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The biomechanical role of scaffolds in augmented rotator 
cuff tendon repairs 

Amit Aurora, 0 Eng"b, Jesse A. McCarron, MOe, Antonie J. van den Bogert, PhOd, 

Jorge E. Gatica, PhOb, Joseph P. Iannotti, MO, PhOe, Kathleen A. Derwin, PhO"e,. 
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90% repair failure rates reported after rotator cuff repair 
1,6,7,12-14,16 surgery. High surgical failure rates can be attrib­

uted to a number of biologic, anatomic, and mechanical 
factors, which include inferior tissue quality, tendon retrac­
tion, muscle atrophy and fatty infiltration, undue tension at 
the repair site in the early postoperative period, and the 

environment.5,8,15,22,23synovial fluid Although different 
repair strategies and hardware, immobilization protocols, 
and postoperative rehabilitation approaches have been used 
to reduce rotator cuff repair failure rates,11,17-19,21 structural 
repair failure remains a problem. Hence, there is a critical 
need to develop mechanical and/or biologic augmentation 
repair strategies to increase the clinical success of these 
repairs. 

During the last decade, natural and synthetic biomate­
rials have been developed as scaffolds for tendon repair 
augmentation. Currently, scaffolds derived from various 
natural and synthetic biomaterials are being marketed as 
augmentation devices for rotator cuff repairs at the time of 

3,9,10surgery. The US Food and Drug Administration (FDA) 
has cleared these devices ‘‘to support soft tissues where 
weakness exists’’ but not ‘‘to provide the full mechanical 
strength for the tendon repair.’’ The mechanical connotation 
of their intended use leads to the common belief that when 
applied appropriately, these devices may provide some 
degree of load-sharing of forces across the tendon repair 
site and thus decrease the likelihood of tendon retear. 

Although significant advances have been made in the 
development of scaffolds for rotator cuff repair augmentation, 
there are limited experimental data to support the notion that 
scaffold augmentation of a tendon repair will actually improve 
the biomechanical performance of the repair construct. 
McCarron et al20 recently showed that augmentation with 
a polylactic acid scaffold device (X-Repair, Synthasome Inc, 
San Diego, CA, USA) significantly increased the yield load 
(56%-92%) and ultimate load (56%-76%) of rotator cuff 
repairs in a human cadaver model.20 X-Repair augmentation 
also altered the mode of repair failure: failure by sutures 
cutting through the tendon was reduced, occurring in 17 of 20 
nonaugmented repairs but in only 7 of 20 augmented repairs. 
In another study, Barber et al4 demonstrated a 19% increase in 
failure load and fewer failures at the sutureetissue interface 
for supraspinatus repairs augmented with GraftJacket (Human 
Acellular Dermis, Wright Medical, Arlington, VA, USA) 
compared with nonaugmented repairs. 

Although these studies demonstrate the potential for 
scaffold augmentation to improve the initial biomechanical 
properties of a rotator cuff repair construct, the appropriate 
scaffold material properties and/or surgical application 
techniques for achieving optimal biomechanical perfor­
mance in the setting of rotator cuff repairs are unknown. 
Furthermore, no studies to date have investigated the percent 
load carried by a scaffold when used for rotator cuff repair 
augmentation. 

To address these questions and enhance our understanding 
of the basic mechanics of scaffold augmentation, we recently 

developed and validated a spring-network model for non-
augmented and augmented human rotator cuff repairs.2 The 
objectives of the current study are now to use this model 
to predict (1) the manner in which simulated changes to 
components of the tendon repair, such as reduced tendon 
quality, altered surgical technique, and different scaffold 
designs, influence the biomechanical performance (yield 
load and stiffness) of the repair construct and (2) the percent 
load carried by the scaffold augmentation component of the 
repair construct in each of these simulated clinical scenarios. 

Materials and methods 

We previously developed and validated a spring-network model 
for simplified nonaugmented and augmented human rotator cuff 
repairs, based on the physics of springs in series and in parallel.2 

For the cadaveric rotator cuff repairs, a strip of the superior 
infraspinatus tendon (12 mm wide) was released and repaired to 
the greater tuberosity using a double-row transosseous technique 
with 2 Mason Allen sutures per row.20 The prototypical augmen­
tation graft used for the augmented repairs was a poly-L-lactic acid 
(PLLA) scaffold (X-Repair, Synthasome Inc, San Diego, CA, 
USA). The nonaugmented repair was modeled as 2 springs in 
series (Fig.1, A and B), and the augmented repair was modeled as 
a combination of 5 springs in series and parallel (Fig. 1, C and D). 
The individual spring components, representing the points of 
compliance of the repair constructs, were modeled as nonlinear 
springs (Table I). The springs representing the tendon (spring #2), 
scaffold augmentation component (spring #3) and scaffold-tendon 
attachment (spring #4) were modeled using a single phase 
nonlinear equation, F ¼ Fo þ Axb, and the spring representing the 
tendon-to-bone repair (spring #1) was modeled using a biphasic 

Axb 

nonlinear equation, F ¼ Fo þ . In these equations, force 
1 þ Bxc

(F) is a function of the displacement (x) of the individual spring 
component. The parameters Fo , A, B, b, and  c were estimated using 
nonlinear least-squares analysis of experimental data from each 
individual component. The aggregate spring-network models were 
validated by comparing the model predictions to in vitro experi­
mental data in the failure-loading region of repair constructs that 
were preconditioned for 100 cycles from 50 to 150 N at 0.25 Hz and 
subsequently distracted to failure with uniaxial loading in tension 
at 30 mm/min.20 Further details of the model and its validation 
have previously been described.2 

In the current study, the validated models were varied para­
metrically to simulate clinically relevant scenarios, namely, 
changes in tendon quality, altered surgical technique(s) and 
different scaffold designs. More specifically, parameter A of the 
tendon-to-bone repair (spring #1), the scaffold augmentation 
component (spring #3), and the scaffold-tendon attachment 
(spring #4) was varied from its respective baseline value, while 
keeping other parameters at their respective baseline values. (The 
baseline values are those derived from the actual experimental 
data). Although the parameter A itself does not have any particular 
physical significance, it is a proportionality constant associated 
with changes in load-displacement characteristics of a given spring 
component and hence can be varied to simulate different clinical 
scenarios, such as weak and/or strong tendon-to-bone fixation, 
degenerative tendon tissue, or compliant/stiff scaffolds. 



Figure 1 The non-augmented rotator cuff repairs (A) were modeled as 2 springs in series (B), namely, the bone-suture-tendon interface, 
ie, tendon-to-bone repair (spring #1) and the tendon itself (spring #2).The augmented rotator cuff repairs (C) were modeled as 5 springs in 
series and parallel (D), and included the bone-screw-scaffold-suture component, ie, scaffold augmentation component (spring #3) and 
medial scaffold-suture-tendon interface, ie, scaffold-tendon attachment (spring #4). Details of the surgical repair techniques and model 
development have previously been reported.2,20 The dotted lines represent suture markers that were placed on the tendon during experi­
mental tests, and the black dot represents the optical marker that was placed on the bone for optical displacement measurements. 
Figure adapted and reprinted from Clinical Biomechanics 2010;25:751-58, Aurora A, Gatica JE, van den Bogert AJ, McCarron JA, Derwin 
KA. An analytical model for rotator cuff repairs.2 With permission from Elsevier. 

Specifically, to simulate changes in tendon quality and/or 
surgical repair technique, parameter A of the tendon-to-bone repair 
(spring #1) or the scaffold-tendon attachment (spring #4) was varied 
�50% from baseline. To simulate a change in the scaffold design, 
which could include changes to the scaffold mechanical properties 
and/or its method of fixation, parameter A of the scaffold augmen­
tation component (spring #3) was varied �25% and �50% from 
baseline. Parameter A is a proportionality constant associated with 
the load-displacement characteristics of a given spring component 
and does not have any particular physical significance; however, it 
can be varied parametrically to simulate changes in the mechanical 
properties of each component. It was assumed that clinically rele­
vant variation in tendon quality and/or surgical repair technique 
would fall in the range of �50% of the properties of the cadaveric 
specimens used to develop this model. 

The biomechanical performance of the repair constructs, that 
is, the yield load and stiffness, and the percent load carried by the 
scaffold augmentation component (spring #3), were evaluated for 
each of the parametrically simulated model conditions. Since the 

model was fitted to the experimental data only up to the point of 
yield load (yield load was defined at the first instantaneous drop in 
load of at least 10% during the experimental tests),20 the 
maximum load predicted by the model simulations is equivalent to 
this yield load. The stiffness was obtained from the linear portion 
(between 5 and 150 N) of the predicted load-displacement curves. 
All results are reported with respect to the nonaugmented repair 
condition to estimate value of using scaffold augmentation for the 
simulated clinical indications. 

Results 

Parametric variation in parameter A 

Tendon-to-bone repair (spring #1) 
Parameter A of the tendon-to-bone repair (spring #1) was 
varied to simulate changes in tendon quality and/or surgical 



Table I Definition of individual springs in rotator cuff repair 
models 

Spring Physical component of repair construct 

1 Tendon-to-bone repair (bone-suture-tendon 
interface) 

2, 20, 200 Tendon (springs 20 and 200 are two half-springs 
of spring 2) 

3 Scaffold augmentation component (bone-screw­
scaffold-suture) 

4 Scaffold-tendon attachment (scaffold-suture­
tendon interface) 

repair technique. Results are shown in Figure 2 and 
summarized in Table II. The model predicted a yield load 
of 384 N and stiffness of 105 N/mm for nonaugmented 
repair constructs. These are the baseline properties to which 
all simulated conditions are compared. 

Decreasing parameter A of the tendon-to-bone repair 
(spring #1) by 50% decreases the yield load (43%) and stiff­
ness (62%) of nonaugmented repairs. When an augmentation 
scaffold is used, the same decrease in parameter A resulted in 
only a modest decrease in yield load (4%) and stiffness (21%) 
compared with the nonaugmented baseline condition (Fig. 2, 
A). In this scenario, the scaffold augmentation component 
carries approximately 45% of the total load on the construct 
(Fig. 2, B). 

Conversely, increasing parameter A of the tendon-to-bone 
repair (spring #1) by 50% increases the yield load (34%) and 
stiffness (38%) of nonaugmented repairs (Fig. 2, A). When an 
augmentation scaffold is used, the same increase in param­
eter A resulted in a similar increase in yield load (43%) and 
stiffness (32%) as when no scaffold is used (Fig. 2, A). In this 
scenario, however, the scaffold component carries approxi­
mately 25% of the total load on the construct (Fig. 2, B). 

Scaffold augmentation component (spring #3) 
Parameter A of the scaffold augmentation component 
(spring #3) was varied to simulate a change in the scaffold 
design, which could include changes to the scaffold 
mechanical properties and/or its method of fixation. 
Results are shown in Figure 3 and summarized in Table II. 
Augmenting the repair with a prototypical polymer scaf­
fold results in a repair construct with higher yield load 
(25%) and stiffness (16%) than the nonaugmented repair 
(Fig. 3, A), and the scaffold component carries approxi­
mately 31% of the total load on the construct (Fig. 3, B). 
Decreasing parameter A of the scaffold augmentation 
component by 25% and 50% reduces the properties of 
the augmented construct to similar levels as the non-
augmented baseline repair (Fig. 3, A), and the percent total 
load carried by the scaffold reduces to 20% (Fig. 3, B). 
Increasing parameter A of the scaffold augmentation 
component by 25% and 50% does not appreciably increase 
the yield load, stiffness, or load-sharing capability of the 

Figure 2 Parametric variation in parameter A of the tendon-to­
bone (TB) repair (spring #1). (A) The biomechanical performance 
of the nonaugmented and augmented repair constructs and (B) the 
percent load carried by the scaffold augmentation component for 
simulated tendon-to-bone repair. 

augmented construct over the properties obtained with the 
prototypical polymer scaffold (Fig. 3, A and B). 

Scaffold-tendon attachment (spring #4) 
Parameter A of the scaffold-tendon attachment (Spring#4) 
was varied to simulate changes in tendon quality and/or 
scaffold attachment technique. Results are shown in Figure 4 
and summarized in Table II. For repairs augmented with 
a prototypical polymer scaffold, decreasing parameter A of 
the scaffold-tendon attachment by 50% reduces the proper­
ties of the augmented repair construct to similar levels as the 
nonaugmented baseline repair, and the percent total load 
carried by the scaffold reduces to 22% (Fig. 4, A). Increasing 
parameter A of the scaffold-tendon attachment by 50% does 
not appreciably increase the yield load, stiffness, or load-
sharing capability of the augmented construct over the 
properties obtained with the prototypical polymer scaffold 
and the baseline condition for spring #4 (Fig. 4, B). In other 
words, changes to the properties of the repair construct with 



Table II Predicted biomechanical performance of repair constructs for simulated clinical scenarios) 

Clinical scenario Parameter Repair type Percent change from Percent load 
A variation nonaugmented carried by the 

(primary repair) scaffold 

Yield load Stiffness augmentation 
component 

Tendon-to-bone repair varied (spring #1) 
Reduced tendon quality (ie, repair of chronic 50% decrease Nonaugmented -43% -62% N/a 
degenerative tendon to bone) Augmented with a prototypical scaffold -4% -21% 45% 

Improved repair strategy of tendon attachment 
to bone 

Scaffold augmentation component varied (spring #3) 

50% increase Nonaugmented 
Augmented with a prototypical scaffold 

þ34% 
þ43% 

þ38% 
þ32% 

N/A 
25% 

Change in scaffold mechanical properties and/ 
or its method of fixation 

Scaffold-tendon attachment varied (spring #4) 

Prototypical polymer 
25% decrease 
50% decrease 
25% increase 
50% increase 

Augmented þ25% 
þ20% 
þ12% 
þ29% 
þ32% 

þ16% 
þ4% 

no change 
þ18% 
þ20% 

31% 
28% 
20% 
34% 
36% 

Reduced tendon quality and/or reduced repair 
strategy of scaffold attachment to tendon 

50% decrease Augmented with a prototypical scaffold þ14% No change 22% 

Improved repair strategy of scaffold 
attachment to tendon 

50% increase þ31% þ19% 36% 

N/A, not applicable. 
) All results are reported with respect to the non-augmented repair condition (yield load: 384 N, stiffness: 105 N/mm), in order to estimate value of scaffold augmentation for the simulated clinical 
scenarios. 



Figure 3 Parametric variation in parameter A of the scaffold 
augmentation component (spring #3). (A) The biomechanical 
performance of the augmented repair construct and (B) the percent 
load carried by the scaffold augmentation component for simu­
lated scaffold augmentation component. 

variation in the scaffold-tendon attachment properties were 
essentially the same as when the properties of the scaffold 
augmentation component (spring #3) were varied to the same 
degree (Fig. 4, A and B). 

Discussion 

Scaffold augmentation may be a viable strategy to improve 
the initial biomechanical properties of a rotator cuff repair 
construct and thereby reduce the incidence of repair failure. 
However, numerous questions remain about the appropriate 
scaffold properties, surgical application techniques, and 
load-sharing abilities of a scaffold when used in a rotator 
cuff repair construct. To investigate these questions and 
enhance our understanding of the basic mechanics of 
scaffold augmentation, we recently developed and validated 
a spring-network model for nonaugmented and augmented 

Figure 4 Parametric variation in parameter A of the scaffold-
tendon attachment (spring 4). (A) The biomechanical perfor­
mance of the augmented repair construct and (B) the percent load 
carried by the scaffold augmentation component for simulated 
scaffold-tendon attachment. 

human rotator cuff repairs.2 The objectives of the current 
study were to use this model to predict (1) the manner in 
which simulated changes to components of the tendon 
repair, such as reduced tendon quality, altered surgical 
technique, and different scaffold designs, influence the 
biomechanical performance (yield load and stiffness) of the 
repair construct, and (2) the percent load carried by the 
scaffold augmentation component of the repair construct in 
each of these simulated clinical scenarios. 

The model was developed and validated from our in vitro 
experimental study of nonaugmented and augmented human 
rotator cuff repairs, performed using a polymer scaffold 
designed to have stiffness and ultimate load comparable with 
human rotator cuff tendon.20 Except for a small portion of the 
data at large displacement values, the experimental data fell 
within the 95% confidence interval of the model, thus vali­
dating the model as a predictive tool for investigating the 
basic mechanics of scaffold augmentation.2 



The model predicts that augmenting a tendon repair with 
a polymer scaffold designed to have tendon-like mechan­
ical properties results in a repair construct with modestly 
higher yield load (25%) and stiffness (16%) than the non-
augmented repair condition. The model also predicts that 
the scaffold component of the repair construct carries 31% 
of the total load on the repair. The model predicts only 
slight further increases in repair construct stiffness or yield 
load when the mechanical properties of the scaffold 
augmentation component and/or its attachment to tendon 
are increased. Decreasing the properties of the scaffold 
augmentation component itself and/or its attachment to the 
repaired tendon reduces the properties of the of the overall 
augmented repair construct to similar levels as the non-
augmented repair. Together, these findings suggest that to 
provide modest improvements to the stiffness and yield 
load of nonaugmented repairs in healthy tendon tissue, the 
scaffold must have mechanical properties similar to that of 
tendon tissue. However, the results also suggest that 
applying a scaffold with supraphysiologic stiffness will not 
translate into yet stiffer or stronger repairs. 

Importantly, the model predicts that in the presence or 
absence of an augmentation scaffold, the mechanical 
properties of the overall repair construct are most influ­
enced by the properties of the primary tendon-to-bone 
repair. The model predicts that decreasing the properties of 
the tendon-to-bone repair (ie, repair of a chronic degener­
ative tendon, fixation in osteopenic bone, or a poorly per­
formed surgical repair technique) will appreciably decrease 
the yield load (43%) and stiffness (62%) of the construct. 
The model predicts that scaffold augmentation in this 
setting can largely mitigate this drop in properties and that 
the scaffold will carry approximately 45% of the total load 
on the repair construct. This result suggests that scaffold 
augmentation would be particularly advantageous when 
repairing poor-quality tendon. 

Conversely, the model also predicts that increasing the 
properties of the tendon-to-bone repair (perhaps representing 
an improved tendon-to-bone repair strategy), will appre­
ciably increase the yield load (34%) and stiffness (38%) of 
the repair construct even without scaffold augmentation. In 
this case, scaffold augmentation provides minimal further 
improvement in construct properties, although 25% of the 
total load on the overall construct would still be carried by the 
scaffold component of the repair. 

It is important to note that because the mechanical 
properties of the primary tendon-to-bone repair most 
influence the overall mechanical performance of the repair 
construct, using a surgical repair technique that maximizes 
the strength and stability of the direct tendon-to-bone 
fixation site is essential, even if repair augmentation with 
a scaffold is anticipated. Surgical repair strategies that 
compromise the fixation strength at the tendon-to-bone 
repair site in favor of improved scaffold fixation are 
unlikely to confer mechanical benefit to the overall repair 
construct. 

Several limitations should be noted in interpreting the 
findings of the study: first, the objectives of the study were 
met by parametrically simulating a simplified rotator cuff 
repair model that was validated for one surgical repair 
technique, one type of scaffold, and tested under one loading 
condition.2,20 Hence, the results reported are dependent on 
the particular experimental conditions tested. 

Second, the parameter A does not have any direct phys­
ical corollary. It is a proportionality constant associated 
with the load-displacement characteristics of a given spring 
component. Although varying parameter A allowed us to 
simulate the model for clinical scenarios that may be 
representative of change in tendon quality, altered surgical 
techniques, and/or scaffold designs, the absolute translation 
of our model predictions to clinical practice must be done 
judiciously. 

Third, the model does not account for the biologic 
processes of healing and remodeling. Hence, the results of 
the study are only applicable to the immediate postoperative 
period. 

Fourth, we modeled failure loading after cyclic pre­
conditioning and not the more physiological cyclic loading 
condition. 

Despite these limitations, we believe the model is useful to 
enhance our understanding of the basic mechanics of scaffold 
augmentation. Future work will develop and apply the 
spring-network model to a more clinically relevant repair and 
loading conditions in a human cadaver model: full-thickness 
supraspinatus tendon repairs (with and without scaffold 
augmentation) exposed to a cyclic loading protocol. 

Conclusion 

A previously validated human rotator cuff repair model 
was used to simulate changes in tendon quality, altered 
surgical technique(s) and different scaffold designs. This 
model allows predictions of the biomechanical perfor­
mance of nonaugmented and augmented repair constructs 
as well as the percent load carried by the scaffold 
augmentation component for various clinically relevant 
scenarios. The model predicts that the yield load and 
stiffness of a rotator cuff repair at the time of surgery may 
be modestly increased by augmenting the repair with 
a scaffold, which has tendon-like properties. However, the 
model also suggests that engineering a scaffold with 
supraphysiologic stiffness may not translate into yet 
stiffer or stronger repairs. 

Importantly, the model also predicts that the mechanical 
properties of a repair construct are most influenced by the 
properties of the tendon-to-bone repair. This result illustrates 
the need to prioritize the primary tendon-to-bone repair site 
fixation, even if repair augmentation with a scaffold is 
anticipated. In the clinical setting of a weak tendon-to-bone 
repair, scaffold augmentation will significantly off-load the 



repair and largely mitigate the poor construct properties, 
based on the current model predictions. 

To our knowledge, this work provides for the first 
time, information about the load-sharing ability of 
augmentation scaffolds used for rotator cuff repair, and 
offers unique insight into how changes to various 
components of the repair may influence the biome­
chanical performance of the repair construct. Given the 
increasing prevalence of scaffold devices being devel­
oped and marketed for rotator cuff repair, the informa­
tion provided by this study is of great clinical relevance 
as surgeons endeavor to further understand the role of 
scaffolds for rotator cuff repair augmentation. 

Importantly, the model simulations may be used to 
direct and inform the design of new repair strategies aimed 
at improving the biomechanical performance of rotator cuff 
repairs and may have broader implications for under­
standing the basic mechanics of scaffold augmentation of 
other soft tissue repairs as well. The simulations suggest 
that future efforts in the field of rotator cuff repair 
augmentation may be directed toward strategies that 
strengthen the tendoneto-bone repair or toward engi­
neering scaffolds with tendon-like mechanical properties 
that also promote rapid or effective biologic healing. Future 
work will develop and apply the model to a more clinically 
relevant rotator cuff repair and loading conditions. 

Reference 

1. Accousti	 KJ, Flatow EL. Technical pearls on how to maximize 
healing of the rotator cuff. Instr Course Lect 2007;56:3-12. ISSN: 
0065-6895. 

2. Aurora A, Gatica JE, den Bogert AJ, McCarron JA, Derwin KA. An 
analytical model for rotator cuff repairs. Clin Biomechanics 2010;25: 
751-8. doi:10.1016/j.clinbiomech.2010.05.010 

3. Aurora A, McCarron J, Iannotti JP, Derwin K. Commercially available 
extracellular matrix materials for rotator cuff repairs: state of the art 
and future trends. J Shoulder Elbow Surg 2007;16(5 suppl):S171-8. 
doi:10.1016/j.jse.2007.03.008 

4. Barber FA, Herbert MA, Boothby MH. Ultimate tensile failure loads 
of a human dermal allograft rotator cuff augmentation. Arthroscopy 
2008;24:20-4. doi:10.1016/j.arthro.2007.07.013 

5. Bartolozzi A, Andreychik D, Ahmad S. Determinants of outcome in the 
treatment of rotator cuff disease. Clin Orthop Rel Res 1994;308:90-7. 

6. Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff 
integrity after arthroscopic versus open rotator cuff repair: a prospec­
tive study. J Shoulder Elbow Surg 2006;15:290-9. doi:10.1016/j.jse. 
2005.09.017 

7. Boileau P,	 Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, 
Krishnan SG. Arthroscopic repair of full-thickness tears of the 
supraspinatus: does the tendon really heal? J Bone Joint Surg Am 
2005;87:1229-40. doi:10.2106/JBJS.D.02035 

8. Cofield	 RH, Parvizi J, Hoffmeyer PJ, Lanzer WL, Ilstrup DM, 
Rowland CM. Surgical repair of chronic rotator cuff tears. A prospective 
long-term study. J Bone Joint Surg Am 2001;83-A:71-7. 

9. Coons	 DA, Alan Barber F. Tendon graft substitutes-rotator cuff 
patches. Sports Med Arthrosc 2006;14:185-90. 

10. Derwin KA, Badylak SF,	 Steinmann SP, Iannotti JP. Extracellular 
matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 
2010;19:467-76. doi:10.1016/j.jse.2009.10.020 

11. Franceschi	 F, Ruzzini L, Longo UG, Martina FM, Zobel BB, 
Maffulli N, et al. Equivalent clinical results of arthroscopic single-row 
and double-row suture anchor repair for rotator cuff tears: a random­

ized controlled trial. Am J Sports Med 2007;35:1254-60. doi:10.1177/ 
0363546507302218 

12. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The 
outcome and repair integrity of completely arthroscopically repaired large 
and massive rotator cuff tears. J Bone Joint Surg Am 2004;86-A:219-24. 

13. Gazielly DF,	 Gleyze P, Montagnon C. Functional and anatomical 
results after rotator cuff repair. Clin Orthop Rel Res 1994;304:43-53. 

14. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of 
the rotator cuff. J Bone Joint Surg Am 2000;82:505-15. 

15. Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. 
Influence of cuff muscle fatty degeneration on anatomic and functional 
outcomes after simple suture of full-thickness tears. J Shoulder Elbow 
Surg 2003;12:550-4. doi:10.1016/S1058-2746(03)00211-8 

16. Harryman	 DT, Mack LA, Wang KY, Jackins SE, Richardson ML, 
Matsen FA III. Repairs of the rotator cuff. Correlation of functional results 
with integrity of the cuff. J Bone Joint Surg Am 1991;73-A:982-9. 

17. Ide J, Maeda S, Takagi K. A comparison of arthroscopic and open 
rotator cuff repair. Arthroscopy 2005;21:1090-8. doi:10.1016/j.arthro. 
2005.05.010 

18. Klintberg IH, Gunnarsson AC, Svantesson U, Styf J, Karlsson J. Early 
loading in physiotherapy treatment after full-thickness rotator cuff 
repair: a prospective randomized pilot-study with a two-year follow-
up. Clin Rehabil 2009;23:622-38. doi:10.1177/0269215509102952 

19. Koo SS, Burkhart SS. Rehabilitation following arthroscopic rotator cuff 
repair. Clin Sports Med 2010;29:203-11. doi:10.1016/j.csm.2009.12.001 

20. McCarron JA, Milks RA, Chen X, Iannotti JP, Derwin KA. Improved 
time-zero biomechanical properties using poly-L-lactic acid graft 
augmentation in a cadaveric rotator cuff repair model. J Shoulder 
Elbow Surg 2010;19:688-96. doi:10.1016/j.jse.2009.12.008 

21. Saridakis	 P, Jones G. Outcomes of single-row and double-row 
arthroscopic rotator cuff repair: a systematic review. J Bone Joint 
Surg Am 2010;92:732-42. doi:10.2106/JBJS.I.01295 

22. Thomopoulos S, Soslowsky LJ, Flanagan CL, Tun	 S, Keefer CC, 
Mastaw J, et al. The effect of fibrin clot on healing rat supraspinatus 
tendon defects. J Shoulder Elbow Surg 2002;11:239-47. doi:10.1067/ 
mse.2002.122228 

23. Uhthoff HK, Matsumoto F, Trudel G, Himori K. Early reattachment 
does not reverse atrophy and fat accumulation of the supraspinatusean 
experimental study in rabbits. J Orthop Res 2003;21:386-92. doi:10. 
1016/S0736-0266(02)00208-5 

24. Vitale MA, Vitale MG, Zivin JG, Braman JP, Bigliani LU, Flatow EL. 
Rotator cuff repair: an analysis of utility scores and cost-effectiveness. 
J Shoulder Elbow Surg 2007;16:181-7. doi:10.1016/j.jse.2006.06.013 

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014


	Cleveland State University
	EngagedScholarship@CSU
	8-2012

	The Biomechanical Role of Scaffolds in Augmented Rotator Cuff Tendon Repairs
	Amit Aurora
	Jesse A. McCarron
	Antonie J. van den Bogert
	Jorge E. Gatica
	Joseph P. Iannotti
	See next page for additional authors

	Publisher's Statement
	Original Citation
	Authors



