometry 
with material properties of a different heel. In exceptional cases, patient-specific material 
characterization was performed with simplified two-dimensional models, without further 
evaluation of a heel-specific response under different loading conditions. The aim of this 
study was to conduct an inverse finite element analysis of the heel in order to calculate 
heel-specific material properties in situ. Multidimensional experimental data available 
from a previous cadaver study by Erdemir et al. (“An Elaborate Data Set Characterizing 
the Mechanical Response of the Foot,” ASME J. Biomech. Eng., 131(9), pp. 094502) was 
used for model development, optimization, and evaluation of material properties. A 
specimen-specific three-dimensional finite element representation was developed. Heel 
pad material properties were determined using inverse finite element analysis by fitting 
the model behavior to the experimental data. Compression dominant loading, applied 
using a spherical indenter, was used for optimization of the material properties. The opti
mized material properties were evaluated through simulations representative of a com
bined loading scenario (compression and anterior-posterior shear) with a spherical 
indenter and also of a compression dominant loading applied using an elevated platform. 
Optimized heel pad material coefficients were 0.001084 MPa (l), 9.780 (a) (with an 
effective Poisson’s ratio (v) of 0.475), for a first-order nearly incompressible Ogden ma
terial model. The model predicted structural response of the heel pad was in good agree
ment for both the optimization (<1.05% maximum tool force, 0.9% maximum tool 
displacement) and validation cases (6.5% maximum tool force, 15% maximum tool dis
placement). The inverse analysis successfully predicted the material properties for the 
given specimen-specific heel pad using the experimental data for the specimen. The mod
eling framework and results can be used for accurate predictions of the three-
dimensional interaction of the heel pad with its surroundings. 

Keywords: Heel pad, plantar tissue, three-dimensional model, inverse finite element 
analysis, optimization 

The plantar tissue under the heel aids in the distribution of con
tact loads and provides shock absorption during locomotion [1,2]. 
The heel region is commonly associated with pain [3], and is 
known for risk of pressure ulcers [4,5] and diabetic foot ulcers [5]. 
Understanding heel pad mechanics is not only important for estab
lishing the baseline for the healthy mechanical function of this 
structure, but it is also indispensable for the prescription of success
ful management strategies to accommodate mechanical dysfunction 
due to disease related changes. The mechanics of the heel relies on 
its geometry and the underlying tissue properties. Quantification of 
heel pad tissue behavior is therefore critical to understand normal 
and diseased tissue function and to design effective intervention 
strategies. Computational modeling has recently been utilized to 
explore healthy and pathological foot mechanics and related inter
ventions, with many investigations focusing on the heel pad. Spe
cifically, finite element (FE) analysis of the foot and heel pad have 
been extensively used in insole and footwear design [6–9], to study 

1

[7], a mechanical variable commonly associated with diabetic foot 
ulceration or pressure ulcers at the heel [5]. Most models of the 
foot or heel pad have adopted literature based plantar tissue proper
ties [7–9]. Only a handful of studies have associated the experimen
tal data with model results [11,12]. 

The success of simulations based on finite element analysis 
relies on the accurate representation of specimen-specific geome
try and specimen-specific tissue material properties, particularly 
in pathological conditions, such as diabetes. In addition, the inves
tigations are ideally validated with controlled experimental data 
and are applicable to a wide range of physiologically relevant 
loading conditions. While acquisition of anatomical data to recon
struct realistic geometry is rather straightforward through well-
established imaging modalities (magnetic resonance imaging, for 
example), identification of specimen-specific material properties, 
particularly in vivo and in situ, remains challenging. As men
tioned before, many investigators relied on structural and material 
properties available in the literature obtained by others under a va

13–16] or impact loading scenarios [17]. 
to replicate heel strike dynamics, impact 
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rates. Without disassociation of geometric effects and boundary 
conditions, these studies only provide a description of the overall 
structural response, lacking the quantification of the real stress-
strain response of the heel pad, which is necessary for finite ele
ment analysis. In vitro tests have also proved valuable and have 
been used to quantify compressive material properties of the fat 
pad [18] and plantar tissue [19]. These studies obtained the nonli
nearly elastic and/or viscoelastic properties from mechanical test
ing of uniformly shaped isolated tissue samples obtained from 
cadaver specimens. Although such data are useful for finite ele
ment analysis, it does not address heel-specific modeling since the 
material properties are not necessarily that of the heel from which 
the geometry is reconstructed. 

Identification of specimen-specific heel pad properties acquired 
through in situ testing has potential applications for the determina
tion of material properties of the heel pad in vivo. This can lead 
towards personalized models of this structure that can be used for 
the development of patient-specific intervention strategies. Inverse 
finite element analysis can be used for this purpose. For example, 
in vivo indentation tests performed with concurrent acquisition of 
tissue thickness and coupled to an inverse modeling framework 
can yield stress-strain behavior. Erdemir et al. [11] illustrated the 
potential of inverse finite element analysis to obtain material prop
erties of healthy and diabetic heel pads. Nonetheless, the simula
tions were limited to two-dimensions, with a simplified 
representation of the heel. In addition, the validity of the obtained 
parameters under complex three-dimensional loading modes has 
not been addressed. 

The overall goal of this study was to develop a specimen-
specific heel pad model capable of predicting a specimen-specific 
multiaxis (all three components of the load) response. To achieve 
this goal, and to illustrate the pipeline for in situ specimen-
specific modeling, the specific aims were: (i) to optimize non
linear elastic material properties of the heel pad using an inverse 
finite element analysis framework supported by specimen-specific 
compression dominant multiaxis load-deformation data obtained 
using a spherical indenter, and (ii) to validate the model against 
experimental data from a combined compression and shear test 
applied using a spherical indenter and from a compression domi
nant test conducted using an elevated flat platform. 

2 Methods 

2.1 Mechanical Testing Data. To obtain specimen specific 
heel pad material properties, mechanical testing and imaging data 
from a previous work was utilized [20]. In summary, the data set 
consists of comprehensive in situ multidimensional mechanical 
testing, which was performed on a whole cadaver foot from a 
58-year old male donor. Only heel pad data was used in the 
present study. A spherical stainless steel indenter (25.4 mm in di
ameter) and an elevated flat platform (86 mm x 51 mm x 151 mm; 
width x height x length) were used to impart combinations of dif
ferent types of loading. Three datasets were used in this study: 
compression dominant indentation, indentation with compression 
and shear, and compression with elevated platform. All of the 
tests were conducted on a six degree of freedom system (Rotopod, 
R2000, Parallel Robotic Systems Corp., Hampton, NH, USA). Ki
nematic measurement resolution of the robot was 0.001 mm for 
translations, 0.001 deg for rotations. Kinetic resolution of the spa
tial load transducer was 0.5 N (1.1 N for compression) and 0.07 
Nm. During testing, the robot was first moved at a rate of 0.01 m/s 
up to desired reaction force magnitudes of 220 N (compression 
only) for the indenter, 220 N (compression), and 80 N (shear) for 
the indenter and 550 N (compression) for the elevated platform. 
The trajectories calculated by these experiments were utilized and 
tool positions were then prescribed using displacement control at 

mental reaction forces and moments were collected via a load cell 
(at 1000 Hz) and, along with the robot kinematics data (at 50 Hz), 
all measurements were transformed to the model coordinate sys
tem (described in the following text) before use in the FE model. 

The data set also included computed tomography (CT– 
SOMATOM Sensation 64, Siemens Medical Solutions USA, Inc., 
Malven, PA, USA) scans, which were used to create an anatomi
cally realistic geometric representation of the heel pad (for com
putational model development see Sec. 2.2). Image resolution was 
512 x 512 pixels with a pixel size of 0.365 mm. The slice thick
ness was 1 mm. To establish registration between the mechanical 
testing data, the image set, and thus the computational model, a 
three-dimensional digitizer (Microscribe G2L, Immersion Corp, 
San Jose, CA, USA; 0.130 mm resolution, 0.430 mm accuracy) 
was used to collect spatial coordinates of four landmarks during 
the experimental testing. Points included the tip of the second toe, 
posterior aspect of the heel at the calcaneal tuberosity, medial as
pect of the first metatarsal head, and the lateral aspect of the fifth 
metatarsal head. The landmarks established a “foot” coordinate 
system with the anterior-posterior direction defined approximately 
along the long axis of the foot (connecting the posterior aspect of 
the heel and the tip of the second toe). In the following, a dummy 
axis, approximately along the medial-lateral direction, was 
defined using the medial and lateral metatarsal points. The 
superior-inferior axis was defined as the cross product of the 
dummy axis and the anterior-posterior direction. To establish an 
orthogonal coordinate system, the medial-lateral direction was 
subsequently defined as the cross product of the anterior-posterior 
and superior-inferior directions. The location of the same anatom
ical landmarks on the image set allowed registration between the 
experimental coordinate systems and that of the model. However, 
since the specimen was not in the same position when it is digi
tized in the experimental setup and during imaging, the experi
mental coordinate system may not accurately match with the 
model coordinate system. 

2.2 Finite Element Representation. A geometrically consist
ent finite element model of the cadaver foot was developed for the 
study. The boundaries of the bone and soft tissue were obtained 
from supplementary data submitted along with work by Erdemir 
et al. [20]. (see https://simtk.org/home/multidomain). The com
puted tomography images were segmented to define bone and soft 
tissue geometries using an in-house semi-automated software (Geo
mata, Computational Biomodeling Core, Cleveland Clinic, Cleve
land, OH, USA). Segmentation points were loaded into an open 
source geometric design software, Salome (Open Cascade SAS, 
Euriware Group, Guyancourt, France) (http://www.salome-plat
form.org), and used to create three-dimensional geometric curves 
for each image slice in an automated fashion. Subsequently, whole 
foot and internal bone surface geometries were generated using 
Rhinoceros 4.0 (McNeel North America, Seattle, WA, USA) (see 
Fig. 1). For the calcaneus and talus for example, this process 
resulted in root-mean-square errors in surface approximation of 0. 
99 mm and 1.23 mm, as calculated from the distance between the 
actual coordinates of the segmented points and the generated 
surface. 

For this study, the rear foot region (heel) was isolated and two 
meshes, with 14,520 and 30,576 linear hexahedral elements of 
type C3D8H (8-node linear brick, hybrid with constant pressure 
[22]), were created using TrueGrid (XYZ Scientific Applications, 
Inc., Livermore, CA, USA) (see Fig. 1). Rear foot bones were 
lumped and the calcaneus, talus, and navicular bones were meshed 
as one entity. This was done to replicate the experimental condi
tions in which the calcaneus and talus were fixed relative to each 
other using a screw so that the heel pad material could be charac
terized without the influence of the talocalcaneal joint motion. Fi

a rate of 0.04 m/s, during which the corresponding reactions were 
recorded. The rate of 0.04 m/s was chosen to replicate lifelike 

nite element analysis for each specific combination of tool and 
loading profile were performed using Abaqus/Standard (Version 

loading rates on plantar tissue [21]. The multidimensional experi- 6.7-1, Simulia, Providence, RI, USA). To determine the adequacy 
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Fig. 1 Model development: (a) cadaver specimen for which the mechanical testing and 
imaging data was used in the finite element model development, (b) three-dimensional surface 
geometries created for the specimen with a plane illustrating the separation of the region of 
interest (heel), (c) hexahedral mesh of the heel, and (d) finite element model showing heel and 
indenter. 

of the mesh, a preliminary analysis with sample indentation simu
lations, by approximately 50% of the initial heel pad thickness, 
were performed. The peak reaction load for the coarse mesh was 
27.4 N and it was 30 N for the fine mesh. Owing to the difference 
in the peak force of less than 10%, a further increase in mesh den
sity was deemed unnecessary and the fine mesh with 30,576 ele
ments was used in the study. This mesh also appeared to have a 
well-behaving contact, as reflected by visually inspected stress 
contours. Note that while this mesh was adequate for modeling 
the structural response (force-displacement) of the heel (modeled 
variables in the inverse finite element analysis, see Sec. 2.3), a 
detailed mesh convergence study (with increased mesh densities) 
may be necessary, when plantar pressures and/or internal stresses 
are of interest. 

The bones and the tools (indenter and elevated platform) were 
assumed to be rigid and the lumped heel-pad material (plantar soft 
tissue, including skin and fat) was represented as a nonlinearly elas
tic material with an effective Poisson’s ratio (v) of 0.475, to approx
imate near incompressibility. A first order Ogden definition was 
used to define the strain energy function of the heel pad tissue [22]: 

 l ( ) 1 
U ¼ 2 ka þ ka þ ka  3 þ ðJ  1Þ2 

(1)1 2 3a2 D 

where k1 3 are the deviatoric principle stretches. Coefficients l, 
a, and D describe the nonlinear elastic response of the material, 
and are related to the initial shear modulus, strain hardening 
behavior, and the material compressibility, respectively. The pa
rameter D is given as 

2lð1 þ vÞ 
D ¼ (2)

3 1 2vÞð 

2.3 Inverse Finite Element Analysis. The finite element 
representation previously outlined was utilized in an inverse fash
ion to obtain heel pad material properties that best reflect a 
specimen-specific structural response. Load-deformation data 
from the compression dominant spherical indenter test was used 
for the optimization of material properties (Fig. 2). In our inverse 
framework, the sum of squared differences between the model 
predicted forces and the measured experimental forces at each in
crement was minimized in order to obtain the specimen-specific 
material properties l and a (Eq. (3)). Thirteen evenly spaced data 
points were defined to calculate the model versus experimental 
squared error metric 

3 13 XX( )2 
FM  FEError ¼ ik ik (3) 

i¼1 k¼1 

where FM and FE are model predicted and experimental forces, 
respectively, k are the data points, and i are the three anatomical 
reaction components. Initial guess values of 0.0001 MPa and 11, 
for l and a, respectively, were defined and the Truncated Newton 
optimization algorithm available in SciPy (Enthought, Inc., 

Austin, TX, USA) (http://www.scipy.org) was used to iteratively 
solve the nonlinear least-squares minimization problem. 

A hybrid control approach was used to apply the experimental 
loads to the model (Fig. 3). A linear spring (with a stiffness of k) 
placed between the reference point on the tool and a coincident 
point (control point) was used to drive the tool. The trajectory of 
the control point (d0) in the FE model was calculated using the ex
perimental forces and displacements (dE), as opposed to directly 
driving the tool using the displacement data from the mechanical 
tests. This approach weakly prescribes the tool displacement and, 
within the inverse finite element analysis, concurrently minimizes 
the difference between model displacements (dM) and experimen
tal displacements (as opposed to forces only, as described by 
Eq. (3)). The forces in the spring are given by 

( ) 
FE ¼ k dE  d0 (4) 

The control point displacements are then calculated by 

FE 
d0 ¼ dE  (5)

k 

The forces predicted by the model should be equal to the forces in 
the spring due to static equilibrium conditions 

FM ¼ k dM  d0
( ) 

(6) 

Substituting Eqs. (4) and (6) in Eq. (3) yields 

min 
X 

FM  FE
( )2 ¼ min 

X 
k2 dM  dE
( )2 

(7) 

The spring stiffness k was chosen to be 10 N/mm for translations 
and rotations were fixed. Note that a pure displacement control is 
possible as k approaches infinity and a pure force control is pos
sible as k approaches to zero, although the solution should be in
dependent of this value. This facilitated a comparison of model 
and experimental force and displacement outputs and had the im
portant benefit of accommodating experimental errors both in 
the force and displacement measurements along with aiding with 
model convergence, since neither displacements nor forces were 
directly prescribed to the tool. Large unrealistic element defor
mations, potentially a result of registration errors (between 
model coordinate system and that of the experiment), were 
prevented. 

2.4 Validation. The optimized material properties were uti
lized to compare model results for two additional sets of experi
mental data: (i) combined loading of compression and shear 
applied by the spherical indenter, and (ii) compression dominant 
loading applied by the elevated flat platform (Fig. 2). Since vis
cous contributions were not modeled, tissue unloading curves 
were truncated from the comparison. For both validation data sets, 
the hybrid control setup was utilized (Fig. 2) and model predicted 

http://www.scipy.org


Fig. 2 Experimental load-tool combinations used for inverse finite element analysis and valida
tion purposes: (a) tools—a spherical indenter (25.4 mm in diameter) and a flat elevated platform 
(86 mm 3 51 mm 3 151 mm; width 3 height 3 length), (b) compression dominant indentation 
conditions used for material properties optimization, and (c) combined loading of compression 
and anterior-posterior shear applied using the indenter and compression dominant loading 
applied using the flat elevated platform; both used for validation. 

behavior was compared with the experimental reaction forces and 
displacements. The root-mean-square errors (RMSE), both in 
absolute units and normalized by maximum force or displacement 
of the trial, were calculated. 

Fig. 3 A hybrid control was used to apply the experimental 
tool trajectory in the model, consisting of a spring component 
driving the tool (indenter or elevated platform). A control point 
was defined and a linear spring was attached between the con
trol point and the indenter reference point. Displacements of 
the control point implicitly applied experimental forces (see text 

3 Results 
The inverse FE analysis of indentation, utilizing compression 

dominant data, provided specimen-specific nonlinear elastic coef
ficients of the heel pad as: l ¼ 0.001084 MPa and a ¼ 9.780. A 
total of 117 optimization iterations were required and an RMSE of 
0.7136 N (0.61% max force magnitude) was obtained between 
model predicted and experimental compressive dominant force 
magnitudes (Table 1). The structural response (three-dimensional 
forces and displacements), as predicted by the model utilizing 
optimized coefficients, was in good agreement with experimental 
measurements (Fig. 4). As expected, for the data utilized for the 
inverse analysis, components of off-axis force predictions had an 
RMSE less than 1.5% of the maximum force magnitude (Table 1). 
All displacement RMSEs were less than 1% of the maximum dis
placement magnitude (Table 2). 

The simulations also had the capacity to reproduce loading con
ditions for combined loading and when using a different tool; yet 
the RMSEs were higher than that of the data used for the inverse 
analysis. For the combined loading test (compression and shear 
with the indenter), the force RMSE was less than 7% of the maxi
mum force magnitude (Table 1) and the displacement RMSE was 
less than 14% of the maximum displacement magnitude (Table 2) 
(also see Fig. 5). In the second validation scenario, compression 
dominant loading with a different tool (elevated platform), the 
force predictions had an RMSE less than 2% of the maximum 
force magnitude (Table 1). The displacement RMSEs were less 
than 6% of the maximum displacement magnitude. Both experi
mental and model predicted structural responses of the heel pad, 
when compressed using an elevated platform, can be seen in 

for details). In the model, the control point is defined at the 
same location as the indenter reference point and is shown 
separately in the figure for illustration purposes. Fig. 6. 



Table 1 Root mean square errors (RMSE) between model predicted and experimental forces for dominant and off-axis loading 
directions for all loading scenarios 

RMSE (N), as a percentage of maximum force magnitude 

Loading (tool) Maximum force magnitude (N) Superior-inferior Medial-lateral Anterior-posterior 

Compression (indenter) 
Compression-shear (indenter) 
Compression (elevated platform) 

115.27 
339.37 

274 

0.71, 0.61% 
10.54, 3.1% 
4.1, 1.49% 

0.67, 0.58% 
6.52, 1.92% 
2.6, 0.94% 

1.20, 1.04% 
21.67, 6.44% 

5.5, 2.0% 

4 Discussion 
The study successfully resulted in the development of a three-

dimensional heel pad model capable of predicting a specimen-
specific multiaxial (all loading directions) response for compression 
along with shear dominant loading scenarios induced by different 
tools. An inverse FE approach was utilized to optimize the nonlin
ear elastic material properties based on indentation data obtained 
using a spherical indenter and compression dominant loading, simi
lar to approaches previously utilized [11], yet has not been applied 
in a three-dimensional sense nor validated before. Unique to this 
study, the optimized material parameters were evaluated under two 
additional loading scenarios. 

Fig. 4 Structural response (forces and displacements) of the 
heel pad under the compression dominant indentation data. 
Both experimental and model predicted values are shown. The 
data set was used for the inverse finite element analysis and 
the model predictions utilized the final optimized material 
coefficients. 

The initial elastic modulus, as described by the Ogden material 
formulation, being 3l [22], was 0.003252 MPa for this study. 
Both in vivo and in vitro studies have quantified heel-pad me
chanical properties [11,15,18]. Hsu et al. [15] reported a value of 
0.168 MPa, however, due to their determination of the modulus 
as the maximum stress divided by the maximum strain, it is 
speculated that their calculations resulted in relatively high 
modulus values. In a similar study, Gefen et al. [23] found 0.105 
MPa as their initial modulus and over a 0.3 MPa tangential mod
ulus at 30% compressive strain. At 30% strain, the tangential 
modulus from our calculations was 0.0154 MPa. Erdemir et al. 
[11], alternatively, utilized an Ogden strain energy function and 
found the initial elastic modulus to be approximately 0.050 MPa. 
When compared to our study, these in vivo studies all found 
higher stiffness values. These differences could be attributed to 
the chosen techniques, however, it is also evident that a wide 
range of potential values is possible, even if the results are con
strained to in vivo studies. Previous in vitro results have also 
demonstrated variable elastic moduli. Miller-Young [18] reported 
a value of 0.00000012 MPa from an unconfined compression test 
performed on isolated fat pads. However, an unconfined com
pression test done on isolated full thickness plantar tissue sam
ples by Pai and Ledoux [24] provided a value of 0.593 MPa. 
This high variability in reported values could be due to the dif
ferences in test methods, donor age, vascular condition, number 
of samples or subjects, and whether the study was conducted 
in vivo or in vitro. The a term, which is the rate of change in the 
tangential modulus with increasing strain (Eq. (1)), can only be 
compared to studies which utilized an Ogden material model. As 
an available plantar tissue comparison, Erdemir et al. [11] 
reported an a value of 6.82 6 1.57, for which our 9.78 result for 
a falls within two standard deviations. For a more appropriate 
comparison, the tangential modulus for 30% of the compressive 
strain was calculated for their model: 0.9055 MPa, against 
0.0154 MPa in our calculations. 

A generally good agreement was achieved when optimized ma
terial coefficients were used in simulations that tried to reproduce 
different data sets than those utilized for the inverse analysis. 
Nonetheless, the anterior-posterior degree of freedom experienced 
a marked deviation between the model and experimental results. 
It is speculated that registration errors between the image set and 
the experimental setup, essentially due to the misalignment of the 
force transducer and the foot coordinate systems, may lead to the 
discrepancies found for this degree of freedom. A sensitivity study 
was performed to ascertain the effect of this misalignment, if any, 
on the observed deviations. Changes to the representation of the 
experimental forces were evaluated through 65 deg rotations 
(clockwise and counterclockwise) about the superior axis within 
the foot coordinate system. The anterior force changed up to 3.5 
N, whereas the medial-lateral force component remained rela
tively consistent (Fig. 7). This indicates that a potential misalign
ment between the foot and load cell coordinate systems may 
explain some of the observed deviations. Additional sensitivity 
analysis will likely quantify sources of error specific to the rela
tive coordinate frame alignment. 

Multiaxis evaluation realized marked changes in the force 
response for the nondominant loading directions. Contrary to our 



Table 2 Root mean square errors (RMSE) between model predicted experimental displacements for dominant and off-axis loading 
directions for all loading scenarios 

RMSE (mm), as a percentage of maximum displacement 

Loading (tool) Maximum displacement magnitude (mm) Superior-inferior Medial-lateral Anterior-posterior 

Compression (indenter) 
Compression-shear (indenter) 
Compression (elevated platform) 

14 
17.18 
10.25 

0.07, 0.5% 
1, 5.8% 
0.41, 4% 

0.06, 0.4% 
0.65, 3.78% 
0.26, 2.53% 

0.12, 0.85% 
2.4, 14% 

0.55, 5.36% 

anticipation, during the application of shear (anterior-posterior) 
with the spherical indenter, the medial-lateral force increased 
more predominantly than the anterior-posterior force (Fig. 5). It is 
speculated that the nonuniform geometry of the calcaneus, com
bined with the relatively incompressible plantar tissue, led to the 
observed deviations. As the indentation took place, the relative 

Fig. 5 Structural response of the heel under the combined 
loading of compression and anterior-posterior shear applied 
using a spherical indenter. Experimental forces and displace
ments are compared with the model predictions. The experi
mental data set was used for validation where the model 
predictions relied on optimized material coefficients obtained 
through another experimental data set (see Fig. 4). A compres
sive load application (1), was followed by an anterior shear (2), 
maintaining the approximate compressive displacement. The 
data for return of the tool to its original position (unloading) (3) 
was not considered in the analysis. Upon returning to the initial 
position, a posterior shear was applied (4). 

location of the indenter around the bony prominence, may result 
in compression of the nearly incompressible tissue and explains 
the off-axis (medio-lateral) reaction forces generated on the tool 
(Fig. 8). This result indicates that off-axis loading and three-
dimensional representation of the foot-indenter interaction are 
important factors to consider during the quantification of plantar 
tissue mechanics. Furthermore, since the talocalcaneal joint was 
fixed, the overall stiffness of the structure might have increased, 
leading to high recorded forces. 

A unique feature and contribution of the study was the adoption 
of a hybrid loading scheme (Eqs. (4)–(6)). Instead of a direct 
application of experimental boundary conditions (displacements 
or loads) to the tool of interest, displacements were applied via a 
spring. This weakly prescribed tool displacement allowed concur
rent minimization of error between the model and experimentally 

Fig. 6 Structural response of the heel under a compression 
dominant loading applied using an elevated platform. Experi
mental forces and displacements are compared with the model 
predictions. 



Fig. 7 Evaluation of the effect of misalignment between the foot and the load trans
ducer coordinate systems on the force components. This sensitivity analysis was per
formed to assess the causes of deviations observed between the experimental force 
values and those predicted by the model, in particular, the anterior-posterior forces. 

Fig. 8 As the indenter gets closer to the bony landmark (from position (i) to position 
(ii)), internal loading of the heel (as illustrated by the von Mises stress distribution) 
may cause large off-axis forces that may not necessarily align with the direction of 
the tool movement. Note that the dominant shear displacement (anterior) is approxi
mately perpendicular to the plane of the cut, where the mediolateral reaction force is 
higher in an unexpected fashion. 



predicted forces along with measured and simulated indenter 
displacements, at least in part, accommodating for potential 
model to experiment registration errors. Due to computational 
limitations, i.e., convergence problems associated with large dis
tortions in elements due to nonphysiological deformations, and/or 
potential registration errors, hybrid control of the tool displace
ment also aided a robust simulation process that is paramount for 
automated iterative investigations such as inverse finite element 
analysis. The fact that all FE simulations provided complete 
solutions during optimization may indicate the benefit of this 
approach. 

As in any modeling study, this work also has inherent limita
tions that should be addressed in order to properly frame the 
results. The material representation of the heel pad structure was 
simplistic since the fat pad and skin were not separately modeled. 
Bulk material properties for the heel pad were found despite the 
natural geometry being made up of distinct tissue components. 
The potential to capture more complex behavior with a multilay
ered model is possible although bulk heel pad material definitions 
have been shown to accurately predict the contact behavior and 
force response [11]. Upcoming studies will likely address this 
level of complexity to understand plantar tissue mechanics in 
more detail [25]. Additionally, the loading rate used in this study 
was meant to represent a typical heel strike during gait, although 
rate dependent behavior, i.e., viscoelasticity, was not modeled. As 
such, these results are potentially limited to the chosen loading 
rates. While the study included only one specimen and the inclu
sion of additional samples is desirable, and will be performed, 
this specimen-specific approach demonstrated the potential to 
capture the complicated mechanical behavior of the heel. The 
ability of the nonlinearly elastic Ogden material definition to pre
dict off-axis and simulated shear loads was noteworthy, even 
though parameter development was based on a compression 
dominant test. That being stated, the shear loading was applied 
along the long axis of the foot during approximated heel 
strike conditions and it is recognized that this loading will not 
account for all potential in vivo conditions. With regard to the 
optimization approach itself, a gradient based method has the 
potential to settle at a local minimum and sensitivity to the initial 
guess was not performed. From a practical perspective, the real
ized parameters achieved good model to experimental agreement, 
although a global minimum is not guaranteed. As the first study to 
implement this type of complex testing in conjunction with 
specimen-specific model development and validation, we feel that 
this is an acceptable starting point for future simulations and 
experiments. 

Validated three-dimensional models of the heel pad are essen
tial in simulation-based studies to understand healthy and patho
logical mechanics and are ideally suited for the development of 
treatment options. Our analysis illustrated that it is possible to 
capture the off-axis and simulated shear behavior, at least for the 
chosen loading conditions and tools. This modeling framework 
can be used to predict internal tissue mechanics, plantar pressure 
distribution, and includes the potential to assess harmful loading 
conditions, e.g., shear, a current concern in diabetic foot ulcera
tion [26]. Given the availability of data [20], this study could also 
be extended to include forefoot passive response, effectively mod
eling the whole foot’s structural behavior. Such models would be 
ideally suited for the study of insole and footwear design, includ
ing mechanical intervention strategies to address diseased tissue. 
Since the experimental data used in the study was collected in 
situ, the technique can also be potentially used in quantifying heel 
pad properties using patient specific data for developing personal
ized intervention strategies. To our knowledge, this study is 
the first to optimize nonlinear elastic material parameters using 
dominant and off-axis loads in a three-dimensional heel pad 
model, including validation with additional datasets. The results 
have important implications for the accurate prediction of the 
three-dimensional interactions of the heel pad with its surroundings 
and offers valuable insight into the biomechanics of this important 

structure. To expedite the utility of this model in the field, a down
load package incorporating optimization and simulation results and 
the model itself is freely accessible in the ‘Downloads’ section of 
the project web site https://simtk.org/home/multidomain. 
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