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Taiwan  

hMechanical Engineering Department, Fenn College of Engineering, Cleveland State  
University, Cleveland, Ohio 44115, USA  

ABSTRACT 

A common problem in optical profilometry is the accuracy in locating 
fringe centers. This paper presents an accurate fringe center detection 
technique based on sub-pixel resolution using the fringe projection 
method. An optimum reconstruction filter is developed which has low 
sensitivity to noise. In fringe center detection, computer simulation 
results of using one-pixel and sub-pixel resolutions are compared. The 
detection technique is then applied to radius measurement of cylindrical 
objects and surface profile measurement of diffuse objects. The ex­
perimental results thus obtained through the proposed optimum re­
construction filter show significant improvement in measurement 
accuracy. 

INTRODUCTION 

The fringe projection method,I-3 is a well-known technique for noncon-
tact profilometric measurement of diffuse objects. In using this method, 
optical fringes are generated by projecting a grating onto an object. 
These fringes are deformed owing to the variation in geometry of the 
object. The simplest profilometric algorithm is to detect the center 
location of each deformed fringe and calculate the curvatures of the 
detected fringe centers so that the third dimension (perpendicular to 
the camera coordinates) of the object geometry can be determined. 

Lin et al. 4 developed an accurate fringe center detection technique 
based on sub-pixel resolution. They projected a moire grating (also 

* To whom correspondence should be addressed. 



called Ronchi ruling) onto an object surface to generate fringes. It was 
found that the intensity distribution across a fringe resembled a 
Gaussian distribution. In this research, a grating of sinusoidal intensity 
distribution is used so that the surface height distribution can be 
translated into a phase distribution, and the method of phase modula-
tion interferometry can be applied for a quantitative analysis of surface 
topography. Recent developments in interferometry-based profilometry 
include a new phase reduction algorithm by Wan and Lin,s a phase 
mapping approach in phase-measuring profilometry by Srinivasan et 
al.,3 and on-line automatic phase-measuring profilometry by Chang and 
Wan.6 

This paper shows how to detect the fringe centers approximately, and 
then locate these fringes more accurately on the basis of sub-pixel 
resolution. An optimum reconstruction filter is developed which has 
low sensitivity to noise. Computer simulation and experimental results 
are also presented. 

FRINGE CENTER DETECTION BASED ON I-PIXEL  
RESOLUTION  

Figure 1 is a schematic diagram of a measuring system using the fringe 
projection method. The system consists of a sinusoidal grating, the 
grating projector, a charge-coupled device (CCD) camera, an image 
processor, and a computer. The intensity distribution of the deformed 
fringes is recorded by the CCD camera and digitally transmitted to the 
computer through the frame grabber. A low-pass filter is used to reduce 
noise. The fringe width and curvature may vary from place to place 
depending upon the object's geometry. The fringe curvature can be 
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Fig. 1. Schematic diagram of the fringe projection system. 



calculated by detecting the fringe centers along a fringe row by row and 
connecting them from top to bottom. The fringe center should be 
located at the peak of an intensity distribution curve. The easiest way to 
locate the fringe centers approximately is to find the column positions 
where the highest and lowest pixel gray level values exist per row per 
fringe. An efficient algorithm based on a I-pixel resolution to locate the 
intensity extremes is stated as follows: 
the intensity maximum exists at column m 

if 1m> Im+k + J and 1m> Im- k + J are true 
the intensity minimum exists at column n (1) 

if In < In+k - J and In < In-k - J are true 
where J stands for a threshold value and k is a constant depending upon 
the fringe width. The algorithm works more efficiently when k is about 
three, but no less than three. The accuracy of fringe center detection 
based on I-pixel resolution (as shown in column 1 of Tables 1 and 2 
when k = 3) is poor, although the computational efficiency is great. 

FRINGE CENTER DETECTION BASED ON SUB-PIXEL  
RESOLUTION  

When a sinusoidal grating is projected onto an object, the detected 
intensity distribution across a scanned line still resembles a sinusoidal 
function, except that it slightly varies with conditions such as illumina-
tion, focus/blur, and noise. The light intensity function can be ex-
pressed as 

lex) = A x sin (ax + 13) + B (2) 
where l(x) is the pixel intensity at column x, and a, 13, A, and B, are 
the wavenumber, initial phase, amplitude, and the minimum gray level 
of the periodical distribution, respectively. 

Theoretical estimate of fringe center detection error 

Theoretically, the exact fringe center can be found by differentiating 
lex) with respect to x and calculating x from ['(x) = O. Thus, the exact 
center is located at Xc = [(n/2) - f3]/a. As 

lex) =A sin (ax + 13) + B 
= A(sin ax cos 13 + cos ax sin 13) + B 

the intensity function can be approximated by a Taylor's series 
expansion about Xc to second order. Thus, 

lex) = C2X2 + CtX + Co (3) 



TABLE 1 
Computer Simulation of Fringe Center Detection without Random Noise (Values Given in Pixels) 

Wavelength 	 One-pixel Sub-pixel resolution 
resolution 

Eqn (1) Lagrange Cubic Least squares Gaussian B-Spline Bernstein 

(a) Using 3 pixels: X- l , x", XI 

55·0000 0·3928 0·1426 0·1511 0·1426 0·3917 0·3173 0·3173 
27·5000 0·2822 0·0415 0·0897 0·0415 0·3690 0·2942 0·2942 
18·3333 0·2671 0·0234 0·0948 0·0234 0·2927 0·2511 0·2511 
13·7500 0·2712 0·0121 0·0906 0·0121 0·2904 0·2516 0·2516 
11·0000 0·2602 0·0120 0·1047 0·0122 0·2733 0·2341 0·2341 
9·1667 0·2640 0·0109 0·0939 0·0109 0·2316 0·2427 0·2427 

(b) Using 5 pixels: X- 2, X_I, x", X" X 2 
55·0000 0·3928 0·3561 0·3470 0·1052 0·3854 0·2306 0·2306 
27·5000 0·2822 0·0505 0·0709 0·0175 0·2650 0·0976 0·0976 
18·3333 0·2671 0·0260 0·0337 0·0099 0·2326 0·0864 0·0864 
13·7500 0·2712 0·0126 0·0207 0·0088 0·2113 0·0851 0·0851 
11·0000 0·2602 0·0079 0·0132 0·0170 0·1725 0·0770 0·0770 
9·1667 0·2640 0·0059 0·0086 0·0212 0·1446 0·0767 0·0767 

(c) Using 7 pixels: L3, x 2, X- l , X o, XI, X 2, X3 

55·0000 0·3928 0·3466 0·3380 0·0412 0·3864 0·1055 0·1055 
27·5000 0·2822 0·0535 0·0623 0·0091 0·2650 0·0563 0·0563 
18·3333 0·2671 0·0281 0·0326 0·0100 0·2326 0·0503 0·0503 
13·7500 0·2712 0·0147 0·0178 0·0186 0·2113 0·0512 0·0512 
11·0000 0·2602 0·009] 0·0127 0·0293 0·1725 0·0449 0·0449 
9·1667 0·2640 0·0063 0·0074 0·0447 0·1446 0·0414 0·0414 

Gray level value = 100 + 100 cos (2nz /wavelength) + random(O) 
z = r - (r2 - y2t2 + Ey + Fx, where E = 0, F = 1. 
Note: random(O): no random noise added to the gray value. 



TABLE 2  
Computer Simulation Results with Random Noise (Values Given in Pixels)  

Wavelength One-pixel Sub-pixel resolution 
resolution 

Eqn (1) Lagrange Cubic Least squares Gaussian B-Spline Bernstein 

(a) Using 3 pixels: L" Xu, x, 
55-0000 0-3787 0-3023 0-3886 0-3023 0-4977 0-6192 0-6192 
27-5000 0-2930 0-2140 0-1863 0-2139 0-2617 0-3668 0-3668 
18-3333 0-2727 0-0676 0-1092 0-0677 0-4097 0-2688 0-2688 
13-7500 0-2704 0-0388 0-0922 0-0389 0-3957 0-2568 0-2568 
11-0000 0-2602 0-0279 0-0920 0-0279 0-3571 0-2367 0-2367 
9-1667 0-2636 0-0202 0-0905 0-0201 0-2489 0-2412 0-2412 

(b) Using 5 pixels: L2, Ll, X(), Xl, X2 
55-0000 0-3843 0-6605 0-6102 0-2472 0-3800 0-4448 0-4448 
27-5000 0-2926 0-2186 0-2248 0-0501 0-2766 0-1107 0-1107 
18-3333 0-2677 0-0817 0-1009 0-0241 0-2336 0-0916 0-0916 
13-7500 0-2712 0-0443 0-0539 0-0154 0-2112 0-0874 0-0875 
11-0000 0-2605 0-0264 0-0329 0-0179 0-1737 0-0785 0-0784 
9-1667 0-2639 0-0193 0-0235 0-0228 0-1459 0-0755 0-0755 

(c) Using 7 pixels: X_ 3, X-2' X-I' Xu, Xl, X2, X3 
55-0000 0-3492 0-6067 0-5612 0-1258 0-3452 0-1832 0-1832 
27-5000 0-2938 0-2123 0-2245 0-0289 0-2779 0-0668 0-0667 
18-3333 0-2687 0-0845 0-0985 0-0167 0-2346 0-0554 0-0553 
13-7500 0-2710 0-0470 0-0545 0-0200 0-2112 0-0510 0-0510 
11-0000 0-2603 0-0291 0-0337 0-0298 0-1739 0-0470 0-0470 
9-1667 0-2637 0-0204 0-0238 0-0451 0-1453 0-0422 0-0422 

Gray = 100 + 100 cos (2rrz /wavelength) + random(3)  
z = r(r2 

- y2)112 + Ey + Fx, where E = 0, F = 1. 
Note: random(3): random noise varying from zero to three gray values_ 



where C2 = -Aa2/2, C I = Aa(n/2 - f3) and Co = -A[(n/2 - f3)2/ 
2-1]+B. 

To estimate the fringe detection error, it is assumed that A = 1, 
B = 1, a = 0·5 and f3 = 0·5. The location of Xc is calculated at 2·14159 
pixels. As the fringe center is approximately detected using 1-pixel 
resolution, the worst case will be when the detected center is 0·5 pixel 
away from the calculated center. For computational efficiency, a value 
[(x) near the center is approximated by taking only five terms-two 
before the detected center and another two after the center. They are 
designated as X- 2, X-I' Xo, XI and X2, where Xo is the location of the 
approximately detected center based on 1-pixel resolution. These five 
points are listed as follows: 

L2 = 0·64159; [(L2) = 1·73169 
X-I = 1·64159; [(X-I) = 1·96891 

Xo = 2·64159; [(xo) = 1·96891 
XI = 3·64159; [(XI) = 1·73169 
X2 = 4·64159; [(x 2 ) = 1·31532 

It should be noted that eqn (2) was used to calculate the theoretical 
lex) values. The above five points are then smoothed using a least-
squares second-order curve-fitting method. The estimated center is 
located at 2·15664 which is the peak of the fitted curve. Figure 2 shows 
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Fig. 2. Intensity distribution function I = A sin (ax + b) + B (A = 1, B = 1, a = 0·5, 
b = 0·5). 



Fig. 3. Sinusoidal distribution between two adjacent fringes. 

the comparison between the exact and the estimated centers. The 
theoretical error of fringe center detection is estimated about 0·7% if 
5-pixel data were used. It should be noted that the error is based on the 
following assumptions: 

(1) 	 the width of the scanned fringe is about 5 pixels; 
(2) 	 five pixel points are used in the curve fitting, and two of the five 

points (X-l and xu) are exactly 0·5 pixels away from the exact 
center, x = 2'14159, which represents the worst case; 

(3) no random noise is considered. 
If the coordinate origin is shifted to Xu (near the exact center xc), the 

values of ax will be much smaller than unity. Thus, sin (ax) = ax and 
cos (ax) = 1 - a 2x 2 /2, so that 

I(x)=02x2+01x+ou (4) 
where 02 = -(Aa2 sin f3)/2, 01= Aa cos f3, and 00 = B + A sin f3. In 
fact, eqn (4) can be derived from eqn (3) when Xc is set to zero, which 
corresponds to f3 = n/2. To be computationally efficient, eqn (4) will be 
used throughout this paper to approximate the sinusoidal function 
described in eqn (2). Figure 3 shows an example of the fringe center 
detected from a sinusoidal intensity distribution between two adjacent 
fringes. 

Optimum reconstruction filter 

As can be seen in Fig. 3, only a small central portion of the sinusoidal 
curve can be approximated by a polynomial. The accuracy of fringe 



center detection relies on the number of pixels taken and the type of 
curve fitting used to reconstruct the intensity curve. An optimum 
reconstruction filter can then be developed based on the relationship 
between the fringe width and the number of pixels taken, and the type 
of curve fitting used. Tables 1 and 2 show the error comparisons of 
computer simulation in detecting the fringe centers along a theoretical 
circular arc. Detected centers are compared with the theoretical fringe 
center location in the same row (i.e. the same horizontal scanned line). 
Several types of curve fitting methods such as the Lagrange interpola-
tion, cubic-spline function, least-squares regression, B-spline curves and 
Bernstein polynomial curves using 3, 5 or 7 pixels were employed to 
reconstruct an intensity curve. In the case of using 5 pixels, for instance, 
the approximately detected center position is designated as position 0, 
and 2 pixels before and after the position 0 are designated as positions 
-2, -1,1 and 2, respectively. The estimated fringe center is located at 
the maximum or minimum of I(x). This can be easily found by taking 
the first derivative of the I(x) and using the bisection method to find the 
root of I' (x) = O. The bisection method guarantees to find the root 
within a specified interval (for instance, the selected 5 pixels). It should 
be noted that the bright and dark fringes are assumed equal in width. 
Thus, the wavelength indicated in Tables 1 and 2 is essentially the sum 
of bright and dark fringes. 

It is more meaningful to compare the detection errors shown in Table 
2 when random noise effect is considered. It can be seen that the errors 
based on 1-pixel resolution are generally 10-20 times as large as those 
based on sub-pixel resolution. Among various curve fitting methods 
presented, the Lagrange interpolation and least-squares regression 
produce better results. It is found that the errors mainly depend upon 
the wavelength and the number of pixels used for curve fitting. 

The optimum reconstruction filter is described as follows: 

(1) 	 the optimum number of consecutive pixels to be used for curve 
fitting is five; 

(2) 	 the optimum curve fitting method is least-squares regression if 
the wavelength is approximately 14 pixels; or the Lagrange 
interpolation if the wavelength is approximately 9 pixels. It 
should be noted that the wavelength consists of bright and dark 
fringes of equal width. 

As indicated in Tables 1 and 2, the optimum reconstruction filter 
based on sub-pixel resolution exhibits high accuracy in fringe center 
detection and low sensitivity to noise. Depending upon the applications, 
sometimes the wavelength has to be relatively small (e.g. 9 pixels) to 



Fig. 4. Projected fringes on a cylinder. 

generate more data points in an acquired image. In such a case, 
Lagrange interpolation is the recommended curve fitting method. 

APPLICATION 1: RADIUS MEASUREMENT OF  
CYLINDRICAL OBJECTS  

The first application of fringe center detection technique is radius 
measurement of cylindrical objects. As shown in Fig. 4, a series of 
elliptical fringes are generated by projecting a sinusoidal grating onto a 
cylinder. Theoretically, it is possible to fit a general second-order curve 
of the following form: 

AX2 + BXY + CYZ + DX + EY + F = 0 (5) 

Orthographic projection is used in experiments, which means that the 
camera (image) plane is parallel to the major axis of the cylinder. When 
the angle () between the incident light and the cylinder axis is less than 
45°, the minor axis of the ellipse is along the vertical axis of the image 
coordinate, and its length is equal to the diameter of the cylinder. As () 
becomes larger than 45°, the major axis of the ellipse is along the 
vertical axis, and its length is equal to the diameter of the cylinder. This 
implies that the image of the ellipse is a circle when the angle is exactly 
4SO, and the diameter of the circle is essentially the diameter of the 
cylinder. 

Dividing eqn (5) by F gives 

ax2+ bxy + cy2 + dx + ey + 1 = 0 (6) 



Mathematically, only five arbitrary data points (fringe centers) along a 
fringe are needed to determine the five coefficients from which the 
lengths of both major and minor axes of a ellipse can be calculated. 
However, it is inaccurate to rely on only five points, as the coefficients 
of the second-order equation are highly coupled and sensitive to 
measurement noise. To be more accurate, we can use many data points 
to determine the coefficients using a least-sqares fitting technique. The 
most accurate and reliable method is circle fitting when the angle () is 
exactly 45°. In theory, only three points are needed to determine a 
circle. Nevertheless, owing to measuring errors, it is desirable to use as 
many points along the circular arc as possible. The radius of a circle can 
be calculated through least-squares circle fitting. The calculation is 
shown as follows: 

Xc = -A12 

Yc = -B12 (7) 
r = (x~ + Y~ - C )1/2 

where (Xc. Yc) and r are the center and radius of the fitted circle, 
respectively. The radius r can be determined by solving the coefficients 
A, Band C: 

2 3 2 
L(X ) L(XY) L(X)][A] [-L(X )-L(y X)] 
L(XY) L(y2) L(Y) B = -L(yx2 )-L(y3 

) (8)
[ 

L(X) L(Y) N C -}2(x2 )_}2(y2 
) 

where X and yare the locations of fringe centers, and N is the total 
number of points. The computer simulation and experimental results 
thus obtained using eqn (8) are shown in Table 3. 

TABLE 3  
Comparison of Accuracy (Values Given in Pixels) in Cylinder Radius Measurement  

Computer simulation Experimental 
results results 

One-pixel Sub-pixel One-pixel Sub-pixel 
resolution resolution resolution resolution 

Actual 116 116 116 116 
radius 

Calculated 116·3976 116·0342 116·6186 115·9416 
radius 

Error (%) 0·3428 0·0295 0·5333 0·0503 
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Fig. 5. Geometry of surface profile measurement. 

APPLICATION 2: SURFACE PROFILE MEASUREMENT OF  
DIFFUSE OBJECTS  

In the second application, surface measurement of diffuse objects is 
presented. As shown in Fig. 5, when a sinusoidal grating is projected 
onto a three-dimensional diffuse object, the object surface height 
distribution is translated to a phase distribution of the deformed fringes. 
The height can be determined6 by 

hex, y) = (p tan e/2n)4J(x, y) (9) 

where h (x, y) is the object height at any point (x, y) relative to an 
arbitrarily chosen reference plane which is parallel to the detector 
array, p is the grating pitch in the reference plane, e is the grating 
projection angle inclined to the reference plane, and 4J(x, y) is the 
phase distribution of the deformed fringes. When the phase values on 
each fringe center are detected and translated into surface profile, the 
height at the center of each bright fringe is given by 

h = np tan e, n = 0, ±1, ±2,. . . (10) 

Likewise, the height at the center of each dark fringe is 

h = (n + 1/2)p tan e, n =0, ±1, ±2, ... (11) 

Recently, Chang and Wan6 proposed a normalization process in their 
simple automatic phase reduction algorithm. Through this process, not 
only can the intensity amplitude be more uniform, which is important if 



the phase reduction error is to be reduced, but also the fixed pattern 
noise can be subtracted. The major advantage of their algorithm is that 
the necessity of using a vibration-free table is eliminated. The work 
presented in this paper used this algorithm to reduce the phase 
reduction error. As the deformed fringes result from the interference of 
a tilt wavefront whose phase increases monotonically with respect to 
the reference wavefront, the surface can be reconstructed by accurately 
locating a series of fringe centers, translating them into a height 
distribution, interpolating the surface points, and finally removing the 
tilt. 

The accuracy of surface reconstruction relies on the accuracy of 
fringe center detection with sub-pixel resolution. The object to be 
profiled here is a free curve surface as shown in Fig. 6(a). Figure 6(b) 
shows the reconstructed three-dimensional surface profile as a result of 
using eqns (10) and (11) based on sub-pixel resolution. To verify the 
experimental result, the measured height data are compared with those 
obtained from a coordinate measuring machine (CMM) with I-J,Lm 
resolution. Figure 6(c) gives the comparison of the measured data for a 
cross-section in the central region. Using the CMM data as reference, 
the use of sub-pixel resolution results in a maximum error of less than 
0·1 mm and average error of about 30 J,Lm. As can be seen in eqn (9), 
the measurement sensitivity is mainly dependent on the choice of 
effective wavelength p tan 8. A smaller system wavelength will generate 
more data points, which should result in better accuracy in 3D surface 
profilometry. 

CONCLUSIONS 

An accurate fringe detection technique based on sub-pixel resolution is 
presented. The developed optimum reconstruction filter has low sen-
sitivity to I)oise. Computer simulation and experimental results indicate 
that the geometry measurements become much more accurate and 
precise using the presented sub-pixelation technique. In terms of fringe 
center detection, the detecting error ratio between using the proposed 
sub-pixel resolution and the conventional I-pixel resolution (as shown 
in Table 1) is generally less than 0·1. In terms of applications, the 
measuring error ratio is about 0·1 for cylinder radius measurement and 
0·4 for surface profile measurement. 

The high accuracy is achieved by the employment of sub-pixel 
resolution, and the high repeatability is achieved through an optimum 
reconstruction filter. In referring to measurements, the terms 'accuracy' 
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and 'precision' have different meanings: accuracy is understood to 
indicate how closely a measurement relates to an agreed upon standard 
or truth, and the precision of a measurement is referred to as a degree 
of repeatability.7 It is possible to have precision without accuracy, but it 
is not possible to have repeatable accuracy without precision. Once the 
precision is obtained, accuracy can be calibrated into the instrument. 
From this study, it can be concluded that the presented sub-pixelation 
must be accompanied by an optimum reconstruction filter. 
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