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Compromising Anonymous Communication 
Systems Using Blind Source Separation 

YE ZHU 

Cleveland State University 

and 

RICCARDO BETTATI 

Texas A&M University 

We propose a class of anonymity attacks to both wired and wireless anonymity networks. These 

attacks are based on the blind source separation algorithms widely used to recover individual 

signals from mixtures of signals in statistical signal processing. Since the philosophy behind the 

design of current anonymity networks is to mix traffic or to hide in crowds, the proposed anonymity 

attacks are very effective. 

The flow separation attack proposed for wired anonymity networks can separate the traffic in 

a mix network. Our experiments show that this attack is effective and scalable. By combining the 

flow separation method with frequency spectrum matching, a passive attacker can derive the traffic 

map of the mix network. We use a nontrivial network to show that the combined attack works. 

The proposed anonymity attacks for wireless networks can identify nodes in fully anonymized 

wireless networks using collections of very simple sensors. Based on a time series of counts of 

anonymous packets provided by the sensors, we estimate the number of nodes with the use of 

principal component analysis. We then proceed to separate the collected packet data into traffic 

flows that, with help of the spatial diversity in the available sensors, can be used to estimate the 

location of the wireless nodes. Our simulation experiments indicate that the estimators show high 

accuracy and high confidence for anonymized TCP traffic. Additional experiments indicate that the 

estimators perform very well in anonymous wireless networks that use traffic padding. 
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1. INTRODUCTION 

One of the key premises in anonymity systems has been that large crowds pro­
tect the anonymity of individuals. Anonymity measures rely on users being able 
to “hide in a crowd,” and the larger the crowd, the easier it is for the individual 
to hide. This tenet has been underlying early formulations of anonymity metrics 
(such as the anonymity set size in Kesdogan et al. [1998]) and implicitly most 
newer metrics as well, such as Serjantov and Danezis [2002] and Diaz et al. 
[2002]. Empirical results support this assumption, given that larger numbers 
of participants naturally decrease the signal-to-noise ratio of the footprint of 
any individual. 

In this article we propose data preconditioning methods that allow to parti­
tion the set of participants and, therefore, significantly increase the footprint of 
individuals. We formulate these pre-conditioning methods as a class of attacks, 
and we apply them to on both wired and wireless anonymity networks. We use 
blind source separation (BSS), a methodology from statistical signal process­
ing to recover unobserved “source” signals from a set of observed mixtures of 
the signals. These attacks can be launched against wired anonymous commu­
nication networks to unmix traffic and thus affect traditional anonymity such 
as sender anonymity, receiver anonymity or sender/receiver anonymity. These 
attacks can also be launched against wireless anonymous communication net­
works to isolate and identify participants and to compromise location privacy. 

1.1 Flow Separation Attack on Wired Anonymous Communication Networks 

In this article, we discuss flow separation, which aims at separating (as opposed 
to identifying) flows inside a network, based on aggregate traffic information 
only. Once flows have been separated into single flows or small groups of flows, 
subsequent frequency spectrum matching Zhu et al. [2004] or time domain 
cross-correlation [Levine et al. 2004] can then easily determine additional in­
formation about flows, such as the path taken, the ingress and egress points 
into and out of the network. 

Once flows have been separated, information about the traffic content of the 
flows can be inferred as well. As a practical example, Dusi et al. [2008] describe 
the difficulty of classifying traffic over SSH tunnels when multiple flows are 
multiplexed over the same tunnel. Later in this article, we will illustrate how 
flow separation yields representations of flows that highly correlate to the ex­
isting flows. This allows the classification mechanisms described by Dusi et al. 
[2008] to be applied effectively on aggregates of tunneled flows. 

We empirically to show that flow separation attacks are effective for both 
single mixes and mix networks. We also show that further attacks can make 
use of the information about the separated flows and so be very effective in 
reducing anonymity. We analyze the effect of multicast/broadcast traffic on the 



flow separation attack. In contrast to intuition, our analysis and experiments 
show that the presence of multicast/broadcast traffic significantly helps the 
attacker to more precisely separate the flows. 

1.2 Location Privacy Attacks on Wireless Anonymous Communication Networks 

With the increasing popularity of 802.11-style wireless networks (WLANs), 
both in infrastructure and in ad hoc mode, location privacy issues in such net­
works and in ubiquitous computing environments in general have received 
great attention. Much recent work has focused on the identification of location 
privacy risks associated with the use of WLANs and on the implications of 
weak location privacy (e.g., Cuellar et al. [2004]). Locating a node in a wireless 
network typically requires first to identify the node (where some identifier is 
associated with the node, without necessarily disclosing the node’s user iden­
tity) before proceeding to the proper geographic location. In densely populated 
networks, node location is difficult without prior identification, since it is im­
possible to properly attributed traffic to nodes and so to keep the nodes apart. 
In sparsely populated networks, the identification step is trivial and can be 
skipped altogether. 

Appropriate preconditioning of collected traffic data using flow separation 
allows an attacker to compromise the location privacy in a densely populated, 
perfectly anonymized wireless network. The traffic data could be collected by 
very simple sensors, which only need to monitor packets at MAC level or above, 
do not require directional capabilities, do not need to distinguish packets or re­
late network packets to senders or receivers, only require coarse time synchro­
nization support, and require only low-bandwidth links for intersensor com­
munication. (We do not need support for signal-strength measurement on the 
sensors either.) Such collections of sensors could be realized by a number of 
WLAN users that collude and exchange information, or by a separate infras­
tructure of sensor nodes, such as a sensor network. Given these limited required 
capabilities, we use the sensors to count packets over intervals of given length 
and to forward the resulting time series of packet counts for analysis to some 
central location. No information is available about how many nodes are present 
and sending in the area, and the anonymity measures in the WLAN prevent 
the sensors from distinguishing packets sent from different nodes. 

Our experimental evaluations using a widely accepted packet-level network 
simulator (ns-2) indicate that (i) the proposed algorithms estimate the node 
density with high accuracy and that (ii) they estimate node locations with both 
high accuracy and high confidence. The majority of experiments is performed 
with the intent to simulate naturally occurring (i.e., TCP) traffic over typical 
anonymizing wireless networks, such as ANODR [Kong and Hong 2003]. In 
order to show the effectiveness of the approach, we also simulate a network 
that uses constant-rate padding of traffic on all nodes. Our experiments indicate 
that traffic padding is largely useless in this setting: It has no impact on the 
effectiveness of our estimators for both node density and node location. 

We consider these results significant, since they indicate that it is impossible 
to maintain location privacy in 802.11-style networks against colluding WLAN 



users or networks of sensors that use simple off-the-shelf technology. Our exper­
iments show that crowds are unable to hide individuals in WLAN settings. BSS 
algorithms can easily and effectively separate packets from different senders, 
based on packet-count time series only. 

1.3 Statistical Methods for Flow Separation 

The preconditioning methods described in this article rely on BSS [Jutten and 
Herault 1991], which was originally developed to solve variations of the cocktail 
party problem, where the goal is to extract one speaker’s voice signal given a 
mixtures of voices, presumably at a cocktail party. BSS algorithms solve the 
problem by taking advantage of the independence between voices from different 
speakers. We will show how BSS can be used in wired networks to “unmix” 
traffic flows Similarly, in wireless networks, we can use BSS algorithms to 
separate traffic from different wireless nodes. The separated traffic is not in a 
form that can be directly associated with any sender node. However, we take 
advantage of spatial diversity in the collected data to reconstruct the path of a 
flow through a mix network, or the the sender location in a wireless network, 
based on the separated traffic. 

While the number of “mixed flows” through a wired mix are known (assuming 
one knows the number of ports of the mix router) the number of senders in a 
wireless network is typically unknown. In Zhu and Bettati [2007], we describe 
how we use principal component analysis (PCA) to estimate the number of 
sending nodes. 

1.4 Structure of the Article 

The remainder of this article is organized as follows: Section 2 reviews the re­
lated work. In Section 3, we introduce the BSS algorithms. In Section 4, we in­
troduce the flow separation attack for the wired anonymity networks. Section 5 
describes the attacks to compromise location privacy in wireless anonymity 
networks. In Sections 6 and 7, we use ns-2 simulation experiments to show 
the effectiveness of the flow separation attack. We evaluate the flow separa­
tion attack against a nontrivial mix network in Section 8. Section 9 evaluates 
the performance of location privacy attacks for wireless anonymity networks. 
Section 10 discusses countermeasures for flow separation attack and further 
attacks on location privacy. We conclude this article in Section 11. An extended 
version of this article, with additional information about experimental results, 
is available in form of a companion technical report [Zhu and Bettati 2007]. 

2. RELATED WORK 

2.1 Traditional Wired Anonymity Networks and Anonymity Attacks 

Reviving Chaum’s idea to use mixes to reroute messages, Helsingius [1996] im­
plemented the first Internet anonymous remailer, which is a single-application 
proxy and replaces the original email’s source address with the remailer’s ad­
dress. Hughes and Finney [Parekh 1996] built the cypherpunk remailer, a dis­
tributed mix network with reply functions and encryption. G ̈ ¨ulcu and Tsudik 



[1996] developed a relatively complete anonymous email system, called Ba­
bel. Mixminion’s design [Danezis et al. 2003] considers a large set of attacks 
that researchers have found [Serjantov et al. 2002; Berthold and Langos 2002; 
Berthold et al. 2000; Raymond 2001]. 

Low-latency anonymity systems have been developed for flow-based traffic 
in the Internet. A typical example is Tor [Dingledine et al. 2004], the second-
generation onion router, developed for circuit-based low-latency anonymous 
communication. 

Recently, ad hoc anonymizing networks have been discovered to hide the com­
munication to command-and-control nodes in botnets: The Storm [Porras et al. 
2007] botnet, for example, is assumed to use multiple layers of Nginx proxies to 
hide the command-and-control infrastructure from view. An additional layer of 
Nginx nodes then act as reverse proxies and uses fast-flux to hide the location 
of the command server despite using hard URLs for the bot nodes when “calling 
home” to the controller. The Storm command-and-control system is an example 
of effective server hiding, made possible by redirection mechanisms in combi­
nation with jurisdictional boundaries. As botnets evolve, it is to be expected 
that they will develop more sophisticated anonymization protocols, which will 
take advantage of the very large number of bot nodes available. 

Exploiting the premise that communication patterns are difficult to effi­
ciently hide, a large amount of work has addressed the effectiveness of message-
based anonymity attacks [Serjantov et al. 2002], a class of flow-based anonymity 
attacks have been proposed in the literature. Examples are intersection attacks 
[Danezis and Serjantov 2004], timing attacks [Levine et al. 2004], Danezis’s 
attack on continuous mixes [Danezis 2004], and the flow correlation attack 
[Zhu et al. 2004]. The timing attack [Levine et al. 2004] uses time domain cross-
correlation to match flows given the packet timestamps of the flow. Danezis’s 
attack on the continuous mix [Danezis 2004] takes advantage of the fact that 
packets are independently delayed at the mix, and the effect of the mix can 
be modeled as a convolution on the packet times. The flow correlation attack 
[Zhu et al. 2004] employs statistical methods to detect TCP flows in aggregate 
traffic. The flow correlation attack can achieve high detection rates for all the 
mixes described in Serjantov et al. [2002] and for continuous mixes. The flow 
separation attack proposed in this article belongs to the flow-based anonymity 
attacks. 

2.2 Wireless Anonymity Networks and Location Privacy 

Following the realization that serious privacy issues are at stake when location 
information is accessible in many pervasive applications and wireless networks 
(see, e.g., the work of the IETF Working Group on Geographic Location/Privacy 
(geopriv) [Cuellar et al. 2004]), several communication systems to preserve 
anonymity and location privacy in ad hoc and infrastructure-based wireless 
networks have been proposed. ANODR [Kong and Hong 2003] protects route 
anonymity by an onion-based encryption and routing protocol. The data trans­
mission in ANODR is based on broadcast, and identity disclosure is prevented 
by the use of broadcast MAC addresses. MASK [Zhang et al. 2005] also provides 



a solution for anonymous routing in wireless ad hoc network. In particular, 
forging packets and inserting dummy packets are proposed to counter traffic 
analysis. For infrastructure-based networks, Gruteser et al. [2003] proposed 
the use of disposable MAC addresses in order to prevent tracking of mobile 
hosts. 

Numerous articles have been published on locating wireless nodes. Many 
of them are based on the characteristic of physical signals, such as Received 
Signal Strength (RSS) [Bahl and Padmanabhan 2000], Angle of Arrival (AOA) 
[Niculescu and Nath 2004], and time of arrival (TOA) [Guvenc et al. 2003]. 
Complex processing methods on collected data are needed to deal with the 
physical signal’s nonlinearity, noise, and the complex correlations caused by 
multipath effects, interference, and absorption. Elnahrawy et al. [2004] point 
out a number of fundamental limits associated with the use of signal strength 
and claim that these limits are unlikely to be transcended. 

Senders can easily counter location estimation attacks based on signal 
strength by modulating the transmission power. This has been proposed in 
Whisper [Cai et al. 2005]. Location privacy attacks using AOA data assume 
that sensors have directional capabilities, which adds greatly to the cost of the 
sensor network. One objective of this article is to illustrate how appropriate 
preconditioning of the collected traffic data renders most of current anonymity 
methods for wireless networks, such as encryption, MAC address hiding, sig­
nal power fluctuations, link padding, and others are ineffective in 802.11-style 
setting. For this, we show that we need not make use of information that can 
be hidden by anonymity measures, such as header data, sender or receiver 
information, packet data, signal strength, or directional information. 

In general, schemes that rely on physical-level, analog signals require large 
volumes of data to be transfered over the wireless sensor network for further 
analysis. In comparison, the schemes proposed in this article rely on highly 
aggregated packet-count data which can be easily propagated across a low-
bandwidth infrastructure. Spatial and temporal redundancy of the packet-
count data from different sensors can be exploited to further reduce traffic 
volume by using appropriate compression methods. 

3. BLIND SOURCE SEPARATION 

BSS is a methodology in statistical signal processing to recover unobserved 
“source” signals from a set of observed mixtures of the signals. The separation 
is called “blind” to emphasize that the source signals are not observed and that 
the mixture is a black box to the observer. While no knowledge is available about 
the mixture, in many cases, it can be safely assumed that source signals are 
independent. A very nice introduction to the statistical principles behind BSS 
is given in Cardoso [1998]: In its simplest form, the BSS model assumes n inde­
pendent signals F1(t), . . . , Fn(t) and n observations of mixture O1(t), . . . , On(t) Lnwhere Oi(t) = j=1 aij  F j (t). The goal of BSS is to reconstruct the source sig­
nals F j (t), using only the observed data Oi(t), the assumption of independence 
among the signals F j (t). Given the observations Oi(t), BSS techniques esti­
mate the signals F j (t) by maximizing the independence between the estimated 



signals. The common methods employed in BSS are minimization of mutual 
information [He et al. 2000], maximization of nongaussianity [Hyvarinen and 
Oja 1997] and maximization of likelihood [Pham et al. 1992]. 

In our experiments, we use a powerful BSS algorithm proposed in Cruces 
and Cichocki [2003]. This algorithm can jointly optimize several statistics of 
the same order, and it combines advantages of other effective techniques, such 
as Fast-ICA [Hyvarinen and Oja 1997] and SOBI [Belouchrani et al. 1997]. The 
algorithm has been shown to perform well when the amount of data available 
is small. 

4. FLOW SEPARATION IN MIX NETWORKS 

4.1 Network Model and Threat Model 

Mix and Mix Network. A mix is a relay device for anonymous communica­
tion. A single-mix network can achieve some level of communication anonymity: 
The sender of a message attaches the receiver address to a packet and encrypts 
it using the mix’s public key. Upon receiving a packet, the mix decrypts the 
packet using its private key. Different from an ordinary router, a mix usually 
will not relay the received packet immediately. Rather, it will attempt to perturb 
the flows through the mix in order to foil an attacker’s effort to link incoming 
and outgoing packets or flows. It does this, typically, in three ways: First, it re-
encrypts the packet to foil attacks that attempt to match packets in the payload 
data domain. Then, it reroutes the packet to foil correlation attacks that rely 
on route traceback. Finally, it perturbs the flows in the time domain through 
batching, reordering, and link padding. Batching collects several packets and 
then sends them out in a batch. The order of packets may be altered as well. 
Both these batching techniques are important in order to prevent timing-based 
attacks. Different batching and reordering strategies are summarized in Ser­
jantov et al. [2002] and Zhu et al. [2004]. 

Most low-latency anonymity systems do not employ batching, reordering, 
and padding strategies. For example, Onion Router [Goldschlag et al. 1999], 
Crowds [Reiter and Rubin 1998], Morphmix [Rennhard and Plattner 2002], P5 
[Sherwood et al. 2002], and Tor [Dingledine et al. 2004] do not use any batching 
and reordering techniques. 

A network may consist of multiple mixes that are interconnected by a net­
work such as the Internet. A mix network may provide enhanced anonymity, 
as payload packets may go through several mixes so that if one mix is com­
promised, anonymity can still be maintained. In the following, we will use the 
term mix to mean either single-node mixes, or mix cascades, or networks of 
mixes. 

Threat Model. We assume a passive adversary whose capabilities are sum­
marized as follows. 

(1) The adversary passively observes a number of input and output links of 
a mix or among a collection of mixes, collects the packet arrival and de­
parture times, and analyzes them. This type of attack can be easily staged 



on wired and wireless links [Howard 1998] by a variety of agents, such as 
governments or malicious ISPs. 

(2) For simplicity of discussion, we assume a partially global adversary, that 
is, an adversary that has observation points on a subset of links between 
mixes in the mix network. While this assumption seems overly strong, it is 
not. An attacker with access to only a small number of points will naturally 
aggregate mixes for which it has no observation points into super-mixes. 

(3) The adversary cannot correlate (based on packet timing, content, or size) an 
individual packet on an input link to another packet on an output link based 
on content and packet size. This is prevented by encryption and packet 
padding, respectively. 

(4) We focus on mixes that operate as simple proxies. In other words, no batch­
ing or reordering is used. Link padding (with dummy packets) is not used 
either. This follows the practice of some existing mix networks, such as Tor 
[Dingledine et al. 2004], and other obfuscation mechanisms, such as SSH 
tunnels and the cascaded Nginx proxies in the Storm botnet. 

(5) Finally, the adversary aims to recover the a priori unknown individual flows 
from the aggregate of indistinguishable traffic. Once a flow or a number of 
flows have been recovered, the attacker can proceed to either classify the 
content of the flow, or to compute the path of the flows, or the end-to-end 
communication matrix, or other measures of interest. 

4.2 Flow Separation 

In this section, we will first define the problem in the context of BSS and then 
describe how to apply the flow separation method in a wired mix network. 

4.2.1 Flow Separation as a BSS Problem. We define a flow to be a series of 
packets that are exchanged between a pair of hosts. Such a flow can be a single 
TCP or UDP connection, or can be carried by (striped over) several connections, 
both UDP or TCP. In this article, we limit ourselves to flows whose packets all 
flow along a single path. In other words, while packets from different flows can 
take different paths, all the packets from a single flow follow the same path. We 
define an aggregate flow at the link-level to be the sum of the packets (belonging 
to different flows) on the link. We define the aggregate flow at mix-level to be 
the sum of packets through the same input and output port of a mix. Unless 
specified otherwise, in the remaining of this article, the word “flow” means 
“mix-level aggregate flow” for brevity. 

In this article, we will show that for the attacker who tries to break the 
anonymity of a mix, it is very helpful to separate the flows through the mix 
based on the observation of the traffic. The separation of the flows through the 
mix can recover the traffic pattern of individual flows or small groups thereof. 
This fine-granularity information can be used to increase the effectiveness of 
further analysis, such as the frequency spectrum matching attack described in 
Section 4.2.2 or the time domain cross-correlation attack [Levine et al. 2004] 
for flow reconstruction, or application characterization over encrypted tunnels 
[Dusi et al. 2008], or other flow confidentiality situations. 



Fig. 1. An example for Flow Model. 

In this article, we are interested in the traffic pattern carried in the time se­
ries of packet counts during a sequence of identical-length intervals of length T . 

1 1 1For example, in Figure 1, the attacker can get a time series O1 = [o1, o2, . . . , o ]n
of packet counts by observing the link between Sender S1 and the mix. We use 
n to denote the sample size in this article. The attacker’s objective is to recover 
the packet count time series Fi = [ f1 

i , f2 
i , . . . , f i] for each flow. For the simplest n 

case, we assume that (i) there is no congestion in mix and that (ii) the time se­
ries can be synchronized. (We will relax both assumptions in later sections.) 
In the example of Figure 1, the time series F1 is contained in both time series 
O1 and O3 that is, O1 = F1 + F2, O3 = F1 + F3. In general, for a mix with j 
input ports, k output ports, and m mix-level aggregate flows, we can rewrite 
the problem in vector-matrix notation,

  TO1, O2, . . . , O j +k = A( j +k)×m [F1, F2, · · · Fm]T (1) 

where A(j+k)×m is called mixing matrix in the BSS problem. Since the aggre­
gate flows through the mix are independent from each other—they come from 
different sources—we can use any of the methods mentioned in Section 3 to 
solve the problem. Even the flows from a single host, such as F1 and F2, can 
be regarded as independent as they follow different paths and are controlled 
by different sockets. This independence assumption is of course only valid as 
long as Sender S1 is not heavily overloaded, since otherwise one flow would 
influence the other. 

In the following, we need to keep in mind that flow separation often is not 
able to separate individual flows. Rather, mix-level aggregates flows that share 
the links at the observation points form what we call the minimum separable 
unit. 

Basic BSS algorithms require the number of observations to be larger than 
or equal to the number of independent components. For flow separation, this 
means that j +k ≥ m, where j and k denote the number of observations at the 
input and output of the mix, respectively, and m denotes the number of flows. 
Advanced BSS algorithms [Hyvarinen and Inki 2002] target overcomplete bases 
problems and can be used for the case where m > j +k. But they usually require 
that m, the number of independent flows, be known. Since all the mix traffic is 
encrypted, and all packets padded to the same length, it is hard for the attacker 
to estimate m. We assume that m = j + k. The cost of the assumption is that 



some independent flows can not be separated, that is, they remain mixed. We 
will see that this is not a severe constraint, in particular not in mix networks 
where flows that remain mixed in some separations can be separated using 
separation results in neighboring mixes. 

Unless there is multicast or broadcast traffic through the mix, the j + k 
observations will have some redundancy, because the summation of all the ob­
servations on the input ports are equal to the summation of all the observations 
on the output ports. In other words, the row vectors of the mixing matrix are 
linearly dependent. Again, the cost of the redundancy is that some independent 
flows are not separated. 

The flow estimation generated by BSS algorithms is usually a scaled ver­
sion of the actual flow (of its time series, actually). Sometimes, the estimated 
flow may be of different sign than the actual flow. Scaling does not affect the 
frequency components of the time series, so frequency matching can be used to 
further analyze the generated data. 

Furthermore, since the elements of the estimated mixing matrix are not 
binary, it is not straightforward to tell the direction of each aggregate flow. 
Some heuristic approach can be used, but we leave this to further research. 

When monitoring points can be placed at some locations inside the network, 
separation results at different locations can be compared, and common sepa­
rated components can be identified if such components exist. This can be used 
to reconstruct the path of flows or to simply strengthen the confidence in the 
results of the flow separation step. 

4.2.2 Frequency Matching Across Neighboring Mixes. The result of flow 
separation is a set of mix-level aggregate flows that have been determined to 
traverse the mix. Each separated aggregate flow is identified by a time se­
ries of packet counts. As pointed out earlier, some of these aggregate flows 
may represent multiple actual flows that could not be separated. Aggregate 
flows can be further separated by comparing BSS results across multiple 
mixes. 

Frequency spectrum matching has shown to be particularly effective to fur­
ther analyze the traffic. The rationale for the use of frequency matching is 
fourfold: First, the dynamics of a flow, especially a TCP flow [Huang et al. 
2001], is characterized by its periodicities. By matching the frequency spec­
trum of a known flow with the frequency spectrums of estimated flows ob­
tained by BSS techniques, we can identify the known flow with high accuracy. 
Second, frequency matching removes the zero-frequency component, and so 
easily eliminates ambiguities introduced by the scaling in the estimated time 
series. Third, frequency spectrum matching can also be applied on the mix-level 
aggregate flows, since the different frequency components in each individual 
flows can characterize the aggregate flow. Fourth, the low-frequency compo­
nents of traffic are often not affected by congestion as they traverse multiple 
switches and mixes. This is particularly the case for TCP traffic, where the 
frequency components are largely defined by the behavior at the end hosts. In 
summary, frequency spectrum analysis has excellent prerequisites to be highly 
effective. 



Even if no information is available about individual flows, the attacker can 
easily determine if there is communication between two neighboring mixes. 
Matching the estimated aggregate flows across neighboring mixes can give 
attackers more information, such as how many aggregate flows are traversing 
the next mix. In a mix network, an aggregate flow through a mix may split into 
aggregate flows of smaller size, multiplex with other aggregate flows, or both. 
By matching the estimated aggregate flows on mixes along estimated paths, 
and by comparing the results against those of other mixes, the attacker can 
detect such splitting and multiplexing. Based on the information gathered, and 
if sufficient monitoring points are available in the network, the attacker can 
eventually get a detailed map of traffic in a mix network, without having access 
to information about any individual flow. In Section 8, we show a traffic map of 
flows in a large network, which was obtained from BSS followed by aggregate 
flow matching. 

5. COMPROMISE LOCATION PRIVACY IN WIRELESS 
ANONYMITY NETWORKS 

Wireless anonymity networks naturally offer themselves very well to a BSS 
analysis. In a wireless setting with passive sensors, the packet flows originating 
at the senders give rise to the unobserved signals, and the packets overheard 
by the sensors produce the observed signals. Finally, the wireless medium acts 
as mix matrix. BSS can, therefore, be used to separate senders and to study 
how this supports follow-up attacks, such as localization of senders. 

5.1 Network Model and Threat Model 

In the following, we assume a passive attacker who is interested in determining 
the number of nodes in the network (node density) and the geographic location 
of the nodes (node location). Disclosure of node location may aid privacy attacks, 
but may be used in other settings as well. For example, low-cost intrusion de­
tection schemes for ad hoc networks can perform node density estimations at 
deployment time and determine if active intruders are present. If so, location 
estimations can support the localization of the intruder. 

Network Model. We assume a set of wireless nodes (simply called nodes in 
the following) that communicate over an ad hoc WLAN using an 802.11-style 
MAC protocol. We assume that all communications are perfectly anonymized. 
For example, all communications are broadcast-based so that the anonymity 
attacker cannot identify the source and destination of a MAC frame [Kong 
and Hong 2003; Zhu et al. 2004]. Similarly, MAC addresses can be recycled 
[Gruteser and Grunwald 2003] to achieve the same effect. We also assume that 
all the packets inside the wireless network are encrypted. 

Threat Model. As a result, no information is divulged to external observers 
either through packet data or header content. In addition, we assume that 
nodes are able to manipulate signal power [Cai et al. 2005] so as to render 
any observed signal strength information difficult to use. We derive the thread 
model from that described for the wired case in Section 4.1 and adapt it to the 



Fig. 2. Threat Model. 

case of anonymized wireless systems, similar to Kong et al. [2003]. We assume 
that the communication between nodes is observed by a network of low-cost 
sensors scattered around a field. The sensors can be either WLAN receivers 
of a set of colluding users in the area, or they can be deployed as a separate 
sensor network infrastructure. The attacker collects packet timing information 
from the sensors in the field for analysis. We summarize the capabilities of the 
passive attacker as follows. 

(1) Sensor nodes have off-the-shelf 802.11 receivers. 

(2) No signal strength information is available. 

(3) No directional information is available. 

(4) Time synchronization across sensor nodes is insufficient to allow for signal­
propagation–based location estimation. 

(5) A sensor cannot associate a packet with a sender or receiver node. 

(6) The location of each sensor is known. 

(7) The sensor are scattered randomly, but uniformly, over the networked area 
of interest, as shown in Figure 2. 

(8) The communication between sensors does not interfere with the communi­
cation between wireless nodes. 

5.2 Data Collection and Preprocessing 

The data collected from each sensor is a time series of counts of the packets 
“overheard” by the sensor. (While sensors cannot decrypt the packets or even 
associate packets with a mobile node, they can mark the time when a packet 
is received, and so count the number of packets received over any interval.) 

lWe use the time series Si = [si 
1 , si 

2 , . . . , si ] to denote the series of packet counts 
detected by Sensor i during a sequence of intervals of length T each. Since there 
may be several wireless nodes in the field, the packet counts on each sensor may 
contain packets from several wireless nodes. Similarly, the same packet may 
be counted by multiple sensors. 

As for any data-gathering application on sensor networks, power consump­
tion and bandwidth limitations are important design issues. Only packet counts 



are collected from the sensor, and so the resulting amount of data is significantly 
less than from collecting, say the timestamp of each packet. In addition, we can 
use data compression or coding schemes designed for sensor networks such as 
MEGA [von Rickenbach and Wattenhofer 2004] to exploit any remaining spa­
tial redundancy across neighboring nodes or temporal redundancy at individual 
nodes. 

5.3 Node Location Estimation 

In a network where all packets are perfectly anonymized, the estimation of 
the location of sender nodes has only aggregated packet data available, since 
packets sent by different nodes cannot be distinguished. In the following, we 
describe how we use BSS to deaggregate the packet-count time series collected 
at a group of sensors into an estimation of the per-node packet-count time series 
M j of sender node j . Based on the estimated per-node time series, we then use 
a proximity-based scheme to estimate the location of nodes. 

5.3.1 BSS. While the goal of BSS in this context is to re-construct the orig­
inal signals Mi (the time series of packet counts sent by individual nodes), in 
practice the separated signals (we call these components) are sometimes only 
loosely related to the original signals. We categorize these separated compo­
nents into three types. In the first case, the component is correlated to some 
signal Mi. We call this type of component individual component. In the second 
case a component may be correlated to an aggregate of signals from several 
nodes. This happens when the packets of more than two wireless nodes can be 
“heard” by all the sensors. In such a case, the BSS algorithm would not be able to 
fully separate the signal mixture into the individual components. Rather, while 
some components can be successfully separated, others remain aggregated. In 
the third case, components may represent noise signals. Noise in our case can 
be caused by packet collisions that prevent some sensors from “hearing” some 
packets. Noise can also emerge as artifact from generating the packet timing 
sequences. For example, a packet may be counted in the ith interval for some 
sensor, while for some other sensor, the same packet may be counted in the 
(i + 1)th interval due to transmission delay or imperfect synchronization. For 
brevity, we call the second type aggregate component and the third type noise 
component. 

5.3.2 Node Location Estimation Algorithm. An algorithm to estimate the 
location of sender nodes would consist of three steps. In a first step, we partition 
the network area into a set of mini areas. In order to maximize both spatial 
resolution and spatial diversity in the following steps, we should choose the size 
of the mini areas to be small but sufficiently large so that most subareas contain 
at least one sensor. We group the nodes in each c×c neighboring set of mini areas 
into sensor block, as shown in Figure 3.1 Neighboring blocks are overlapping, 
and as a result, sensors generally belong to several sensor blocks. (For the case 

1In general, mini-areas and sensor blocks can be irregularly shaped. In Figure 3, we draw them to 

be quadratic. 



Fig. 3. Sensor blocks. 

of a quadratic blocks, most sensors belong to c2 blocks.) For each block of sensors, 
we sequentially apply a BSS algorithm to recover the packet traces of mobile 
nodes in the sensing range. As a result of this block-by-block separation step, 
we are left with a large set of components, as described in Section 5.3.1. Many 
of these components are either aggregates or noise components. In a second 
step, we eliminate the latter by identifying components that appear in several 
blocks. This is achieved by identifying clusters of similar components across 
all blocks. This clustering step generates a set of components that have been 
detected by several blocks of sensors and are likely to be similar to the original 
signals. 

At this point, the senders have been identified, and the attacker can proceed 
to extract additional information. In the following, we focus on localization of 
the senders. In the third and last step, we estimate the location of the senders by 
intersecting the sensing ranges for all blocks that have separated components 
that are highly correlated to the original signals. 

We describe the three steps (separation, clustering, intersection) in more 
detail: 

Separation Step. For each sensor block, we apply BSS to recover a set of s 
components, as described in Section 5.3.1 for a sensor block with s sensors. We 
use R j to represent the j th recovered component from the ith sensor block. i 

Clustering Step. We eliminate those components that are likely to be noise 
or aggregate components. For this, we use the following heuristic: If a compo­
nent represents a real signal, the same component has likely been detected and 
separated in at least a similar form by more than one sensor block. In contrast, 
a component that was generated because of some interference or other artifacts 
has likely been generated by a single block only. 

Based on this heuristic, we identify clusters of similar components by us­
ing the cross-correlation coefficient as measure for similarity and define the 
distance between two components as follows: 

( )  ( ) 
D Ri 

p 
, Rq 

j = 1 −  cor r Ri 
p 
, Rq 

j 
 , (2) 



Fig. 4. Visualization of distance between separated components. 

where R p 
denotes the pth component recovered from the ith sensor block Bi,i 

and cor r (X , Y ) denotes the correlation coefficient of components X and Y . (We  
use the absolute value of the cross-correlation because the separated compo­
nents may be of different sign than the actual time series.) As a result, the 
highly correlated (similar) components will cluster together. Figure 4 uses a 
two-dimensional representation to further illustrate the rationale for the clus­
tering approach in this step. As shown in this figure, the individual components 
form clusters. The aggregate components on the other hand scatter in-between 
these clusters. The noise components are distant both from each other and from 
the other components. 

We select the center components R1, . . . , RK of the K largest resulting clus­
ters, where K is the estimated number of nodes in the area. The value for K is 
either known a priori or is estimated using a highly accurate method based on 
PCA, which we describe in Zhu and Bettati [2007] in detail. We note that it is 
highly unlikely that either aggregate or noise components are selected as cen­
ter components: (i) Aggregate components are unlikely in the center of clusters, 
and (ii) noise is local to a small group of sensors at best and gives rise to small 
clusters. As a result, the K selected center components will be highly correlated 
to the packet count times series M1, . . . , MK of the nodes in the network. 

Intersection Step. We locate a sending node by intersecting the sensing ranges 
of blocks that are likely to “hear” the node. For this, we select sensor blocks that 
have components that are closely correlated with the likely time series of the 
nodes in the area. The rationale is that for the sensors in a sensor block to hear 
a node, they must have sensed a signal that is at least similar to the signal 
generated by the node. This means that sensor blocks with components that 
correlate with any of the K center components are likely to hear a sending node. 
Therefore, we determine the likely location of a node by geographically inter­
secting the sensing areas of the sensors in those sensor blocks that have highly 
correlated component with a center component determined in the preceding 
clustering step. 

A straightforward correlation of the components gives poor results for two 
reasons. First, sensor blocks in the immediate neighborhood of a sender node 



    

often display insufficient spacial diversity to successfully separate the com­
ponent representing the sender node packet time series; therefore, they must 
be discarded. Second, simply correlating the components of the sensor block 
with a particular center component may lead to too many false positives be­
cause geographically very distant components may occasionally correlate with 
a particular center component. For example, correlated components may ap­
pear along the the multihop path of a connection in an ad hoc network and 
give rise to geographically distant sensor blocks that are erroneously classified 
as being able to hear the node. In such cases, the geographical area intersec­
tion approach fails to locate the node. We address these problems by borrowing 
techniques and terminology from image processing. 

For each center component Rk , we generate a “image matrix” IMGk of correla­
tion coefficients (the “intensity”) as follows: Each entry in the matrix IMGk(i, j ) 
represents the maximum correlation between the center component Rk and all 
c2 components of the block, say Bu, at location (i, j ): 

( (
R p )

IMGk(i, j ) = max cor r u , Rk . 
1≤p≤c2 

We then apply edge detection to partition the matrix into geographically con­
tiguous regions, each with components that correlate with the center component 
Rk . We discard the regions that are not sufficiently correlated with the center 
component. (A detailed discussion of the threshold selection in this step is given 
in Zhu and Bettati [2007].) 

We intersect the sensing area of sensor blocks in the remaining regions as 
follows: Sort the points IMGk(i, j ) in the remaining regions in order of decreas­
ing intensity. Starting with the highest-intensity point, add subsequent points 
by intersecting their sensing range. Stop when you either run out of points or 
the new point’s sensing area is disjoint from the computed intersection area, 
causing the new intersection area to disappear. The resulting intersection area 
is the suspected area of location of a node. 

6. EVALUATION OF FLOW SEPARATION ATTACK ON A SINGLE MIX WITH 
DIFFERENT COMBINATIONS OF TRAFFIC 

Whenever we have access to monitors at the boundary of some network, we treat 
the network as a single mix (which we call super-mix), independently of whether 
the network contains one or more mixes. Whenever we can plant additional 
monitors inside the network, we are de facto partitioning the single-node mix 
view into that of a mix network. In this section, we evaluate the single-mix 
case, and we will elaborate the results on the network case in Section 8. 

6.1 Experiment Set-up 

Figure 5 shows the experimental network set-up with a single mix. We use ns-2 
to simulate the network. The links in the figure are all of 10Mbit/s bandwidth 
and 10ms delay2 if not specified otherwise. The mix under study has two input 

2Senders and receivers can be at a large distance from the mix, potentially connecting through 

several routers and switches. 



Fig. 5. Experiment set-up for single mix. 

ports and two output ports and four aggregate flows passing through the mix, 
as shown in Figure 1. We study mixes with more than two ports in Section 7. 
Unless specified otherwise, we use time observation intervals of 32s length 
and sample interval of 10ms length, resulting in time series of size n =3,200. 
Similar results were obtained for shorter observations as well. 

6.2 Metrics 

In the following, we will use two metrics to evaluate the accuracy of the flow 
separation. The metrics compare the separated flows with the actual flows in 
the time domain and the frequency domain, respectively. 

We use mean square error (MSE) to match separated and actual flows in the 
time domain as follows: Let FA = [ f1 

A , f2 
A , . . . , f A] represent the time series of n 

the actual flow and FB = [ f1 
B , f2 

B , . . . , f B] represent the time series estimated n 
by the BSS algorithm. To match the time series FA with FB, we first scale and 
lift FB so that both series have the same mean and variance. 

std(FA)
F B = · (FB − mean(FB) · [1, 1, . . . , 1]) + mean(FA) · [1, 1, . . . , 1], (3)B std(FB) 

where std(F ) and mean(F ) denote the standard deviation and average of the 
time series F , respectively. The mean square error is defined as follows: 

IFA − F B
BI2 

εA,B = . (4) 
n 

Since the times series FB can also be a flipped version of FA, we need to match 
FA with −FB as well. 

We use a second metric to evaluate how well the separated Flow FB matches 
the actual flows in the frequency domain. (In Section 4.2.2, we describe how the 
correlation of actual and separated flows in the frequency domain is used when 
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Fig. 6. Example of flow separation for different types of traffic. 

we analyze systems with multiple mixes.) To evaluate the performance in fre­
quency domain, we use the second metric called frequency spectrum matching 
degree. We define the matching degree between FB and FA to be the absolute 
value of correlation between the spectrum of the separated flow FB and the 
spectrum of the actual flow FA. 

6.3 Different Types of Traffic 

In this experiment, four aggregate flows including one FTP flow, one sequence 
of HTTP requests, and two on/off UDP flows are passing through the mix. The 
parameters for the flows are as follows: Flow 1: FTP flow, with round trip time 
around 80ms. Flow 2: UDP-1 flow, on/off traffic, with burst rate 2,500kbit/s, 
average burst time 13ms and average idle time 6ms. Flow 3: HTTP flows, 
with average page size 2,048 byte. Flow 4: UDP-2, on/off traffic with burst rate 
4,000kbit/s, average burst time 12ms and average idle time 5ms. All the ran­
dom parameters for the flows are exponentially distributed. The flows traverse 
the mix as shown in Figure 1. 

Figure 6 shows portions of the actual times series (Figure 6(a)) and of the 
separated time series (Figure 6(b)). From the figures, it is apparent that the 
flipped version of the actual Flow 3 (HTTP flows) is contained in the separated 
Flow 2. We also observe the resemblance between actual Flow 1 (FTP flow) and 
separated Flow 4. Separated Flow 1 is clearly not close to any actual flows. 
This is caused by the redundancy contained in the observations, as described 
in Section 4.2.1. 

Figure 7 shows the separation accuracy using the two metrics defined ear­
lier. We note in Figure 7(b) that both the separated flow and its flipped time 
series is compared against the actual flows. Both metrics can identify the FTP 
flow, the HTTP flows, and Flow UDP-2. But the two metrics disagree on Flow 
UDP-1: while Flow UDP-1 correlates well in the frequency domain with sepa­
rated Flow 3 (indicated by the highest frequency spectrum matching degree for 
Flow UDP-1 in Figure 7(a)) in the time domain it best matches with separated 
Flow 4(flipped) (indicated by the lowest MSE for Flow UDP-1 in Figure 7(a)). 
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Fig. 7. Performance of flow separation for different types of traffic. 
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Fig. 8. Example of flow separation for different types of traffic (with multicast traffic). 

This is because of the redundancy in the observations, and the two UDP flows 
can not be separated. MSE fails for this case, since it is designed for one-to­
one flow matching, while frequency spectrum matching is more suitable for 
matching of flows against aggregates. The latter case is more common in the 
context of flow separation, where often aggregates of flows cannot be completely 
separated. 

6.4 Different Types of Traffic with Multicast Flow 

In this experiment, the Flow UDP-1 in the previous experiment is multicast to 
both output ports. 

Portions of the actual flows and the estimated flows are shown in Figure 8. 
We observe the correspondence between the actual flows and estimated flows 
easily. In comparison with the previous experiment, we conclude that multicast 
flows can help the flow separation, as they eliminate redundant observations. 

The MSE performance results in Figure 9 show that the flows are successfully 
identified. Frequency spectrum matching successfully determine the FTP and 
HTTP flows but does not perform well on the UDP flows. This is because the 

10 20 30 40 50 60 70 80 90 100 
0 

5 

4. 

10 20 30 40 50 60 70 80 90 100 
−5 

0 

5 

4. 



1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Separated Flow 1 

Separated Flow 2 

Separated Flow 3 

Separated Flow 4 

0.0035 

0.003 

0.0025 

0.002 

0.0015 

0.001 

0.0005 

0 

Separated Flow 1 Separated Flow 2 
Separated Flow 3 Separated Flow 4 
Sep. Flow 1 (flipped) Sep. Flow 2 (flipped) 
Sep. Flow 3 (flipped) Sep. Flow 4 (flipped) 

FTP UDP 1 HTTP UDP2 FTP UDP 1 HTTP UDP2 

(a) Frequency spectrum matching degree (b) MSE 

Fig. 9. Performance of flow separation for different types of traffic (with multicast traffic). 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 

Separated Flow 1 

Separated Flow 2 

Separated Flow 3 

Separated Flow 4 

0.003 

0.0025 

0.002 

0.0015 

0.001 

0.0005 

0 

Separated Flow 1 Separated Flow 2 
Separated Flow 3 Separated Flow 4 
Sep. Flow 1 (flipped) Sep. Flow 2 (flipped) 
Sep. Flow 3 (flipped) Sep. Flow 4 (flipped) 

TCP Flow TCP Flow TCP Flow TCP Flow TCP TCP TCP TCP 
1 2 3 4 Flow 1 Flow 2 Flow 3 Flow 4 

(a) Frequency spectrum matching degree (b) MSE 

Fig. 10. Performance of flow separation for TCP-only traffic (without multicast traffic). 

two UDP flows have approximately similar periods, and the periodical behavior 
is not strong for exponential on/off traffic. 

6.5 TCP-Only Traffic 

Since most of the traffic in today’s network is TCP, we focus on TCP traffic in 
the next series of experiments. All the flows in this experiment are FTP flows. 
To distinguish the flows, we vary the link delays between the sender and mix, 
with S1 having 10ms link delay to the mix, and S2 having 15ms delay.3 

Figure 10 shows the flow separation performance. Since there is no multicast 
traffic, the redundancy in observations results that TCP Flow 1 and TCP Flow 2 
are still mixed. In the final result, the flows are identified successfully by the 
frequency spectrum matching method. 

6.6 TCP-Only Traffic with Multicast Flow 

In this experiment, we change one FTP flow in the previous experiment to a 
multicast UDP flow. The UDP flow is exponential on/off traffic with the same 
parameters as UDP-1 of the experiment in Section 6.3. 

3The difference in link delays gives rise to different round-trip times for the different TCP con­

nections. As we show in the experiments in Section 8.2, BSS is just as effective in separating TCP 

flows when link delays are identical, and therefore, the round-trip times are very similar. 
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Fig. 11. Performance of flow separation for TCP-only traffic (with multicast traffic). 

Figure 11 shows the flow separation performance. Similar to the effect of 
multicast flows on different types of traffic, the four flows are now separated 
completely. We also observe that the frequency spectrum method identifies the 
FTP flows successfully. The performance for the exponential on/off UDP flow 
is not as good as for FTP flows, however, because the frequency signature of 
exponential traffic is very weak. 

7. EVALUATION OF SCALABILITY OF FLOW SEPARATION 

In order to gain insight into how flow separation performs as systems scale, we 
evaluate the flow separation performance with respect to (i) increasing num­
bers of flows in the mix-level aggregate flows (the number of aggregate flows 
remains constant), (ii) increasing numbers of mix-level aggregate flows, and 
(iii) increasing numbers of ports per mix. A detailed description of experiments 
with larger amounts of flows and larger mixes is given in our companion report 
[Zhu and Bettati 2007]. 

8. EVALUATION OF FLOW SEPARATION ATTACK FOR MIX NETWORKS 

Flow separation can also be useful in mix networks with either local or partially 
global passive attackers. The attacker can perform flow separation between 
the available monitoring points, and then use the separation results to gather 
further information about the traffic. As an example of this approach, we show 
a set of experiments where the attacker correlates the separated aggregate 
flows to first derive the path taken by the flows and then to generate the traffic 
map of the flows in the network. We point out that the attacker can infer this 
information without having access to traffic information about any individual 
flow. 

8.1 Experiment Set-up 

Figure 12 shows the network set-up in this experiment. A total of eight FTP 
flows from senders on the left side are traversing the mix network. To distin­
guish these eight FTP flows, we incrementally add a 5ms delay to links con­
nected to each sender. In Section 8.2, we illustrate how we also get excellent 
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Fig. 12. Experiment set-up of mix network. 

results with identical delays on links, and describe why round-trip times on 
connections have little effect on separation performance. To simulate the cross 
traffic in the mix network, four larger aggregates of flows are added to the mix 
network. In order to reflect the self-similar nature of the network traffic, the 
high-volume cross traffic is Pareto distributed. The configuration of the flows 
is described in our companion report [Zhu and Bettati 2007]. 

In the center of the mix network, the traffic volume ratio between link-level 
aggregate traffic and each individual flow from senders is at least 7:1. We as­
sume that the attacker can observe links connected to Mix M1, M2, . . . , M12. 
Thus, a flow originating from S1 can take 26 possible paths. 

To measure the accuracy of the flow path reconstruction based on flow sepa­
ration, we use an entropy-based metric as follows. Suppose we are interested in 
flow Fx . The attacker can suspect the flow Fx taking a path Pi with probability 
pi based on the information gathered from the flow separation in the mix net­
work. Assuming there are h possible paths that can be suspected as the path 
taken by Flow Fx , we define the flow path obfuscation degree D as 

h 

D = −  pi log2 pi. (5) 
i=1 

Suppose a flow originated from S1 in Figure 12 is suspected to use each of 
26 possible paths with equal probability, then the path obfuscation degree D is 
6 bit. 

In Zhu and Bettati [2007], we describe how simple flow separation, followed 
by dynamic programming based on frequency matching is very effective at 
identifying the flows in the system. While the obfuscation degrees of all flows 
F1 to F8 in the experiment have a value of 6 bits before the attack (i.e., all 
possible paths are equally likely in the six mix stages), the obfuscation degree 
after the attack drops to zero bit for all flows except for flows F5 and F7, where 
the the obfuscation degree drops to 0.5 bits. 
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Fig. 13. Anonymity degree. 

8.2 Identical Round-Trip Time TCP Flows 

In this set of experiments, we illustrate that the level of variance in the round-
trip time does not affect performance of traffic flow separation. For example, an 
immediate (and, as it turns out, naı̈ve) approach for a countermeasure would 
be to make the round trip times of traffic flows identical in order to increase 
dependence between traffic flows and, in turn, to render flow separation inef­
fective. In the following, we will show that flow separation remains effective 
for TCP flow even in the case of identical link delays (and, therefore, similar 
round-trip times). We reuse the experiment set-up used in the previous set of 
experiments but for a slight modification: The link delays of all links connected 
to senders are set to 5ms instead of having the delays increase from link to 
link. As a result, the round trip times are very similar for all the eight traffic 
flows. 

We measure the receiver anonymity by using the anonymity degree defined 
in [Serjantov and Danezis 2002]4: 

n 

Drec = pi log2(pi), (6) 
i=1 

where pi represents the probability that the ith receiver is identified as the 
flow of interest, and n is the number of possible receivers. 

Figure 13 illustrates the performance of flow separation for the case of differ­
ent RTTs and similar RTTs. We observe that separation performance for flows 
of similar RTTs and different RTTs is comparable. To investigate the cause for 
this comparable performance, we correlated the original traffic flows in both the 
identical-RTT experiments and the different-RTT experiments. (For a graphic 

4Sender anonymity is defined similarly. 



of the results, see the companion report [Zhu and Bettati 2007].) During the first 
10 seconds, the correlation across the traffic flows with similar RTTs is much 
higher than the correlation across traffic flows of different RTTs. After 10 sec­
onds, the correlation among traffic flows of similar RTT is comparable with that 
of traffic flows of different RTTs. This decrease in dependence of traffic flows 
with similar RTTs explains the comparable performance in flow separation, as 
shown in Figure 13. 

9. EVALUATION OF PRIVACY ATTACKS ON WIRELESS NETWORKS 

Having illustrated the effectiveness of BSS to separate traffic flows in wired net­
works, we proceed to evaluate its effectiveness to separate, identify, and locate 
senders in anonymized wireless networks. Similar to the previous experiments, 
we perform a series of simulations in the ns-2 network simulator. 

9.1 Experiment Set-up 

In the following experiments, we simulate a field with a 1,600m × 1,600m 
square area. We assume that the sensors are arranged in a grid, and the dis­
tance between two neighboring sensors in the sensor grid is 50m. To eliminate 
boundary effects, the location of the wireless node is restricted to a 1,000m × 
1,000m center area of the simulated field. The wireless network interfaces of 
both wireless nodes and sensors are modeled according to the commercial Lu­
cent WaveLan radio interface, which has a nominal radio range of 250m. For 
the sensors, the transmission function is disabled, so that they can only eaves­
drop on the traffic. All simulations have a duration of 200 seconds. The packet 
count data is sampled with a sample interval of 50ms. We place 20 wireless 
nodes inside the center area. There are 36 randomly generated TCP flows in 
the wireless ad hoc network. To make sure that every wireless node sends pack­
ets, every wireless node has at least one TCP flow that originates from it. The 
size of the mini area is 50m × 50m, so that each area contains one sensor, and 
each sensor block is a 3 × 3 array of sensors. 

9.2 Effectiveness of Location Estimation 

Performance Metrics. As described in Section 5.3.2, the output of the loca­
tion estimation algorithm is the suspected area of location of a node. To evaluate 
the performance according to the suspected area, we quantize the whole area 
using 5m × 5m tiles. The suspected area is represented by a set of points inside 
the suspected area, each point representing the corner of the corresponding 
tile. Two metrics are used to evaluate the area. One is the mean error distance 
between the points inside the suspected area and the actual location of a wire­
less node. The other is the standard deviation of the error distance between 
the points inside the suspected area and the actual location of a wireless node. 
The first one measure the accuracy of the detection algorithm and the second 
measures the precision of the detection algorithm. If we cast the evaluation 
of the estimation algorithm in terms of evaluating a statistical estimator, the 
accuracy corresponds to the bias of the estimator and the precision corresponds 
to the variance of the estimator. 
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(c) Clustered topology 

Fig. 14. Location estimation on different topologies. (Note: Two larger suspected areas are removed 

from (c) to prevent overlapping.) 

To evaluate the intermediate result of the clustering step in Section 5.3.2, we 
compare the K selected center components with the actual packet count time 
series of corresponding wireless nodes. The metrics used for comparison is the 
absolute value of the cross-correlation. We use absolute value here to account 
for the possibility that the separated component is of different sign than the 
time series. 

Performance. We run our algorithm on three different types of node ar­
rangements: grid, random, and clustered. Examples of typical results of our 
location algorithm are shown in Figure 14. Please note that in Figure 14(c), two 
relatively large suspected areas are removed to prevent overlapping with other 
suspected areas. The two larger suspected areas are caused by the two pairs 
of closely located nodes near Point A and Point B, respectively, in Figure 14(c). 
These closely located nodes cannot be differentiated by the sensor grid, so the 
number of actual differentiable nodes is less than the number of nodes we know. 

To quantitatively evaluate our algorithm, we run simulations for both ran­
dom and clustered arrangements. For clustered arrangements, the locations of 
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Fig. 15. Location estimation result (constant-rate traffic). 

wireless nodes are generated by a Gaussian distribution with standard devi­
ation of 100m for both x and y axes. The mean of the distribution is chosen 
to arrange the wireless nodes around the center of the field. The results for 
clustered arrangements indicate that sparse arrangement of sensor grids yield 
good results as well. In Figure 14(c), for example, only about 300 sensors are 
needed to localize the nodes. (For a detailed description of accuracy and preci­
sion results from our experiments, please refer to our companion report [Zhu 
and Bettati 2007].) 

Constant-Rate Traffic. In this experiment we evaluate our location detec­
tion algorithm against a network with constant-rate link padding. In such a 
network, packets are sent at constant intervals, and dummy packets are added 
whenever the link would idle. In the experiment, each wireless node sends 
constant-rate UDP packets to one of its neighbors. We use the grid topology of 
Figure 14(a). The choice of neighbor is made so that two loops are formed, with 
the outside nodes forming an outer loop and the inner nodes an inner loop. The 
packet sending rate of each wireless node is 40 packet/s and the bandwidth 
utilization is about 80%. The goal of this set-up is to evaluate an arrangement 
that is as uniform as possible, thus making the separation and location problem 
maximally hard. 

The results of this experiment are shown in Figure 15. We observe that the 
location detection algorithm is also effective against constant-rate traffic and 
heavy traffic. While the flows are constant-rate at sender application level, they 
are perturbed by the 802.11 MAC protocol, which adds enough timing signature 
to the flows and helps to separate the traffic. This experiment also illustrates 
that traffic padding at network layer or above is largely ineffective. A MAC-
level traffic padding scheme that considers both the media control protocol and 
bandwidth efficiency is needed. 
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(a) Intensity image IMGk (b) Edge detection 

Fig. 16. Sender/receiver/route anonymity attack. 

10. DISCUSSION 

10.1 Countermeasures to Flow Separation Attack 

The countermeasures to flow separation attack are intuitive. First, padding of 
the links renders the observations obtained by the passive attacker nondistin­
guishable, or at least mostly redundant. Similarly, the use of pool-mix batching 
strategies would help. Pool mixes delay packets according to some probabil­
ity distribution. If the delay probabilities are sufficiently small, the aggregate 
flows at the output ports can differ significantly from the aggregate flows at the 
input ports. This adds noise to the passive attacker’s observations and can de­
grade the performance of flow separation attacks. The cost of such an approach 
is increased packet transfer latency and lower throughput, especially for TCP 
traffic. Next, the increase of the dependency among flows by adding dependent 
dummy traffic flows to the mix-level aggregate flows would reduce the effective­
ness of BSS. Finally, the padding of aggregate flows to render the distribution 
of the packet counts Gaussian would render the BSS algorithms ineffective 
as well. Most BSS algorithms fail when the signals mixed are Gaussian dis­
tributed. Some classes of BSS algorithm, however, make use of the time struc­
ture of the signals, and can still separate the flows [Tong et al. 1991; Molgedey 
and Schuster 1994]. In general, BSS algorithms coping with noisy delayed sig­
nals and overcomplete base problems are still active research topics in BSS 
research. Flow separation attacks will be more powerful when more advanced 
such algorithms become available. 

10.2 Further Attacks on Wireless Networks 

The mechanisms used to estimate density and location information can be used 
to infer additional information about the wireless nodes as well. 

Traditional sender/receiver/route anonymity. For a given intensity image 
IMGk , we can apply an edge detection algorithm to reveal the sender/receiver 
relationship as well as information about the communication path. The result 
of an example attack is shown in Figure 16. From the intensity image shown 
in Figure 16(a), we can observe the relationship between the sender and the 
receiver. A contour of the route taken by a flow is shown in Figure 16(b). (The 
locations of the sender and receiver are marked with a star.) 

Identity privacy. If a priori information is available about a wireless 
user, such as a model for communication or motion, the identity can be 
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Fig. 17. Motion privacy detection. 

1  2  3  4  5  6  7  8  9  10 11  12 13 14  15 16  17 18  19 20  

1,300 

1,200 

0.7 
Wireless Node (before Moving) 
Estimated Location (Before Moving) 
Wireless Node (After Moving) 
Esitmated Location (After Moving)

C
or

re
la

tio
n 

of
 F

re
qu

en
cy

 S
pe

ct
ru

m
 0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

1,100 

1,000 

900 

800 

700 

600 

500 

400 

300 

derived by correlating the K separated center components with the available 
models. 

Motion privacy. To detect the motion of the wireless nodes in a field, we 
periodically compare the selected components by correlating them in the time 
domain and by tracking their estimated locations. When routes change and 
time correlation disappears, one can make use of spatial correlation until routes 
stabilize again. 

Suppose the attacker finds out that component Ri 
t at some time t is highly 

correlated to component Rt 
j 
+δ at some later time t +δ, and the location of compo­

t+δnent Ri 
t and Rt 

j 
+δ is estimated to be ar eai 

t and ar ea j , respectively. The attacker 
t+δcan infer that a node has moved from ar eai 

t to ar ea j . From the analysis of 
node location privacy, we can get the location of k nodes at time t and t + δ. 
Under the assumption that routing does not change dramatically from time t to 
t + δ, we can find the correspondence between k signals at time t and k signals 
at time t + δ through correlation. When routes do change from time t to time 
t + δ, the timing behavior of flows can change as well, due to new contention 
situations or different path lengths. If routing does change, we can take advan­
tage of correlation in the space domain. Since the speed of nodes is limited, for 
small values of δ, the location of a node can not vary indeterminately. 

Figure 17 shows the result of an experiment for the simple case of a sin­
gle moving node. Figure 17(a) shows the correlation between the spectrum of 
the center component corresponding to the moving node before the move and 
the spectrum of all the center components after the move. The correlation is 
maximum between the spectrum of the center component corresponding to the 
moving node before the move and the spectrum of the center component (Com­
ponent 14) corresponding to the moving node after the move. Figure 17(b) shows 
the motion estimation based on the two center components with maximum cor­
relation. 

11. CONCLUSION 

In this article, we proposed anonymity attacks to both wired and wireless 
anonymity networks. These attacks are based on the BSS algorithms widely 



used to recover individual signals from mixtures of signals. Since the philoso­
phy behind the design of current anonymity networks is to mix traffic or to hide 
in crowds, the proposed anonymity attacks are very effective. 

We show in a series of experiments that flow correlation is effective in sep­
arating flows about which no a priori information is available. When several 
observation points are available throughout a network, we show that separation 
recreates the flow information at sufficiently accurate level so that frequency-
spectrum correlation across observation points can reconstruct the path of the 
(unknown) flows. In the same way, we show how flow separation can also be 
used to simply recover the traffic map of the anonymity network. We discuss the 
possible usage of flow separation in different flow confidentiality settings, such 
as ssh tunnels or anonymity network settings, and we elaborate on criteria for 
its countermeasures. 

Users of wireless networks are particularly exposed to privacy attacks (i.e., 
attacks that either identify the user or his presence or that identify the location 
of the user) since the communication medium is readily available for passive 
tapping. We show that traditional schemes for anonymous communication in 
wireless settings, such as masking of MAC addresses and link padding with 
dummy traffic, are largely ineffective against statistical timing analysis of net­
work traffic. For example, we show how BSS allows us to identify the flows from 
different senders based on the same traces of aggregate packet counts. Simi­
larly, PCA of traces of aggregate packet counts leads to accurate estimations of 
the number of nodes in a dense setting. We show in our experiments that the lo­
cation estimation of nodes is accurate (typically significantly below the distance 
between any two sensors). These results indicate how effective these attacks 
are in separating traffic from different senders and identifying the presence of 
the senders. 

The fact that the proposed schemes require from the sensors only the capa­
bility to receive and count 802.11 packets indicates that one should be able to 
deploy similar schemes for intrusion detection in ad hoc networks, for exam­
ple: The ad hoc nodes could easily collect the data necessary to identify active 
intruders and to pin-point their location. 

The poor performance of link-padding based anonymity protocols in wireless 
settings is due to a large part to the underlying carrier-sensing–based MAC pro­
tocols, which perturbs the originally padded traffic, and so renders it susceptible 
to BSS attacks. With privacy of users in mind, it may be time to re-evaluate the 
use of carrier-sensing–based versus scheduling-based MAC protocols and how 
to trade-off privacy versus efficiency in such systems. 
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