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ORIGINAL  ARTICLE  

Obtaining mode mixity for a bimaterial interface crack using 
the virtual crack closure technique 

A. Agrawal · A. M. Karlsson 

Abstract We review, unify and extend work per­
taining to evaluating mode mixity of interfacial 
fracture utilizing the virtual crack closure tech­
nique (VCCT). From the VCCT, components of 
the strain energy release rate (SERR) are obtained 
using the forces and displacements near the crack 
tip corresponding to the opening and sliding contri­
butions. Unfortunately, these components depend 
on the crack extension size, �, used in the VCCT. 
It follows that a mode mixity based upon these 
components also will depend on the crack exten­
sion size. However, the components of the strain 
energy release rate can be used for determining 
the complex stress intensity factors (SIFs) and the 
associated mode mixity. In this study, we show that 
several—seemingly different—suggested methods 
presented in the literature used to obtain mode 
mixity based on the stress intensity factors are in­
deed identical. We also present an alternative, sim­
pler quadratic equation to this end. Moreover, a 
�-independent strain energy release based mode 
mixity can be defined by introducing a “normal­
izing length parameter.” We show that when the 
reference length (used for the SIF-based mode 
mixity) and the normalizing length (used for �­
independent SERR-based mode mixity) are equal, 

A. Agrawal · A. M. Karlsson (B) 
Department of Mechanical Engineering, University of 
Delaware, 126 Spencer Laboratory, Newark, 19716, 
DE, USA 
e-mail: karlsson@udel.edu 

the two mode mixities are only shifted by a phase 
angle, depending on the bimaterial parameter ε. 

Keywords Interface crack · Complex stress 
intensity factor · Virtual crack closure technique · 
SIF-based mode mixity · SERR-based mode 
mixity 

1 Introduction 

Bimaterial interfaces are intrinsic in many engi­
neering applications, ranging from microelectron­
ics to adhesive joints, from fiber-reinforced 
composites to thermal barrier coatings. These lay­
ered structures undergo complex failure modes, 
many times relating in interfacial cracking (e.g., 
Wang and Suo 1990; Karlsson and Evans 2001). 
Thus, to design reliable layered structures, it is par­
amount that the mechanics of the interface crack 
is understood. Fracture toughness of bimaterial 
interfaces has received attention through analyt­
ical (e.g., Rice 1988; Hutchinson and Suo 1992), 
experimental (e.g., Charalambides et al. 1989; 
Wang and Suo 1990; Yuuki et al. 1994; Ikeda 
et al. 1998) and numerical simulations (e.g., Sun 
and Jih 1987; Matos et al. 1989; Toya 1992; Beuth 
1996; Bjerken and Persson 2001). 

Contrary to homogeneous, isotropic materials— 
where cracks tend to propagate in pure mode I 
locally at the crack tip—mode mixity is a critical 
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parameter for interfacial fractures. The mode mix­
ity (sometimes called the phase angle of fracture) 
is the relative proportions of tractions ahead of the 
crack tip in sliding mode (mode II) and opening 
mode (mode I) in the facture. A crack constrained 
in an interface is subjected to mixed mode condi­
tions—and propagates in mixed mode—when the 
preferred fracture path is in the interface. There is 
ample experimental evidence that interfacial frac­
ture toughness depends strongly on the mode mix­
ity (e.g., Evans et al. 1990; Wang and Suo 1990; 
O’Dowd et al. 1992; Yuuki et al. 1994). Typically, 
the total fracture toughness increases as the mode 
II contribution increases. 

Mode mixity can be determined using a stress 
intensity factor (SIF)-based approach or can be 
based on the components of the strain energy re­
lease rate (SERRs). Although analytical expres­
sions for the total strain energy release rate and 
SIF-based mode mixity are available for some sim­
ple interfacial crack problems (Hutchinson and 
Suo 1992; Cherepanov 1979), they involve consid­
erable mathematical complexity. For complicated 
geometries or loading conditions, the analytical 
expressions may not be available. Thus, numeri­
cal methods are many times preferred. The total 
strain energy release rate can be obtained through 
numerical computation of the J-integral (Rice 
1968) using finite element based techniques (e.g. 
the virtual crack extension technique, Parks 1974). 
However, the J-integral provides no information 
about the mode mixity. 

Stress-based mode mixity can be determined by 
two alternative numerical methods: 

(i) The crack-face displacement method (Matos 
et al. 1989). The method is widely used and 
is easy to implement for most problems. It 
requires the displacement field for many 
nodes close to the crack tip, and may be diffi­
cult to implement if the crack faces are not 
straight. 

(ii) The M-Integral	 method (Yau et al. 1980). 
The method requires a known auxiliary 
solution and is very sensitive to the accuracy of 
the auxiliary solution because the error builds 
up in a quadratic manner. 

A third method, the virtual crack closure 
technique (VCCT), has successfully been used to 
obtain both the total strain energy release rate and 
the mode mixity for cracks in homogeneous mate­
rials (Rybicki and Kanninen 1977; Dattaguru et al. 
1994, Xie et al. 2004). For an interface crack, the 
VCCT has traditionally been used to obtain the 
total strain energy release rate. Obtaining mode 
mixity for an interface crack using the VCCT has 
proven to be more challenging (Sun and Jih 1987; 
Raju et al. 1988; Dattaguru et al. 1994). However, 
several approaches have been suggested to extract 
consistent mode mixity values using the VCCT 
(Toya 1992; Chow and Atluri 1995; Beuth 1996; 
Sun and Qian 1997; Bjerken and Persson 2001). 

The purpose of this paper is to present the VCCT 
as a reliable and efficient method to extract SIF- or 
SERR-based mode mixity to characterize an inter­
face crack, within the context of linear-elastic frac­
ture mechanics. To this end, we will in Chapters 3–4 
re-derive the equations that are needed to extract 
mode mixity from the VCCT results of SERRs us­
ing asymptotic stress and displacement field near 
the crack tip. The derivation is intended to estab­
lish a clear link between various approaches (Toya 
1992; Chow and Atluri 1995; Beuth 1996; Sun and 
Qian 1997). Furthermore, a simple quadratic equa­
tion is derived that can be used to obtain the SIF-
based mode mixity. This equation gives identical 
results to the previous approaches suggested by 
Toya (1992), Chow and Atluri (1995) and Sun and 
Qian (1997). In addition, an approach by Bjerken 
and Persson (2001) is examined and found attrac­
tive for providing acceptable values of mode mixity 
with significantly less computational efforts. Fur­
ther, a modified definition of mode mixity, based 
on SERRs (Beuth 1996), is shown as an alternative 
measure for characterizing an interface crack. 

In Chapter 5, we will numerically illustrate the 
theory discussed in Chapters 2–4, with two bench­
mark problems: an interface crack in an infinite bi­
material plate subjected to uniform normal stress 
and a bi-layer four-point flexure specimen with an 
interface crack. We believe that reading the numer­
ical examples parallel with the theory may help a 
reader who is unfamiliar with the concepts pre­
sented herein. 
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2 The interface crack problem 

In this section, we will review the definitions and 
some key concepts relating to the complex stress 
intensity factor, the SIF-based mode mixity, the 
total strain energy release rate, and end with a dis­
cussion relating to the contact zone. 

2.1 Nature of the interface crack singularity 

A bimaterial body experiences stress intensifica­
tion from both a geometric discontinuity (crack), 
as well as a material discontinuity. Stress intensi­
fication for a plane interface crack between two 
elastic, isotropic materials was first suggested by 
Westergaard (1939). A complete analytical solu­
tion was given by Williams (1959), where the 
asymptotic nature of the dominant singular stress 
field using an eigenfunction approach was estab­
lished. That work indicated that the stress field is 
coupled near the crack tip and that the stress sin­/
gularity is of the order of rξ , where ξ = −1 2+ iε 
is the complex eigenvalue, and ε is the bimaterial 
constant defined as:   

1 1 − β 
ε = ln ,  (1)  

2π 1 + β

where 

E1 − E2 µ1(ϑ2 − 1) − µ2(ϑ1 − 1)
α = , and  β = . 

E1 + E2 µ1(ϑ2 + 1) + µ2(ϑ1 + 1) 
(2a, b) 

α,β are the “Dundur’s parameters” (Dudurs 1969); 
and j = 1, 2 represents material 1 and 2 (Fig. 1), ( )
respectively. Furthermore, ϑj = 3 − 4νj and Ej = 

/( ) ( )/
Ej 1 − ν2 for plane strain; and ϑj = 3 − νjj( )
1 + νj and Ej = Ej for plane stress. Ej is the elastic 

modulus, νj is Poisson’s ratio and µj = Ej/2(1 + νj) 
is the shear modulus. The oscillatory singularity is 
given by 

riε = cos(ε ln r) + i sin(ε ln r),  (3)  
√ 

where i = −1. An interface crack experiences 
mixed mode condition even when subjected to 
pure mode I loading. 

The interface crack solutions based on the “open 
crack model” (e.g., Williams 1959; Rice and Sih 

Material 1 ( 11,νE ) 

Material 2 ( 22 ,νE ) 

r 

θ 

y 

Fig. 1 Geometry and nomenclature for an interface crack 

1965; Malyshev and Salganik 1965; England 1965) 
contain oscillation of stresses and displacements 
in the vicinity of the crack tip. In such model, the 
interpenetration of crack faces always occurs near 
the crack tip, which is physically unfeasible. Com­
ninou (1977) presented a modified solution con­
sidering contact near the crack tip to eliminate the 
oscillations. However, the contact region is very 
small. Thus, the oscillatory solution allowing inter­
penetration is considered valid in the K-annulus, 
i.e. the region close to the crack tip where the singu­
lar field dominates, outside the non-linear contact 
zone (Rice 1988; Rice et al. 1990; Wang and Suo 
1990). 

2.2 Definition of complex K and SIF-based mode 
mixity 

Using the convention for an interface crack defined 
in Fig. 1, the complex stress intensity factor, K, is  
given by (Rice and Sih 1965) 

iw ∗ 
K = K1 + iK2 = |K| e ,  (4)  

√ 
where K has units of Nm−2 m m−iε and w∗ is the 
“phase angle” or “mode mixity” of K. In the  K-
annulus region, the tractions at a distance r ahead 
of the crack tip at the interface (θ = 0) are given 
by (Rice and Sih 1965; Rice 1988) 

K 
σyy + iσxy = √ riε .  (5)  

2πr 

An alternative definition of the interfacial stress 
intensity factors was suggested by Rice (1988), re­
ferred to as the  complex stress intensity factors of 
classical type, which agrees with the definition of 
Malyshev and Salganik (1965). The stress intensity 



factors of classical type, KI and KII, represent stress 
intensity factors of two different modes of fracture 
and can be defined as: 

iψKI + iKII = Kliε = |K| e ,  (6)  

where l is an arbitrarily chosen reference length, 
ψ is the mode mixity of Kliε, and KI, KII are based 
on the reference length r = l. The stress inten­
sity factors defined by Eq. 6 have the units of the 
“isotropic” stress intensity factors, i.e. Nm−2√ 

m, 
and are thus easy to interpret physically. However, 
the stress intensity factors KI, KII for a bimateri­
al system with β  = 0 are not directly analogous 
to mode I and mode II stress intensity factors for 
homogeneous material, since a characterizing ref­
erence length always needs to be specified (Rice 
1988; Hutchinson and Suo 1992). The stress field in 
Eq. 5 can be rewritten in terms of KI, KII as 

(KI + iKII r)iε 
σyy + iσxy = √ .  (7)  

2πr l 

The (stress-based) mode mixity in Eq. 6 is ex­
pressed as 

( ) ( )
Im[Kriε] KII 

ψ = tan−1 = tan−1 , (8a) 
Re[Kriε] KIr=l 

which is equivalent to 
( )
σxy

ψ = tan−1 . (8b) 
σyy r=l 

ψ is the mode mixity of Kliε and can be related to 
the mode mixity of K as (Rice 1988; Hutchinson 
and Suo 1992; Ikeda et al. 1998) 

ψ = w ∗ + ε ln (l) . (9a) 

Futhermore, 

l2 
ψ2 = ψ1 + ε ln (9b)

l1 

where l1 and l2 are two reference lengths used to 
define the mode mixities: ψ1 = ψ1 (l1) and ψ2 = 
ψ2 (l2). 

The expression for the displacement jumps is 
(Hutchinson and Suo 1992) 

(KI + iKII √ r)iε 
δy + iδx = 8 √ r , 

(1 + 2iε)E∗ cosh (πε) 2π l 

E∗ 2 E1 E2

(10a, b) 

( )
1 1 1 1

where = + . 

Here, δx and δy are the displacement jumps be­
tween two points located on opposite crack faces 
at a distance r behind the crack tip, along x- and 
y-directions, respectively. Lastly, the angle φ at a 
distance r behind the crack tip is defined as 

( ) 
φ = tan−1 δx . (11) 

δy 

2.3 Total strain energy release rate 

The total strain energy release rate can be ex­
pressed in terms of the modulus of complex K as 
(Malyshev and Salganik 1965) 

1 − β2 
G = 

(
|K|2

) 
, (12) 

E∗ 

where |K|2 = (K1
2 + K2

2) = (KI
2 + KII

2 ) and it is 
noted that 1 − β2 = 1/ cosh2 (πε) and |liε| = 1. The 
strain energy release rate for an interface crack has 
the dimension of Nm−1 (which is the same as that 
for the strain energy release rate for monolithic 
material). 

2.4 Estimate of the contact zone 

For a bimaterial interface crack (β  = 0), the open 
crack solution with oscillatory stress and displace­
ment field given by Eqs. 7 and 10, respectively, 
indicates that there are infinite numbers of sign 
changes of the normal and shear stress, and the 
normal and shear displacement, near the crack tip 
(Sun and Qian 1997). The oscillation zone for stress 
and displacement are not necessarily the same. 
Similarly, the oscillation zone based on the oscil­
latory field model and the contact zone based the 
contact model are not necessarily the same. Rice 
(1988) arrived at an elementary estimate of the 
contact zone as the radius of oscillation zone of 
displacement, ro, which is the largest value of r for 
which the opening gap δy vanishes in the cycle of 
oscillation: 

Re 
{ 

KI + iKII 

1 + 2iε 

( 
l 

ro 

)iε} 
= 0 (13) 

which gives 

ro = l exp 
{ 

1 
ε 

tan−1 
( 

KI − 2εKII 

KII + 2εKI 

)} 
. (14) 



  

�   

�   

The contact zone obtained above is very small com­
pared to the crack size and other specimen dimen­
sion even for large mismatch (β = 0.5). Indeed, the 
contact zone is much smaller than even the atomic 
dimensions for moderate values of β (Rice 1988; 
Wang and Suo 1990; Sun and Qian 1997; Borovkov 
et al. 2000). 

3 Strain energy release rates for an interface crack 

In this section, we will introduce the virtual crack 
closure technique (VCCT) that is used to obtain 
the components of the strain energy release rate GI 
and GII. Due to the oscillatory nature of stress and 
displacement fields, the components of the strain 
energy release rates (SEERs) for an interface crack 
are oscillatory. Consequently, GI and GII become 
dependent on the assumed crack-extension size, 
�, in the finite element simulations. Various pro­
cedures have been suggested to extract meaning­
ful �-independent parameters from the oscillatory 
SERRs in order to characterize the interface crack 
(Toya 1992; Chow and Atluri 1995; Beuth 1996; 
Sun and Qian 1997). We will show that the expres­
sions for GI and GII used by these authors are 
identical. We will conclude with comments on the 
implications of �-dependent quantities and intro­
duce a coupled strain energy quantity. 

3.1 The virtual crack closure technique (VCCT) 

According to Irwin (1957), the work required to ex­
tend a crack by an infinitesimal distance is equal to 
the work required to close the crack to its original 
length. Thus, for homogeneous, isotropic, linear-
elastic material, the components of strain energy 
release rate for mode I and mode II can be ex­
pressed as: 

1
GI = Lim σyy (� − r) δy (r) dr, (15) 

�→0 2� 
0 

1
GII = Lim σxy (� − r) δx (r) dr, (16) 

�→0 2� 
0 

where � is a small crack extension; σyy and σxy are 
the normal and shear tractions, respectively, at a 

distance r ahead of the crack tip; and δx and δy are 
the displacement jumps at a distance r behind the 
crack tip, along the x (sliding mode) and y (opening 
mode) directions, respectively. 

Rybicki and Kanninen (1977) showed that the 
integrals in Eqs. 15 and 16 can be computed numer­
ically by finite element analysis using a 
technique referred to as the virtual crack closure 
technique (VCCT). This method can be used with 
conventional (non-singular), linear, finite element 
simulation to get accurate strain energy release 
rate values. 

The VCCT is based on nodal forces and dis­
placements near the crack tip. In this technique, 
the four elements adjacent to the tip should pref­
erably have the same size (Fig. 2), where the length 
of the crack tip element size is �. Nodes e and f are 
joined at the crack tip, whereas nodes c and d are 
next behind the crack tip on the two opposite crack 
faces. Fy,c and Fx,c are the forces required to hold 
nodes c and d together in the y and x directions, 
respectively. If the forces Fy,c and Fx,c are applied at 
nodes c and d, the crack closes by increment�, and 
c and d become coincident with each other to form 
the new crack tip. Thus, assuming that � is small 
compared to the overall length of the crack, Fy,c 

and Fx,c can be assumed to be the same as the trac­
tions at the current crack tip (nodes e and f ). The 
forces at the nodes e and f can be obtained directly 
from the finite element results. Conversely, if we 
apply these forces at e and f to balance the crack 

∆ ∆ 

Element 2Element 1 

Element 3 Element 4 

Crack Tip 

e 
f 

c 

d 

Fig. 2 Finite element mesh near the crack tip and nomen­
clature used in the virtual crack closure technique 
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�

tip tractions, the crack will advance by � and the 
work done for the small unit crack extension cor­
responds to the (total) strain energy release rate. 

Hence, recasting Eqs. 15 and 16 to capture the 
discrete nature of finite element analysis, the VCCT 
yields 

1
GI = Fy,cδy,c−d, (17) 

2� 

1
GII = Fx,cδx,c−d, (18) 

2� 
where δy,c−d and δx,c−d are the relative opening 
and sliding displacement jumps between points c 
and d, respectively. The components of the strain 
energy release rate for a crack can be obtained 
from Eqs. 17 and 18 using the VCCT. How this is 
done, is demonstrated in Sect. 5.1.1 (infinite plate) 
and Sect. 5.2.1 (4-point bending). 

However, the procedures of isotropic fracture 
are not directly applicable to analyze bimaterial 
interfacial cracks. GI and GII depend on the crack 
extension size, do not converge as � approaches 
infinitesimal value, and do not relate to mode I 
and II mode contributions (Sun and Jih 1987; Raju 
et al. 1988; Dattaguru et al. 1994). Thus, GI and GII 
have unclear physical meaning and mode decom­
position in terms of GI and GII can only be defined 
for a chosen finite crack extension �. 

The total strain energy release rate of an inter­
face crack is well defined for an infinitesimal crack 
extension and agrees with Eq. 12 (Sun and Jih 1987; 
Raju et al. 1988; Dattaguru et al. 1994). The total 
strain energy release rate is obtained as follows: 

 
1

G = GI + GII = Lim σyy(� − r)δy (r) 
�→0 2� 

0 

+σxy (� − r) δx (r) dr. (19) 

The dependence of the SERR’s components on 
the crack extension size was first presented in ex­
plicit mathematical form by Sun and Jih (1987) 
and Raju et al. (1988). The SERRs for an inter­
face crack oscillate with � due to the oscillatory 
nature of stress and displacement fields. The oscil­
latory character of SERRs is similar to that of Eq. 
3, with the wavelength depending on the bimaterial 
parameter ε. 

3.2 Analytical expressions for SERRs in terms of 
KI and KII 

The explicit mathematical form of SERR depen­
dence on � has been analyzed, resulting in var­
ious suggested procedures to extract meaningful 
�-independent parameters (Toya 1992; Chow and 
Atluri 1995; Beuth 1996; Sun and Qian 1997). In 
what follows, we will derive the analytical expres­
sions of GI and GII in terms of the complex stress 
intensity factors KI and KII and will show that 
seemingly different representations of SERRs are 
indeed the same. 

The definition of SERRs in Eqs. 15 and 16 in­
volves the product of stresses ahead of the crack 
tip and the displacement jumps between the crack 
faces behind the crack tip. From Eq. 7, the asymp­
totic stress field is given by 

σyy = 
1 √ 
2πr 

[
KI cos 

{
ε ln 

( r 
l

)} 

−KII sin 
{
ε ln 

( r 
l

)}]
, (20a) 

σxy = 
1 √ 
2πr 

[
KII cos 

{
ε ln 

( r 
l

)} 

+KI sin 
{
ε ln 

( r 
l

)}]
. (20b) 

The expression for asymptotic displacements be­
hind the crack tip in Eq. 10 can be reexpressed as: 

√ 
δy + iδx = m r [(KI + 2εKII) 

( )iεr + i (KII − 2εKI)] , (21a) 
l

8 
m = √ (21b)

2πE∗ 
(
1 + 4ε2

)
cos (πε) 

From Eq. 21 the displacement field is: 
[ { ( )}√ r 

δy = m r (KI + 2εKII) cos ε ln 
l{ ( )}]r − (KII − 2εKI) sin ε ln , (22a) 

l
[ { ( )}√ r 

δx = m r (KI + 2εKII) sin ε ln 
l{ ( )}]r + (KII − 2εKI) cos ε ln . (22b) 

l
Introducing Eqs. 20 and 22 into Eqs. 15 and 16, we 
obtain the expression for GI and GII used by Toya 
(1992) 

{ ( ) }m
GI = √ fcIc − fsIs + KI 

2 + K2 Io , (23) II4 2π 
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� { ( ) 

�  

� 

{ ( ) }m
GII = √ −fcIc + fsIs + KI

2 + K2 Io , (24) II4 2π 

where 

� ( ) J
1 r (� − r) r

Ic = cos ε ln dr, (25a) 
� l2 � − r 

0 

� ( ) J
1 r (� − r) r

Is = sin ε ln dr, (25b) 
� l2 � − r 

0 

1 � − r
I0 = cos ε ln 

� r 
0 

( ) } J 
� − r r −2ε sin ε ln dr (25c) 

r � − r 

fc = KI
2 − KII

2 + 4εKIKII, [ ( )]
fs = 2 KIKII + ε KII

2 − KI
2 . (26a, b) 

In addition to Eqs. 23 and 24 obtained by Toya 
(1992), other representations of GI and GII are 
available (Chow and Atluri 1995; Beuth 1996; Sun 
and Qian 1997). The representations involve com­
plex quantities written in different forms; thus, it is 
not obvious that the expressions are related. How­
ever, here we will show that these representations 
can be derived from the expressions of Eqs. 23 and 
24 and that they indeed are identical. We introduce 
two complex integrals, A1 and A2, to establish a  
connection between the various representations of 
GI and GII. Let  

� ( )iε J 
1 r (� − r) r


A1 = dr, (27a) 
� l2 � − r 

0 

which can be rewritten as 

( )2iε ∞ ( )2(1+iε) 
� t

A1 = 2 dt
l t2 + 1
 

0
 

( )2iε π/2
 

= 2 sin2 θ (sin θ cos θ)2iε dθ , (27b) 
l 

0 

where t and θ are dummy variables. A1 can be eval­
uated numerically (see Sects. 5.1.1 and 5.2.1) and 
be expressed as 

( )2iε 
iζA1 = 2 |Q| e , (27c) 

l 

where |Q| and ζ depend only on the bimaterial 
parameter ε, and are obtained from the numerical 
integration. Also, let 

( )iε J1 � � − r r
A2 = dr, (28a) 

� r � − r0 

which can be expressed as 
( )2iε ( )2∞ 1 t

A2 = 2 dt 
0 t t2 + 1
 
π/2 ( )2iε cos θ = 2 sin2 θ dθ . (28b) 

0 sin θ 
We can relate the integrals A1 and A2 defined 

in Eqs. 27a and 28a, respectively, to the quantities 
used by Toya (1992) in Eq. 25 as: 

Ic = Re {A1} , (29a) 

Is = Im {A1} , (29b) 

I0 = Re {A2} − 2εIm {A2} . (29c) 

Furthermore, Eq. 26 can be re-expressed as 

fc + ifs = (1 − 2iε) (KI + iKII)
2 . (30) 

Substituting Eqs. 29 and 30 into Eqs. 23 and 24 
obtained by Toya (1992), we re-express GI and GII 
as: 

{[ ]
2GI = √ 

m 
Re (1 − 2iε) (KI + iKII) A1

4 2π [ ] }
+ KI

2 + KII
2 (1 + 2iε)A2 , (31) 

{ [ ]
2GII = √ 

m 
Re − (1 − 2iε) (KI + iKII) A1

4 2π [ ] }
+ KI

2 + K2 (1 + 2iε)A2 . (32) II

Equations 31 and 32 have been used by 
Chow and Atluri (1995) with the complex integral 
A1 represented in explicit �-dependent form given 
by Eq. 27b. Thus, we have shown that the expres­
sion used by Toya (1992) and Chow and Atluri 
(1995) are indeed the same equations. In addition, 
integral A1 can be expressed in terms of a Gamma 
function or a Beta function (Magnus et al. 1966) 
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and can be evaluated using standard mathematical 
tables. Sun and Jih (1987) and Sun and Qian (1997) 
have used integral A1 expressed as a Gamma func­
tion and have obtained expressions for GI and GII 
similar to Eqs. 31 and 32. 

Lastly, let us introduce the two real quantities 
<1 and <2 used by Beuth (1996): 

1 (
<1 = Re σyy (� − r)

4� 
0 }) ( )+iσxy (� − r) δy (r) + iδx (r) dr , (33) 

1 (
<2 = Re σyy (� − r)

4� 
0 }) ( )+iσxy (� − r) δy(r) + iδx(r) dr , (34) 

where z̄ denotes the complex conjugate of a com­
plex number z. Substituting Eqs. 7, 10, and 27a into 
Eq. 33, and Eqs. 7, 10, and 28a into Eq. 34, we get 

{ }m 
<1 = √ Re (1 − 2iε) (KI + iKII)

2 A1 ; (35) 
4 2π 

[ ] { }m 
<2 = √ KI

2 + K2 Re (1 + 2iε) A2 . (36) II4 2π 

Substituting Eqs. 35 and 36 into Eqs. 31 and 32, 
we obtain the expression used by Beuth (1996) 
as: 

GI = <1 +<2, (37a) 

GII = −<1 +<2. (37b) 

Thus, the expressions for GI and GII used in 
different approaches (Toya 1992; Chow and Atluri 
1995; Beuth 1996; Sun and Qian 1997) are iden­
tical and can be derived from one another. All 
the available approaches can be used to charac­
terize the interface crack by extracting meaningful 
�-independent parameters. These �-independent 
crack characterizing parameters are the �-inde­
pendent SERR-based mode mixity (Beuth 1996), 
or the SIF-based mode mixity (Toya 1992; Chow 
and Atluri 1995; Sun and Qian 1997), and shall be 
discussed in Chapter 4. 

3.3 Implications of <1 and <2 with regard to 
�-Dependence of GI and GII 

From Eq. 32 we have 

G = GI + GII = 2<2. (38) 

Thus, <2 is half of the total strain energy release 
rate and is well defined. Hence, from Eq. 36, the 
complex integral A2 is well defined. (It is also evi­
dent from Eq. 28b that A2 shows no dependence on 
crack extension size �). Furthermore, using Eqs. 
12, 29c, 36, and 38, the complex integral I0 can be 
expressed as 

(
1 + 4ε2)

I0 = . (39) 
π 
2 cosh (πε) 

The quantity <1 can be related to A1 from Eq. 35 
and expanded using Eq. 27b, which shows clear 
dependence on the crack extension size �. Hence, it 
is evident that the quantity <1 is responsible for the 
non-convergence of the components of the SERR. 
Individual SERRs in Eq. 37 can be re-expressed in 
the form used by Sun and Jih (1987) as: 

G G
GI = +<1, GII = −<1. (40a, b) 

2 2 

Caution must be exercised when interpreting 
Eq. 40. Contrary to what has been indicated by Sun 
and Jih (1987), the result does not imply equal par­
tition of the total strain energy release rate close 
to the crack tip as � → 0: The quantity <1 is 
non-trivial and cannot be neglected (Itou 1986). 
The mode mixity very close to the crack tip can 
be examined from the contact model (Comninou 
1977) which is more realistic: for contact of crack 
faces, δy vanishes, implying that mode I contribu­
tion must vanish (Toya et al. 1997). Thus, in the 
contact region and its vicinity (when � → 0) pure 
mode II dominance is expected. This agrees with 
the finite element results of Dattaguru et al. (1994) 
and Hemanth et al. (2005). 

3.4 Coupled strain energy release rate 

For a crack in a bimaterial interface, there is cou­
pling between σyy(� − r) and δx(r), and between 
σxy(� − r) and δy(r). As a result, a coupled strain 
energy release rate can be introduced as suggested 



 � 

� 

by Chow and Atluri (1995) 

1 [
GI−II = σyy(� − r)δx (r)2� 0 ]+σxy (� − r) δy (r) dr = 2<3, (41) 

where after substituting Eqs. 7, 10 and 27a, <3 can 
be expressed as 

{ }m 
<3 = √ Im (1 − 2iε) (KI + iKII)

2 A1 . (42) 
4 2π 

The expressions for <3 will be useful when rewrit­
ing the expressions for �-independent parameters 
discussed in Chapter 4. 

3.5 Evaluation of <1,<2,<3 

The quantities <1, <2 and <3 can be computed 
from finite element calculations. Let F = Fy,c+iFx,c 

be the nodal force vector for node c (i.e., the force 
required to hold node c and d together), and A = 
δy,c−d+iδx,c−d be the nodal displacement jump vec­
tor. Thus, we have from Eqs. 33 and 34 

1 
<1 = Re {FΛ} , (43) 

4� 

1 { }
<2 = Re FΛ . (44) 

4� 
Also from Eq. 41, we have 

1 
<3 = Im {FΛ} . (45) 

4� 

4 Obtaining mode mixities for interface crack 
using VCCT 

We will now review and extend the techniques that 
are available to extract mode mixities for interfa­
cial cracks based on the VCCT. Expressions for 
various mode mixity definitions will be introduced 
for: (i) SERR-based mode mixity, (ii) �-indepen­
dent SERR-based mode mixity, (iii) SIF-based 
mode mixity obtained from oscillating SERRs, and 
(iv) SIF-based mode mixity obtained from com­
plex strain energy release rate. 

4.1 SERR-based mode mixity 

Mode decomposition of the total strain energy re­
lease rate has successfully been implemented for 

cracks in homogeneous isotropic materials 
(Rybicki and Kanninen 1977), where the mode 
mixity based on SERRs, ψG, can be expressed as: 

GIItan2 ψG = . (46) 
GI 

For homogeneous, isotropic, linear-elastic materi­
als, the results of mode mixity based on SERR, Eq. 
46, and those based on SIFs, Eq. 8, are identical. 
However, for an interface crack, the decomposed 
components of the strain energy release rate, hence 
the mode mixity, ψG, depend on the crack exten­
sion size, �. Thus, ψG is referred to as �-depen­
dent mode mixity. This is illustrated for the two 
benchmarked problem considered in Sects. 5.1.1 
and 5.2.1. However, when ε is small, the oscillatory 
character can be ignored (Xie et al. 2004, 2005, 
2006). 

4.2 �-independent SERR-based mode mixity 

A method to obtain �-independent SERR-based 
mode mixity was introduced by Beuth (1996). In 
this case, Eq. 40 can be modified to obtain �­
independent values of SERRs by eliminating the 
�-dependence of <1. Thus, Eq. 35 is modified as 
(Beuth 1996) 

  ( )2iεm lG
<' = √ Re (1−2iε)(KI+iKII)

2A11 4 2π � 

(47) 

where <'
1 is a �-independent quantity and lG is 

an arbitrary parameter used to normalize �. Since 
lG is of the dimension “length,” we will refer to 
it as the “normalizing length.” We note that even 
though the modification of Eq. 47 has no real phys­
ical justification, this “mathematical trick” will be 
shown to be quite useful when using VCCT, as dis­
cussed in Sect. 4.5.3 below and illustrated in Sect. 
5. Utilizing the expression for <1 in Eq. 35, <3 
in Eq. 42, and noting that �-dependence in these 
equations is due to �-dependence of A1 shown in 
Eq. 27b, we can rewrite the Eq. 47 as 

  ( )2iεlG
<' = Re (<1 + i<3) (48)1 

In finite element calculation, it is convenient to 
use Eq. 48 for obtaining <' , where <1 and <3 are1
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obtained numerically using Eqs. 43 and 45. Mod­
ifying Eq. 40, the �-independent SERRs can be 
obtained as 

' ' G ' = 
G + <1, and G ' G − <1. (49a, b) II = 
2 2 

We can now introduce the following definition 

G ' ' IItan2 ψ = , (50) G G ' I 

where ψG
' is the�-independent SERR-based mode 

mixity. The reference length l associated with the 
complex K representation employed for express­
ing GI and GII in Eqs. 31 and 32, or Eq. 40 [which 
is analogous to Eq. 49], is the same as for complex 
K in Eq. 8. However, it is obvious that �-indepen­
dent SERR-based mode mixity ψG 

' in Eq. 50 is not 
the same as SIF-based mode mixity ψ in Eq. 8. It 
may be emphasized that the parameter lG is arbi­
trarily used to normalize �, and has no physical 
significance, as opposed to the reference length l, 
which has clear physical meaning. The use of ψG 

' is 
illustrated for the two benchmarked problem con­
sidered in Sects. 5.1.1 and 5.2.1. In Sect. 4.5 we will 
derive a relationship between ψG 

' and ψ . 

4.3 SIF-based mode mixity from oscillating 
SERRs 

The SIF-based mode mixity, Eq. 8, can be obtained 
using the expressions of (oscillating) the compo­
nents of the SERR. Dividing Eq. 23 with Eq. 24 
for any chosen crack increment �, the following 
simple expression—from which KI and KII can be 
extracted—is obtained: 

( )
Ic(κ

2 − 1 + 4εκ) − 2Is(κ + ε − εκ2) + I0 κ2 + 1 GI ( ) ( ( ) = −Ic κ2 − 1 + 4εκ + 2Is κ + ε − εκ2
) + I0 κ2 + 1 GII 

(51) 

where κ = KI/KII and the right hand side is ob­/
tained using the VCCT. Using g = GII GI, and 
rearranging Eq. 51, we obtain a quadratic algebraic 
equation in κ 

2 [ ]
κ (Ic + 2εIs) (1 + g) + I0 (g − 1)

[ ]+κ (4εIc − 2Is) (1 + g)
[ ]− (Ic + 2εIs) (1 + g) − I0 (g − 1) = 0. (52) 

Mode mixity is obtained by rewriting Eq. 8a as 
tan−1 (

1
/
κ
)
. Out of the two values obtained ψ = 

when solving the quadratic Eq. 52, the correct κ 
can be ascertained from inspection by discarding 
the one which gives an incompatible ψ . The crack 
face displacements data from finite elements anal­
ysis and Eqs. 10 and 11 provides an approximate 
value of ψ (Smelser 1979). 

Several authors (Toya 1992; Chow and Atluri 
1995; Sun and Qian 1997) have successfully ob­
tained KI and KII from the SERR’s components 
using the VCCT. The representations of their equa­
tions for GI and GII to extract KI and KII are differ­
ent from Eq. 51, and are also different from one 
another. However, as examined in Sect. 3.2, all of 
the above approaches are identical and can be de­
rived from one another. Thus, κ obtained by any of 
the past approaches in literature (Toya 1992; Chow 
and Atluri 1995; Sun and Qian 1997) or Eq. 51 are 
the same. We are note that Eq. 51 (which further 
reduces to Eq. 52) is much simpler to use. The 
results from Eq. 51 and the previously derived 
methods discussed in the above paragraph are 
numerically investigated in Sects. 5.1.6 and 5.2.6. 

4.4 SIF-based mode mixity using complex strain 
energy release rate 

We will now consider an approach for obtaining 
SIF-based mode mixity (as defined by Eq. 8) using 
the complex strain energy release rate. Bjerken 
and Persson (2001) have cleverly introduced the 
complex strain energy release rate as 

1 [
� = Lim σyy(� − r) 

�→0 2�  
0
 ] [ ]+iσxy (� − r) δy (r) + iδx (r) dr (53) 

Substituting Eqs. 7, 10 and 27a into Eq. 53, we get 
{ }m 

� = √ (1 − 2iε) (KI + iKII)
2 A1 , (54) 

2 2π 
Further using Eqs. 35 and 42 into Eq. 54, and then 
utilizing Eqs. 43 and 45, we get 

� 1 = [<1 + i<3] , [<1 + i<3] = FA,
2 4�  

1

and � = [FA] (55a, b, c) 

2� 
Based on finite element simulations, � can be ob­
tained from Eq. 55c, where F and Λ are the nodal 
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force and displacement jump vectors introduced in 
Sect. 3.5. Further, F and Λ can be re-expressed as: 

iχc	 iφF = |F| e , and Λ = |Λ| e c−d , (56a, b) 

where χc and φc−d are the arguments of complex 
nodal force and displacement jump, respectively. 
We substitute Eq. 56 into Eq. 55c to re-express the 
complex strain energy release rate. In addition, we 
substitute the expression for A1 from Eq. 27c and 
expand Eq. 54. Equating the arguments of complex 
quantities in Eqs. 54 and 55c, we obtain the expres­
sion for obtaining mode mixity used by Bjerken 
and Persson (2001): 

( )
χc + φc−d = 2ψ − tan−1(2ε)+ 2ε ln + ζ .(57) 

l 

We recall that ζ is obtained from FE-simulations 
according to Eq. 27. Equation 57 utilizes only the 
complex integral A1 and gives a simple expression 
for SIF-based mode mixity without a need for the 
relatively lengthy calculation involved in Eq. 51. 
Eqs. 55 – 57 are utilized in the numerical examples 
in Sects. 5.1.1 and 5.2.1. 

' 4.5 Relationships between ψ ,ψG and ψG 

In this section, we will establish relationships be­
tween the three mode mixity angles defined above: 

(i)	 the SIF-based mode mixity, ψ [defined by 
Eq. 8], for a given reference length l; 

(ii)	 the �-dependent SERR-based mode mix­
ity, ψG [defined by Eq. 46], for a given crack 
extension size, �; 

(iii)	 the �-independent SERR-based mode mix­
' ity, ψG [defined by Eq. 50], for a given crack 

extension size, �, and a given normalizing 
length, lG. 

In particular, we will develop a new relationship 
' between ψG and ψ for a special choice of the nor­

malizing length, lG. 

4.5.1 Relationship between ψ , and ψG 

First, let us consider the SERR-based, �-depen­
dent, mode mixity ψG. Using Eq. 46, and substitut­
ing Eq. 56 into the VCCT result of Eqs. 17 and 18, 
we have 

( )
tan2 (ψG) = tan (χc) tan φc−d , (58) 

where χc and φc−d are defined with Eq. 56. Both 
χc and φc−d are readily available from the finite 
element simulations and are generally of the same 
magnitude (as shown in the numerical examples in 
Sects. 5.1.1 and 5.2.1), leading to the opportunity 
to derive some useful (but approximate) relation­
ships. Thus, by developing an approximation for 
the right hand side of Eq. 58, we can determine 
an approximation of ψG. To this end, rewrite the 
arguments in Eq. 58 as 

χc + φc−d χc − φc−d
χc = + and

2 2 
χc + φc−d χc − φc−d

φc−d = − . (59a, b) 
2 2 

The right hand side of Eq. 58 can now be expressed 
as 

(	 )
tan (χc) tan φc−d

[ ] [ ]( ) ( )
tan2 1

2 χc + φc−d −tan2 1
2 χc − φc−d= [ ( )] [ ( )]

1−tan2 1 χc + φc−d tan2 1 χc − φc−d2	 2 
[ ]( )1≈ tan2 χc + φc−d .	 (60) 2 

Substituting the approximation defined by Eq. 60 
into Eq. 58 results in 

( )
ψG ≈ 1 φc−d + χc .	 (61) 2 

( )
Equation 60 holds if χc − φc−d is “small,” and 
angles χc and φc−d are not “close” to either 0◦ or )
90◦, which together implies that tan2 (

χc − φc−d
can be neglected. For example, if χc and φc−d differ 
by 4◦ (which is the maximum value expected for 
most cases), the error in Eq. 61 is less than 0.2◦ 

for 10◦ < ψG < 80◦. Moreover, the error is less 
than 1◦ for 3◦ < ψG < 87◦. For cases when ψG is 
outside the desired range, a different crack exten­
sion size can be selected. Thus, for most problems, 
Eq. 58 decomposes into the useful approximation 
expressed by Eq. 61. 

It follows that, by substituting Eq. 61 into Eq. 
57, the relationship between SERR-based and SIF­
based mode mixity ( ψ and ψG, respectively) for 
most applications is given by 

( 
�

) 
1 ( )

ψG ≈ ψ + ε ln + ζ − tan−1 (2ε) (62)
l	 2 

where we recall that that ζ is a numerically ob­
tained parameter from Eq. 27 that depends on the 
bimaterial constant ε. As may be expected, this 
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relationship is dependent on the crack extension 
size, �. 

Mantic and Paris (2004) have examined the rela­
tionship between SERR-based and SIF-based 
mode mixity following the work of Toya (1992). 
Furthermore, possible usefulness of ψG in charac­
terizing interfacial fracture toughness for physical 
specimens has been explored (Mantic and Paris, 
2004, Zhao 2005). However, for interfacial cracks 
SERR-based mode mixity is non-unique and de­
pend on the crack extension size, �. Thus, any 
physical interpretation of GI, GII and ψG has to 
be explained in terms of finite crack extension size 
� as suggested by Toya (1992). 

4.5.2 Relationship between ψG and ψ ' G 

The �-independent mode mixity, ψG
' , can serve 

as a useful crack characterizing parameter (Beuth 
1996; Sun and Qian 1997; Mantic and Paris 2004). 
Thus, obtaining an expression that relates the �­
independent mode mixity, ψG

' , to the SIF-based 
mode mixity, ψ , is valuable. This will be achieved 
by first relating the two SERR-based mode-mixites 
( ψG and ψG

' ) and then utilizing Eq. 62. 
Using Eqs. 38 and 49, we rewrite Eq. 50 as: 

' 
' 1 − <1 <2 tan2 ψG = 

/

/ . (63) ' 1 + < <21

Rewriting Eq. 44 by introducing <4, we have 

1 
FΛ = <2 + i<4, (64a) 

4� 
where 

1 { }
<4 = Im FΛ̄ . (64b) 

4� 
Now, from Eqs. 64a and 55b, we have 

|<1 + i<3| = |<2 + i<4| . (65) 

Based on results from the finite element calcula­
tion, <4 is obtained from Eq. 64b. In Eq. 56, we 
note that when χc is “close” to φc−d, it follows that 
<4 is negligibly small compared to <2, and we have 

|<2 + i<4| ≈ <2. (66) 

The approximation in Eq. 66 is more restrictive on 
the values of χc and φc−d than in Eq. 61. For exam­
ple, if χc and φc−d differ by 2◦, the error incurred 
in Eq. 66 is about 3.5%. 

' Next, we introduce <3 to rewrite Eq. 48 as 
( )2iεlG' ' < = (<1 + i<3)1 + i<3 

  ' '  and  <1 + i< = |<1 + i<3| . (67a, b) 3

Therefore, using the approximation in Eq. 66, it 
follows from Eq. 67b that
   < ' '  

1 + i< ≈ <2. (67c) 3
/' ' Further, we introduce tan (p) = <3 /<1, which 
' from Eq. 67a,b,c leads to cos (p) ≈ <1 <2. Thus, 

Eq. 63 can be rewritten as 
( )1 − cos (p) p' tan2 ψG ≈ = tan2 , (68a) 

1 + cos (p) 2

leading to 

p' ψG ≈ . (68b) 
2

Similarly, we rewrite Eq. 46 using Eq. 37, and intro­/
duce tan (q) = <3 <1 to obtain ψG ≈ (q/2). There­
fore, using the values of quantities p and q obtained 
above, from the arguments of complex quantities 
in Eq. 67a, we finally get a relationship between 
ψG 

' and ψG 

( )
lG' ψG ≈ ψG + ε ln . (69a) 

' When lG = � it follows that ψG (lG = �) = ψG, 
i.e., when the normalizing length is selected as 
the crack extension length, the �-dependent mode 
mixity equals that of the �-independent mode mix­
ity.1 Even though introduction of the normalizing 
length is a useful strategy, this observation serves 
to highlight the non-physical nature of lG. Never­
theless, from Eq. 69a, we can relate ψG 

' from one 
normalizing length to another as 

( )
' ' lG,2

ψ , (69b) G,2 = ψG,1 + ε ln 
lG,1 

where lG,1 and lG,2 are two normalizing lengths 
' used to define the mode mixities, ψ G(lG,1)G,1 ≡ ψ ' 

and ψG
' 

,2 ≡ ψG
' (lG,2). We note that Eq. 69b, ob­

tained for �-independent SERR-based mode mix-
ity, has a similar form to Eq. 9b used for SIF-based 
mode mixity. 

1 This also follows from Eq. 48 and comparing Eq. 49 to 40. 



 

  

4.5.3 Relationship between ψ and ψ ' G 

More insight into various expressions for mode 
mixities is obtained by selecting the normalizing 
length to equal the reference length. When lG = l, 
Eqs. 69a and 62 yields: 

( )' 1ψG (lG = l) ≈ ψ (l) + 
1 
ζ − tan− (2ε) . (70) 

2
Thus, when the normalizing length, lG, equals the 
reference length, l, the  �-independent SERR-
based mode mixity, ψG

' , and the SIF-based mode 
mixity, ψ , are merely shifted by a phase angle [ ]1 ζ − tan−1 (2ε) , which only depends on the bi­2 
material constant ε. 

Hence, we have shown that �-independent 
SERR-based mode mixity can be related to the 
SIF-based mode mixity by setting the normalizing 
length equal to the reference length. Even though 
ψG 

' appears to be a mathematical quantity with no 
physical meaning (unlike ψ), we believe ψG 

' can 
be a useful parameter if care is taken in its inter­
pretation. The relationship defined in Eq. 70 may 
be useful when interpreting results using VCCT, 
since the phase shift only depends on the bi-mate­
rial constant ε. The numerical results illustrating 
this are presented in Sects. 5.1.4 and 5.2.4. 

5 Numerical examples 

Two examples of interface cracks between dissimi­
lar isotropic elastic layers are considered for deter­
mining and comparing the mode mixity values from 
the expressions obtained in Sect. 4. The two bench­
mark problems considered are: (i) an interface 
crack in an infinite bimaterial plate subjected to 
a uniform normal stress (Fig. 3A); and (ii) a bi­
layer four-point flexure specimen with an inter­
face crack (Fig. 4A). Finite element models are 
constructed using the commercially available pro­
gram ABAQUS (2003). For each case, symmetry 
condition about the y-axis at the mid-section of 
the specimen is imposed to reduce the model size. 
Four-node constant strain quadrilateral elements 
(CPE4R) are used. The finite element models of 
the two specimens are shown in Figs. 3B and 4B, 
respectively. The mesh around the crack tip for 
the flexure specimen is also shown in Fig. 4B. This 
mesh is similar for the bimaterial plate but omitted 

for brevity. The near tip mesh is symmetric about 
the crack tip with respect to both x and y axes, 
Fig. 2. Various crack extension sizes,�, are consid­
ered by changing the near tip mesh. For the finest 
mesh, the bimaterial plate model has 16,114 ele­
ments and the four point flexure specimen model 
has 21,771 elements. The SIF-based mode mixity 
values computed using the VCCT from Eqs. 51 
and 57, are compared with analytical solutions and 
results from the crack face displacement method 
(Matos et al. 1989). 

5.1 Interface crack in infinite plate subject to 
uniform tension 

The infinite bimaterial plate with a small, isolated 
crack at the interface subjected to a uniform ten­
sile stress normal to the crack (Fig. 3) has been 
studied extensively (e.g. Rice and Sih 1965; Sun 
and Jih 1987; Toya 1992; Chow and Atluri 1995; 
Sun and Qian 1997; Bjerken and Persson 2001) and 
is thus a suitable benchmark problem. Plane strain 
condition is assumed. In our model, the material 
properties are: E1 = 200 GPa, E2 = 5 GPa, and 
ν1 = ν2 = 0.25. Thus, α = 0.9512, β = 0.3171, and 
ε = −0.10453. The plate size is 400 mm×400 mm 
and the crack length is 2a = 10 mm. The analyti­
cal solution (Rice and Sih 1965) requires the uni­
form remote stresses along the x-direction to be 
unequal, σ∞ = σ∞ , in order to maintain the xx(1) xx(2)
continuity of longitudinal normal strain, εxx, across 
the interface. Thus, the longitudinal normal stress 
is discontinuous across the interface and we have 
(Rice and Sih 1965) 

σ∞ = 
E2 
σ∞ 

xx(2) xx(1)E1 

σ∞ 
yy E2+ ν2 (1 + ν2) − ν1 (1 + ν1) (71)

1 − ν2 
2 E1 

The remote loading is σ∞ = 100 MPa; yy 
σ∞ = 0, and σ∞ = 32.5 MPa. xx(1) xx(2) 

5.1.1 Mode mixities obtained from the VCCT 

First, we compute the �-dependent SERR-based 
mode mixity discussed in Sect. 4.1. Using the VCCT, 
the components of the SERR, GI and GII, are  
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(a) (b) 

Fig. 3 (a) An interface crack in an infinite bimaterial plate, (b) the finite element mesh used for the simulations 

computed numerically from Eqs. 17 and 18, and the 
SERR-based mode mixity, ψG, is obtained form 
Eq. 46. The total strain energy release rate, G, 
is independent of the crack extension size, but 
GI and GII, thus ψG, depend on the crack exten­
sion size (Table 1, Fig. 5a). The average G = 
14.1547 Nmm−1. 

Secondly, we compute the �-independent 
SERR-based mode mixity introduced in Sect. 4.2. 
Equation 48 is used to determine the �-indepen­

' dent quantity <1, and normalizing length lG is arbi­
trarily selected as lG = 0.1 mm. (The normaliz­
ing length is selected arbitrarily to provide posi­
tive values of G ' I and G ' II) The G value is taken 
as the average G in Table 1. The �-independent 
SERRs are obtained using Eq. 49. From Eq. 50, we 
obtain consistent values of �-independent SERR­

' based mode mixity, ψG. Similar results are 
obtained for all crack extension sizes as tabulated 
in Table 2 and shown in Fig. 5a. The average value 
is ψG

' (lG = 0.1) = 31.46◦ . 
Next, we obtain the SIF-based mode mixity from 

the components of the SERR discussed in Sect. 4.3. 

The complex quantity A1 is obtained using numer­
ical integration of Eq. 27b: 

( )2iεl
A1 ≈ 1.48033 + i0.43716 = 1.54353(arg 16.45◦) 

0.2871i= 1.54353e , 

where l = 2a = 10 mm is the reference length. 
Equations 29a and 29b are used to obtain the quan­
tities Ic and Is. Equation 39 yields I0 = 1.55486. The 
mode mixity is obtained from Eq. 52 and results 
are tabulated in Table 3. The results show some 
sensitivity with the crack extension size �. For the  
finest near-tip mesh we have ψ (l = 10) = −10.30◦ 

as shown in Fig. 5a. 
Lastly, SIF-based mode mixity is alternatively 

obtained from the complex strain energy release 
rate as discussed in Sect. 4.4. We use the Eqs. 55 and 
56 to obtain the complex strain energy release rate 
numerically, and the argument of complex quantity 
A1 is available from numerical integration of Eq. 
27b. The reference length, l, selected is the crack 
length (10 mm). The SIF-based mode mixity ψ is 
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Fig. 4 (a) A four-point bend specimen with interfacial cracks, (b) the finite element mesh used for the simulations, including 
the near crack field 



Table 1 VCCT Results for SERRs for bimaterial plate 

� 
(mm) 

Fy,c 

(Nmm−1) 
Fx,c 

(Nmm−1) 
δy,c−d 10−2 

(mm) 
δx,c−d 10−2 

(mm) 
GI 
(Nmm−1) 

GII 
(Nmm−1) 

G total 
(Nmm−1) 

ψG 

(deg) 

0.1 
0.05 
0.02 
0.005 

54.3577 
36.6293 
21.4862 
9.2793 

33.6988 
26.5310 
18.9194 
10.9134 

3.7890 
2.5520 
1.4970 
0.6460 

2.2877 
1.8089 
1.2933 
0.7483 

10.2981 
9.3478 
8.0412 
5.9944 

3.8546 
4.7992 
6.1171 
8.1665 
Average 

14.1527 
14.1470 
14.1583 
14.1609 
14.1547 

31.45 
35.62 
41.09 
49.41 

Fig. 5 Various definitions 
of mode mixities as a 
function of crack tip 
element size, �: (A) 
Bimaterial plate and (B) 
Four-point bend 
specimen. ψG is the 
�-dependent strain 
energy release rate based 

' mode mixity; ψG is the 
�-independent strain 
energy release rate based 
mode mixity with 
normalizing length lG; 
and ψ is based on stress 
intensity factures with 
reference length l 
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Table 2 �-independent SERR-based mode mixity ψ ' G for bimaterial plate 

� 
(mm) 

2ε ln 
( 

lG 
� 

) 

(deg) 

<1 

(Nmm−1) 
<3 

(Nmm−1) 
< ' 1 

(Nmm−1) 
G ' I 

(Nmm−1) 
G ' II 

(Nmm−1) 
ψ ' G (lG = 0.1) 
(deg) 

0.1 
0.05 
0.02 
0.005 

0.0 
−8.30 
−19.28 
−35.88 

3.2217 
2.2743 
0.9620 
−1.0860 

6.3010 
6.6983 
7.0138 
6.9969 

3.2217 
3.2174 
3.2239 
3.2209 

10.2991 
10.2948 
10.3012 
10.2982 

3.8556 
3.8600 
3.8534 
3.8564 
Average 

31.46 
31.48 
31.45 
31.46 
31.46 

Table 3 SIF-based mode mixity ψ from the components of the SERR for bimaterial plate 

� 
(mm) 

2ε ln 
( 
� 
l 

) 

(deg) 
Ic Is κ  ψ  (l=10) 

(deg) 

0.1 
0.05 
0.02 
0.005 

55.16 
63.46 
74.44 
91.04 

0.48689 
0.27035 
−0.02404 
−0.46396 

1.46472 
1.51967 
1.54334 
1.47215 

−5.6439, −0.2986 
−5.6128, −0.1473 
−5.5571, 0.0436 
−5.5021, 0.3443 

−10.04 
−10.10 
−10.20 
−10.30 

obtained using Eq. 57. The results are similar for 
all cases and tabulated in Table 4 with the average 
value ψ (l = 10) = −10.25◦ . 

5.1.2 Mode mixity from the crack face 
displacement method 

For comparison, we will determine the mode 
mixity based on the near-tip displacement field 
available from Eq. 10a using the crack face dis­
placement (CSD) method (Matos et al. 1989). This 
method extends the approach of Smelser (1979) to 
provide better accuracy of the mode mixity values. 
We square the modulus of complex terms on both 
sides of Eq. 10a and substitute Eq. 12 to obtain 
(Matos et al. 1989) 

δ2 + δ2 
y x G = 64 ( . (72) 

r 2π 1 + 4ε2
) 

E∗

In Eq. 72, G is obtained from Table 1. All other 
parameters in the right hand side are material prop­
erties, thus are known. The left hand side is ob­
tained from finite element results of crack face 
displacement jumps at various distances from the 
crack tip, r. Although the left hand side should 
match with the right hand side for any r in the k-
annulus region, numerical error exists in the left 
hand side (Matos et al. 1989). We get best fit of 
the left hand side and the right hand side at r = 
0.35 mm. (This value of r does not have any phys­
ical meaning). Here, we have φ = 20.53◦, where 
φ is defined by Eq. 11. Equating the arguments of 
Eq. 10a on both sides, we get 

( /)rφ = ψ + tan−1 (−2ε) + ε ln . (73) l

It follows that ψ (l = 10) = −11.36◦, which is close 
to the mode mixity obtained by the VCCT calcu­
lations. 

Table 4 SIF-based mode mixity ψ from complex energy � for bimaterial plate 
( )

� ε ln	 χc φc−d ψ (l = 10)l
(mm) (deg) (deg)	 (deg) (deg) 

0.1 27.58 31.80	 31.12 −10.25 
0.05 31.73 35.92	 35.33 −10.24 
0.02 37.22 41.36	 40.82 −10.26 
0.005	 45.52 49.63 49.20 −10.24 

Average −10.25 

http:definedbyEq.11


5.1.3 Mode mixity from an analytical solution 

An alternative comparison is obtained from the 
analytical solution. For an isolated interface crack 
(length = 2a) in infinite bimaterial plate subject to 
remotely uniform stress σ ∞ , the complex xy , σ ∞ 

yy 
stress intensity factor is given by (Rice and Sih 
1965; Rice 1988) 

( ) √∞ ∞ ∞KI + iKII = σ σ πa (1 + 2iε) , (74) 12 + iσ22 

where the complex stress intensity factor is based 
on the reference length l = 2a. This givesψ (l = 10) 
= tan−1 (2ε) = −11.81◦, again close to the values 
obtained by the VCCT. 

5.1.4 Phase shift between ψ (l = 10) and 
' ψG (lG = 10) 

Using the SIF-based mode mixity results obtained 
from the oscillating SERRs in Sect. 5.1.1, we have 
ψ (l = 10) = −10.30◦. Further, from the results 
for the �-independent SERR-based mode mixity, 
and using Eq. 69b, we have ψG

' (lG = 10) = 3.88◦ . {
Thus, the phase shift, computed as ψG

' (lG = l) 
−ψ (l)}, is 14.18◦, compared to the approximate 
value of 14.13◦ from Eq. 70. The phase shift is illus­
trated in Fig. 5a. 

5.1.5 Size of the contact zone 

Finally, we investigate the size of the contact zone. 
For the interface crack in an infinite bimaterial 
plate, the analytical solution of the complex stress 
intensity factor is available from Eq. 74. Thus, the 
contact zone size given in Eq. 14 simplifies to 

( )π 
ro = l exp . (75) 

2ε 
For reference length l = 2a = 10 mm, we find the 
contact zone size, ro = 2.98 nm. 

5.1.6 Synopsis of results for the infinite plate 

Similar values for the SIF-based mode mixity were 
obtained from Eq. 51 [using oscillating SERRs] 
and using Eq. 57 [based on complex strain energy 
release rate]. Moreover, the crack face displace­
ment method and the analytical solution both give 
similar values of the mode mixity (Table 5). 

Figure 5A illustrates various mode mixities 
introduced in Sect. 4. Whereas ψG depends on 
�, the modified SERR-based mode mixity ψG 

' ap­
pears independent of �. Letting the normalizing 
length equal the reference length, we have ψ ' G 
(lG = 10) = 3.88◦. The SIF-based mode mixity is 
obtained form the Eq. 51, ψ (l = 10) = −10.30◦ . 

' The phase shift (14.18◦) between ψG and ψ when 
lG ≡ l is indicated in the Fig. 5A. 

5.2 Interface crack in four-point flexure specimen 

Next, consider a slender, bilayer four-point flexure 
specimen with an interface crack (Fig. 4). This spec­
imen was designed by Charalambides et al. (1989) 
to measure interfacial fracture toughness of bilayer 
materials and has been studied extensively (e.g., 
Charalambides et al. 1989; Matos 1989; Hutchinson 
and Suo 1992; Suo and Hutchinson 1990). Analyti­
cal solutions for this specimen are available in form 
of total strain energy release rate and SIF-based 
mode mixity. Plane strain condition is assumed. The 
material properties selected for this benchmark 
problem are: E1 = 200 GPa, E2 = 20 GPa, and 
ν1 = ν2 = 0.33. Thus, α = 0.8182, β = 0.2076, and 
ε = −0.067055. The thickness of the upper layer is 
h1 = 2 mm, and h2 = 5 mm for the bottom layer. 
The total length of the specimen is 100 mm. The 
crack length is 9 mm on each side of the symme­
try line. The distance between the inner supports is 
74 mm, and the outer loading points are separated 
by 90 mm with force P = 20 N/mm. Thus, a constant 
moment of 160 Nmm/mm is acting in the region be­
tween the inner supports (Fig. 4). Similar to Sect. 
5.1, various mode mixities defined in Chapter 4 will 
be obtained for this benchmark problem. 

5.2.1 Mode mixities obtained from the VCCT 

First, we compute the �-dependent SERR-based 
mode mixity defined in Sect. 4.1. Using the VCCT, 
the components of the SERR, GI and GII, are com­
puted numerically from Eqs. 17 and 18, and the 
SERR-based mode mixity ψG is obtained form Eq. 
46. As for the infinite plate studied above and as 
expected, the total strain energy release rate, G, 
is independent of the crack extension size, but the 



� 

Table 5 Comparison of mode mixity obtained from the four methods investigated a 

Bimaterial plate specimen Four-point flexure specimen 
ε = −0.10453, l = 10 mm ε = −0.067055 l = 2 mm  

Extracted from Oscillating −10.30 44.33 
SERRs, Eq.  51  and Toya 1992; 
Chow and Atluri 1995; Sun and 
Qian 1997 
Based on complex strain energy −10.25 45.70 
release rate Equation 57 by Bjer­
ken and Persson (2001) 
Crack face displacement method −11.36 45.31 
(Matos et al. 1989) 
Analytical solution (Rice and Sih −11.81 44.39 
1965; Hutchinson and Suo 1990) 

a The representative value is taken as the value corresponding to the finest mesh when using the approach of oscillating 
SERRs, and the average value when using the complex strain energy release rate approach. 

Table 6 VCCT results for SERRs for four-point flexure specimen 

� Fy,c Fx,c δy,c−d δx,c−d GI GII G total ψG 

(mm) (Nmm−1) (Nmm−1 )  10−5 (mm) 10−5 (mm) 10−4 (Nmm−1) 10−2 (Nmm−1) 10−2 (Nmm−1) (deg) 

0.004 0.274200 1.398500 5.100 25.580 17.4802 4.4717 4.6465 78.82 
0.002 0.149840 1.000100 2.700 18.180 10.1142 4.5454 4.6465 81.52 
0.0008 0.056397 0.638500 1.000 11.560 3.5248 4.6132 4.6484 85.00 
0.0004 0.019426 0.452915 0.300 8.190 0.7285 4.6367 4.6440 87.73 

Average 4.6463 (10−2) 

components, GI and GII, as well as  ψG, depend 
on the crack extension size (Table 6, Fig. 5b). The 
average G = 4.6463(10−2) Nmm−1. 

Secondly, we compute the �-independent 
SERR-based mode mixity defined in Sect. 4.2. 
Equation 48 is used to determine the �-indepen­

' dent quantity <1, with the normalizing length 
arbitrarily selected as lG = 0.004 mm. G value is 
obtained from Table 6. The �-independent SERRs, 
G ' I and G ' II, are obtained from Eq. 49. From Eq. 
50, we obtain consistent values of �-independent 
SERR-based mode mixity, ψG

' . The  �-indepen­
dent SERRs and �-independent SERR-based 
mode mixity are tabulated in Table 7. The results 
are similar for all cases, Fig. 5b, with the average 
value of ψG

' (lG = 0.004) = 78.84◦ . 
Next, SIF-based mode mixity is obtained from 

the components of the SERR as discussed in Sect. 
4.3. From numerical integration of Eq. 27b we ob­
tain 
( 

l 
)2iε 

A1 ≈1.5327+ i0.2871 =1.5594(arg 10.61◦) 

0.1852i= 1.5594e , 

where we set the reference length to be the thick­
ness of the upper layer l = h1 = 2 mm. Equations 
29a and 29b are used to obtain quantities Ic and Is. 
Equation 39 yields I0 = 1.5642. The mode mixity is 
obtained from Eq. 52 and the results are tabulated 
in Table 8. For the smallest crack extension size, we 
get ψ (l = 2) = 44.33◦ as shown in Fig. 5b. 

Lastly, SIF-based mode mixity is obtained using 
the complex strain energy release rate discussed in 
Sect. 4.4. We use Eqs. 55 and 56 to obtain the com­
plex strain energy release rate numerically. The 
argument of complex quantity A1 is available from 
numerical integration of Eq. 27b. The reference 
length l selected is the thickness of upper layer 
(h1 = 2 mm). The SIF-based mode mixity ψ is 
obtained using the Eq. 57. The mixity values are 
very close for all cases and tabulated in Table 9 
with average value ψ (l = 2) = 45.70◦ . 

5.2.2 Mode mixity from crack face displacement 
method 

As for the previous benchmark problem, we will 
compare the SIF-based mode mixity determined 
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Table 7 �-independent SERR-based mode mixity ψ ' Gfor four-point flexure specimen 

� 
(mm) 

2ε ln 
( 

lG 
� 

) 

(deg) 

<1 

10−2 (Nmm−1) 
<3 

10−3 (Nmm−1) 
< ' 1 

10−2 (Nmm−1) 
G ' I 

10−3 (Nmm−1) 
G ' II 

10−2 (Nmm−1) 
ψ ' G (lG = 0.004) 
(deg) 

0.004 
0.002 
0.0008 
0.0004 

0.000 
−5.326 
−12.367 
−17.693 

−2.1484 
−2.2222 
−2.2890 
−2.3147 

8.8415 
6.7804 
4.0326 
1.8436 

−2.1484 
−2.1497 
−2.1495 
−2.1492 

1.7475 
1.7345 
1.7365 
1.7395 

4.4716 
4.4728 
4.4726 
4.4724 
Average 

78.82 
78.86 
78.85 
78.84 
78.84 

Table 8 SIF-based mode mixity ψ from the components of the SERR for four-point flexure specimen 

� 
(mm) 

2ε ln 
( 
� 
l 

) 

(deg) 
Ic Is κ  ψ  (l = 2) 

(deg) 

0.004 
0.002 
0.0008 
0.0004 

47.76 
53.08 
60.12 
65.44 

0.81779 
0.69116 
0.51463 
0.37594 

1.32771 
1.39782 
1.47199 
1.51336 

0.9856, 0.3924 
0.9888, 0.5019 
1.0016, 0.6574 
1.0237, 0.7817 

45.42 
45.32 
44.95 
44.33 

Table 9 SIF-based mode mixity ψ from complex energy � for four-point flexure specimen 

� 
(mm) 

ε ln 
( 
� 
l 

) 

(deg) 
χc 
(deg) 

φc−d 
(deg) 

ψ (l = 2) 
(deg) 

0.004 
0.002 
0.0008 
0.0004 

23.88 
26.54 
30.06 
32.72 

78.91 
81.48 
84.95 
87.54 

78.72 
81.55 
85.06 
87.90 
Average 

45.67 
45.72 
45.68 
45.74 
45.70 

from the VCCT calculations with values from the 
crack face displacement method, Eqs. 72 and 73. G 
is obtained numerically from Table 6. We get best 
fit of the left hand side and the right hand side for 
Eq. 72 at r = 0.002 mm. Here, we have φ = 79.49◦ . 
Thus ψ (l = 2) = 45.31◦ . 

5.2.3 Mode mixity from the analytical solution 

The mode mixity can be obtained analytically using 
the local stress field near the crack tip. The solution 
for stress based mode mixity for a long, slender bi­
material beam with an interface crack subjected to 
mixed mode loading has been found using a combi­
nation of non-dimensional geometric parameters, 
bimaterial parameters, and a loading parameter to 
account for any general case (Hutchinson and Suo 
1992; Suo and Hutchinson 1990). For the four-point 

/
flexure specimen (Fig. 4), we define η = h1 h2 
as the thickness ratio of upper layer and bottom 
layer; � = 1 ρ = E ' E2 

' as the ratio of effective /
/

1

/
( /

modulus; 1 U = 1 + �η 4 + 6η + 3η2) 
, 1 V = ( √ ( )

12 1 + �η3) 
and sin γ = UV 6�η2 (1 + η) as 

geometric parameters. 
The mode mixity defined in Eq. 8a can be ob­

tained in terms of ω, a real angular quantity which 
depends only on η, α and β, and can be chosen in 
the range 0 ≤ ω ≤ π/2. The dimensionless function 
ω(η,α,β) can be obtained from tables (Suo and 
Hutchinson 1990). The mode mixity is obtained as 

λ sin ω − cos (ω + γ )
tan ψ = where 

λ cos ω + sin (ω + γ ) 
J 

Ph1 V 
λ = . (76) 

M U
In Eq. 76, λ is a load parameter, and P and M 
are the effective forces and moments, respectively 



(Hutchinson and Suo 1992; Suo and Hutchinson 
1990). Here, η = 0.4; � = 10; ω = 52.72. Thus, 
P = 33.90 N/mm, M = 16.14 Nmm/mm; 1/U = 
28.52, 1/V = 19.68; which gives γ = 34.56 and 
λ = 5.057. Therefore, we get ψ (l = 2) = tan−1 

(0.9789) = 44.39◦, which again is similar to the 
values obtained from the VCCT, above. 

5.2.4 Phase shift between ψ (l = 2) and 
' ψG (lG = 2) 

Using the SIF-based mode mixity results obtained 
from the oscillating SERRs in Sect. 5.2.1, we have 
ψ (l = 2) = 44.33◦. Further, from the results for 
the �-independent SERR-based mode mixity, and 
using Eq. 69b, we have ψG

' (lG = 2) = 54.96◦. Thus, {
the phase shift, computed as ψG

' (lG = l) 
−ψ (l)} is 10.63◦, compared with approximate 
value of 9.12◦ based on Eq. 70. The phase shift 
is illustrated in Fig. 5b. 

5.2.5 Size of the contact zone 

For an interface crack in the four-point flexure 
specimen, the contact zone can be obtained from 
Eq. 14. Using ψ (l = 2) = 44.39◦ from the ana­
lytical solution of Eq. 73, we get KII = 0.9789 
KI. We obtain the size of the contact zone to be 
r0 = 1.91 nm. 

5.2.6 Synopsis of results for the four-point flexure 
test 

As for the bimaterial plate, the values of the SIF-
based mode mixity obtained from Eq. 51 [using 
oscillating SERRs] and those obtained using Eq. 
57 [based on complex strain energy release rate] 
are similar. Moreover, the crack face displacement 
method and the analytical solution give similar re­
sults of the mode mixity (Table 5). 

Figure 5B illustrates various mode mixities 
introduced in Sect. 4. Whereas ψG depends on 
�, the modified SERR-based mode mixity ψG 

' ap­
pears independent of �. Setting the normalizing 
length equal to the reference length we have 

' ψG (lG = 2) = 54.96◦. The SIF-based mode mix­
ity is obtained form the Eq. 51, ψ (l = 2) = 44.33◦ . 

The phase shift (10.63◦) between ψG 
' and ψ when 

lG ≡ l is indicated in Fig. 5B. 

6 Discussion 

6.1 Accuracy of SIF-based mode mixity using 
VCCT 

SIF-based mode mixity results for two interface 
crack specimens—an infinite bimaterial plate and 
a four-point flexure specimen—were obtained in 
Sect. 5 using the VCCT. As summarized above, the 
values of the SIF-based mode mixity obtained from 
Eq. 51 using oscillating SERRs, are identical to the 
previous approaches (Toya 1992; Chow and Atluri 
1995; Sun and Qian 1997). Furthermore, the SIF-
based mode mixity values obtained using Eq. 57 
based on the complex strain energy release rate 
(Bjerken and Persson 2001) were similar and inde­
pendent of crack increment size, �. The mode 
mixities obtained using these two methods were 
in addition compared to values based on the crack 
face displacement method and analytical solutions, 
and all methods were seen to give similar results 
(Table 5). 

The accuracy of the mode mixity calculations 
will now be investigated through the complex stress 
intensity factors, KI and KII. These can be obtained 
using Eq. 6, where the SIF-based mode mixity, ψ , 
is available from VCCT, and |K| is obtained using 
the total strain energy release rate G, Eq. 12. The ( )
error involved is computed as ( KI − KI 

∞ / |K| for 
KI and as KII − K∞) 

/ |K| for KII, where KI 
∞ andII 

KII 
∞ are the analytical solutions. All errors are less 

than 3%, Table 10. The errors of KI and KII obtain 
from the VCCT using Eqs. 51 and 57, are com­
parable to those reported previously (Matos et al. 
1989; Chow and Atluri 1995; Sun and Qian 1997; 
Bjerken and Persson 2001). 

For both specimens, the mode mixity values ob­
tained using our Eqs. 51 and Eq. 57 by Bjerken 
and Persson (2001) are very close, with deviations 
of less than 1.5◦ (Table 5). The method using Eq. 
51 utilizes the expressions for oscillating SERRs 
in terms of complex quantities and is rigorous in 
mathematical details. The method using Eq. 57 uti­
lizes complex strain energy release rate, is much 
simpler, and can provide reliable mode mixity val­
ues with an acceptable error. 

http:usingEq.57
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Table 10 Complex stress intensity factor and associated relative error for from the four methods investigated 

Bimaterial plate specimen Four-point flexure specimen 
β = 0.3171, E∗ = 5.2032 GPa, β = 0.2076, E∗ = 20.4038 GPa, 

1 1G = 14.1547 Nmm− , |K| G = 4.6463(10−2) Nmm− , |K|
3/2 3/2= 9.0478 Nmm− , l = 10 mm = 0.9947 Nmm− , l = 2 mm  

KI (% error) KII (% error) KI (% error) KII (% error) 

Equation 51 based on VCCT 
using oscillating SERRs 
Equation 57 based on VCCT 
using complex strain energy re­
lease rate 
Crack Face Displacement 
Method (Matos et al. 1989) 
Analytical Solution (Rice and 
Sih 1965; Hutchinson and Suo 
1990) 

8.9020 (0.51%) −1.6178 (2.59%) 0.7115 (0.07%) 0.6951 (−0.07%) 

8.9034 (0.52%) −1.6100 (2.67%) 0.6947 (−1.62%) 0.7119 (1.62%) 

8.8705 (0.16%) −1.7822 (0.77%) 0.6995 (−1.14%) 0.7109 (1.52%) 

8.8563 −1.8518 0.7108 0.6958 

6.2 Implications of contact zone 

The contact zone in the two benchmark problems 
considered in Chapter 5 are of the orders of nano­
meter, which is small compared to material length 
scale dimensions, e.g., the grain size. In general, 
the contact zone is very small. For example, for the 
bimaterial plate subjected to uniform tension and 
with an interfacial crack length of 2a = 10 mm, the 
contact zone size is 6.04(10−71)m, 2.27(10−16)m, 
1.51(10−9)m, 2.83(10−7)m for  ε = −0.01, −0.05, 
−0.1, −0.15, respectively [using Eq. 75 ]. This agrees 
with previous observations (e.g., Rice 1988; Sun 
and Qian 1997; Borovkov et al. 2000). Hence, the 
contact zone is much smaller than the k-annulus 
region, which is often scaled by the smallest dimen­
sion of the specimen or crack length 
(Wang and Suo 1990; Becker 1997). Thus, for mod­
erate values of the bimaterial constant, the inter­
facial fracture mechanics solution, based on the 
k-annulus concept is reasonable. We note that for 
in-plane shear load, the contact zone size is larger 
than the values considered here, but remains small 
compared to other material dimensions. 

Thus, the solution based on the “open crack 
model” (Williams 1959; Rice and Sih 1965) can be 
adopted to characterize interface crack singularity 
for moderate values of ε. However, due to the oscil­
latory nature of the solution, the open crack model 
is unable to infer the physical nature of (stress­
based) mode mixity close to the crack tip, as a suit­
able reference length in the k-annulus region that 

governs the physical fracture process is not evident 
(Hutchinson and Suo 1992). However, (as noted in 
Sect. 3.3) according to the contact model (Comni­
nou 1977), the crack grows in mode II inside the 
contact zone and its vicinity, although macroscop­
ically the crack grows in mixed mode. 

For material combinations with large mismatch 
vales, the contact zone can be larger than the atomic 
spacing, and the crack may grow in pure mode II 
for all cases of loading. Consequently, the fracture 
toughness of such bimaterial may be constant, as 
mode II is always expected to control the crack 
growth. 

7 Concluding remarks 

This paper reviews, unifies and extends methods 
characterizing interfacial fractures, with particular 
application on evaluating mode mixity using the fi­
nite element based virtual crack closure technique 
(VCCT). 

It is well established that the complex stress 
intensity factors (SIFs), KI and KII, can be used 
as the characterizing parameters for an interface 
crack singularity, i.e., the same SIFs in two different 
cracked bodies implies the same stress distribution 
close to the crack tip. The SIF-based mode mixity 
can be obtained from the oscillating components 
of the strain energy release rate (SERR) using the 
VCCT, either from our Eq. 51, or from past works 
(Toya 1992; Chow and Atluri 1995; Sun and Qian 

http:reasonable.We
http:0.6995(�1.14
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http:0.6951(�0.07


1997). We show that all of these approaches are 
identical and can be derived from one another. Our 
Eq. 51 is—in our opinion—significantly easier to 
use than the alternative methods referenced. Fur­
thermore, we compare these methods to a differ­
ent approach developed by Bjerken and Persson 
(2001) and show that this method gives acceptable 
values of mode mixity with significantly less com­
putational efforts. Thus, either our Eq. 51 or the 
method presented by Bjerken and Persson (2001), 
as given in Eq. 57 may be the preferred meth­
ods to determine the SIF-based mode mixity from 
VCCT. 

Since the VCCT directly yields a decomposed 
form of strain energy release rate, it would be 
convenient to use these two components directly 
to determine mode mixity. However, these com­
ponents cannot directly be linked to mode I and 
mode II for an interface crack. Indeed, the com­
ponents—and the SERR-based mode mixity—will 
depend on the element size at the crack tip, that 
is, to the crack extension size, � . Thus, the depen­
dence on element size is referred to as “�-depen­
dent SERR-based mode mixity.” Evidently, this is 
not a useful design parameter. However, a “�­
independent SERR-based mode mixity” can be 
defined by introducing a “normalizing length 
parameter” (Beuth 1996). We show that when the 
reference length (used for the SIF-based mode 
mixity) and the normalizing length (used for �­
independent SERR-based mode mixity) are equal, 
the two mode mixities are only shifted by a phase 
angle, depending on the bimaterial parameter ε. 
Thus, even though �-independent SERR-based 
mode mixity appears to be a mathematical quan­
tity with no physical meaning, we believe it can be a 
useful parameter if care is taken in its 
interpretation. 
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