
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

7-2009

Failure Detectors for Wireless Sensor-Actuator
Systems
Hamza A. Zia
Cleveland State University

Nigamanth Sridhar
Clevealand State University, n.sridhar1@csuohio.edu

Shivakumar Sastry
University of Akron

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub
Part of the Digital Communications and Networking Commons

How does access to this work benefit you? Let us know!
Publisher's Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Ad Hoc
Networks. Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version
was subsequently published in Ad Hoc Networks, 7, 5, (07-01-2009); 10.1016/j.adhoc.2008.09.003

Repository Citation
Zia, Hamza A.; Sridhar, Nigamanth; and Sastry, Shivakumar, "Failure Detectors for Wireless Sensor-Actuator Systems" (2009). Electrical Engineering &
Computer Science Faculty Publications. 64.
https://engagedscholarship.csuohio.edu/enece_facpub/64

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Original Citation
Zia, H. A., Sridhar, N., , & Sastry, S. (2009). Failure detectors for wireless sensor-actuator systems. Ad Hoc Networks, 7(5),
1001-1013. doi:10.1016/j.adhoc.2008.09.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216944864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/64?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Failure detectors for wireless sensor-actuator systems '"

Harnza A. Zia d
, Nigamanth Sridhar ,]'·, Shivakumar Sastry b

• rlw rical Gild Computer Engineering. Cleveland SW/I' University,]]2 Stilwell Half. 2121 Euclid Avenue. Cleveland. OH 441 /5, UnilN Sloles
• flectrical Gnd Compurer fngin<"t'riug. The Uniwrsiry of Akron. Uniwl Slales

1. Introduction

Wireless sensor-actuator systems (WSAS) have
emerged as an important platform that enolble unprece­
dented levels of fine-grained visibility and control over
our environment 11 -61. There are several smal l and inex-
pensive devices that are capable of capturing and process­
ing sensor inputs. In addition, the availability of protocols
[7-101 and algorithms that address challenges. high fail­
ure-rales.limited resou rces and large-scale. allow us to de­
velop and deploy effective sensornets [11 - 141. In addition.
there are several competing software platforms for pro­
gramm ing sensor network applications [15- 21].

Despite such advances. large-scale networks of sensors
are incredibly hard to design and deploy. The time and ef­
fort required to design and implement software for such
systems are not proportional to the size of the software it­
self: most of these applications are only a few hundreds of
lines of source code. but take a disproportionate amount of

time (several weeks. even months) to develop. An impor­
tant reason for this incongruity is that the set of design cri­
teria that developers must think about is quite different in
the context of WSAS than in the context of enterprise sys­
tems. As opposed to internet-scale network applications.
WSAS applications need to consider fault-tolerance as a
pn'mClry design consideration. Failure is not the exception:
it is the norm. This necessitates the designer of a WSAS
application to include failure while she thinks about the
functional behavior of the application. This causes the de­
sign space to be cluttered with functiona l requirements as
well as fault-tolerance requ irements.

In this paper. we argue that a reusable class of failure
detectors can simplify the design and deployment of sen­
sornets. We focus on a class offailu res. i.e. loss of commu­
nication links between nodes. The hardware platforms that
WSAS applications run on are inherently unreliable: the
cost of producing each individual node is extremely low.
and consequently. nodes are designed to be dispensable.
This places a larger burden on someone designing applica­
tions that run on these platforms: applications running on
such unreliable infrastructures must still function in a reli-
able manner. When a collection of nodes are unable to
communicate. the WSAS is unlikely to provide an accept­
able level of service. To tolerate such failures. it is

necessary to detect faults as and when they occur. Failure
detection logic is typically included either directly in the
application, or as part of a middleware service that pro­
vides neighborhood information. Neither of these cases is
optimal. The former approach is tedious, error prone, and
does not enable reuse of the failure detection logic. While
the latter decouples the failure detection scheme from
the application, the scheme is still tightly coupled to neigh­
bor discovery logic. The range of failures, and correspond­
ingly the range of failure detection mechanisms, cannot be
effectively addressed in such tightly-coupled designs. We
present a design that offers a higher degree of separation
between independent concerns.
Contributions. The contributions of this paper are:

• A design for a failure detector that distinguishes
between the failure of a communication link and mobil­
ity of a node in the WSAS.

• A proof sketch to show that the above detector is
correct.

• Novel packaging of the above failure detector as a
parameterizable middleware service for application
designers.

• Experimental results based on two different failure
detection schemes designed using the middleware ser­
vice. These components were implemented in nesC
[15] for the TinyOS [11] platform, and the experiments
were conducted on a testbed of TelosB [13] motes.

Paper organization. Following the background and re­
lated work discussion in Section 2, we present the first fail­
ure detector that can detect node failures in Section 3. In
Section 4 we describe the second failure detector that suc­
cessfully detects failures in dynamic topologies, along with
a proof of correctness, and a case study example to illus­
trate the use of the failure detector middleware. In Section
5, we provide an evaluation of our failure detectors’ perfor­
mance using experiments conducted on an 80-node sensor
network testbed. Finally, we conclude with a summary of
the contributions and some directions for future work in
Section 6.

2. Background and related work

2.1. Failure detection algorithms

The use of unreliable failure detectors to implement reli­
able asynchronous distributed systems was first proposed
by Chandra and Toueg [22]. The authors present four clas­
ses of failures and each class has different completeness
and accuracy specifications. Since then, several other
implementations of failure detectors have been reported
in the literature [23–27].

All failure detectors work in roughly the following way.
Each node maintains a list of its neighbors, and for each
neighbor, the node keeps an account of whether it is per­
ceived to be alive or failed. Several strategies to solve this
problem have been proposed.

The simplest of these strategies involves nodes exchang­
ing heartbeat messages [23]. Each node periodically sends

out an ‘‘I am alive” message to its neighbors. If a node p does
not hear from some neighbor q for some specified length of
time, p adds q to its suspect list. If, later on, p does receive a
heartbeat from q, p realizes its mistake, and removes q from
the suspect list. One way of ensuring that the same mistake
is not made again, is to modify the timeout duration based
on past mistakes. When p recovers from a mistake, it ex­
tends the timeout duration for q to be longer than the time
it took for q’s heartbeat to arrive. For example, an adaptive
timeout-based failure detector is reported in [28].

Instead of forcing every node to continually flood the
network with heartbeat messages, some failure detectors
follow an ‘‘on-demand” approach. When a process queries
its failure detector module for the current suspect list, the
failure detector sends an ‘‘Are you alive?” message to its
neighbors. Following this, it waits for some specified time-
out period at the end of which it declares a neighbor to be a
suspect if no response has been received. If, on the other
hand, it receives an ‘‘I am alive” message, the neighbor is
not added to the suspect list. The message complexity of
this strategy is twice that of the heartbeat strategy, except
that the number of times the detection cycle has to occur
can be greatly reduced, thereby reducing the overall mes­
sage complexity of the failure detector module. Such
ping-based implementations are reported in [24].

Unfortunately, none of these strategies are optimal for
WSAS because here, the nodes sleep for most of the time,
and are only awake for a few minutes at a time. In such a
context, it makes sense to reverse the role of the messages.
Each node p sends a message to its neighbors requesting a
lease for some duration. A neighboring node q now records
this lease, and assumes that p is alive for the lease dura­
tion. As long as p sends another lease request before its
lease expires, q does not suspect p. But if the lease expires
before p sends a request, then p is added to q’s suspect list.
This strategy is described in [29], and is the strategy
we use in this paper for local node failure detection in
Section 3.

Hutle and Widder [30] present two time-free self-stabi­
lizing algorithms for local failure detection for sparse net­
works. These algorithms apply equally well to dense
networks. The first algorithm they propose requires un­
bounded amount of space in each process, and the second
algorithm (the more realistic one) executes within
bounded space when there is a known upper bound on
the number of messages in the system. Their work, how­
ever, assumes a static topology and does not tolerate
mobility of nodes.

Fetzer and Högstedt [31] present a protocol for failure
detection in partitionable systems. They consider systems
in which a gateway node that connects a section of the net­
work to another section fails. This work uses the concept of
software rejuvenation [32] – using a Rejuvenation Server
to rejuvenate a gateway server if it is detected to be failed.
Another approach to failure detection in partitionable net­
works is presented in [33], where Aguilera et al. use the
heartbeat failure detector [23] to solve consensus in parti­
tionable networks. Their work does not consider mobility
of nodes (link failures) and mistakes caused by mobility.
However, these works on partitionable networks present
some nice ideas that can be combined with the work pre­

sented in this paper to allow our mobility detectors accom­
modate network partitions as well.

2.2. Failure detection in sensor networks

In the recent past, there has been a considerable
amount of work on developing abstractions for managing
failures in sensor networks. Hood [34] is an abstraction
that allows a node in a sensor network to easily access
and interact with other nodes in its neighborhood. The
Hood abstraction allows a node to easily share its local
state with neighboring nodes. In addition to maintaining
a list of one-hop neighbors, Hood also allows applications
to create neighbor sets based on other attributes. The Hood
abstraction can enhance the benefit of our failure detection
components, since the application designer will then be
able to define arbitrary neighborhoods.

The Memento system [35] provides health monitoring
services to wireless sensor network applications that are
similar to our own. They focus exclusively on failures of
immediately neighboring nodes, and failures caused by
radio link irregularities. As part of the network manage­
ment system, Memento includes a local failure detection
scheme that uses ping-and-response to monitor the health
status of neighboring nodes. Our failure detection compo­
nents, particularly the Mobility Detector, can be used in
place of this local failure detector to further improve the
utility of Memento in tolerating both link irregularities
and node mobility.

Elhadef et al. [36,37] present a distributed diagnosis pro­
tocol for health management in mobile ad hoc networks.
Their health management protocol, called dynamic-DSDP,
is similar to ours in the sense that they also have a way of
disseminating failure information from an initiator node
to the rest of the network. The nodes organize themselves
into a spanning tree of the graph, and send diagnostic infor­
mation about their local neighbors back to the root of the
spanning tree. While the reason why nodes in our algo­
rithm share suspect information is for them to correct their
local views, the purpose in their algorithm is to get a global
view of failure information from across the network.

2.3. Classes of failure detectors

Of the four classes of failure detectors presented by
Chandra and Toueg [22], the class of detectors we focus
on is the eventually perfect ð}PÞ class. Failure detectors
in this class satisfy the following specification (reproduced
from [22]):

Strong completeness: Eventually every process that
crashes is permanently suspected by every correct process.

Eventual strong accuracy: There is a time after which
correct processes are not suspected by any correct process.

Since we are interested in local failure detection – the
detection of failures in a node’s immediate neighborhood
– as opposed to global failure detection, we adapt the spec­
ification to reflect this. We denote this class of eventually
perfect local failure detectors as }P‘.

Strong local completeness: There is a time after which
every process p that crashes is permanently suspected by
every correct neighboring process q.

Eventual strong local accuracy: There is a time after
which correct processes are not suspected by any correct
process in the neighborhood. Each process corrects its view
of who its neighbors are periodically.

Suspicion locality: There is a time after which correct
processes only suspect processes that are in the local
neighborhood.

3. Detecting failure of neighboring nodes

The failure detectors we present in this paper imple­
ment the bidirectional interface shown in Fig. 1. Applica­
tions may query a detector for the number of nodes that
are suspected to have failed in a neighborhood (numSu­
spects()), or the suspected nodes (getSuspects()).
Applications may also check if a particular node is alive
or failed via the predicate isSuspect(p). In addition,
for given suspect p, the failure detector can also report
how long it has been since there was any communication
from p, lastHeardFrom(p). Applications may use addi­
tional information to remove a node from the suspect list
(removeSuspect()1.). In addition, the failure detector
can notify applications when at least one neighbor, or no
neighbor, is suspected.

LeaseFD is the first, lease based, failure detector we
present. This detector executes the algorithm depicted in
Fig. 2 at every node u of the system. Similar to other TinyOS
components, LeaseFD, is wired in to the application, and is
provided with one parameter – the lease duration, which is
best supplied by the application. Once started, the failure
detector component periodically sends lease request mes­
sages to each neighbor. When a node p receives a lease re­
quest from a neighboring node q, the lease is recorded, and
for the duration of the lease, the node q is not suspected. In
case, q were already in the suspect list (wrongly sus­
pected), q is now removed the suspect list (mistake is
corrected).

As indicated above, a component that can provide a
neighborhood abstraction is necessary to use LeaseFD. We
implemented a simple beacon-based neighbor discovery
protocol suitable for the failure detectors2 . Our neighbor
discovery protocol establishes bi-directional neighborhood
relations between nodes.

4. Distinguishing node failure from link failure

Consider the situation when a node p does not receive
an ‘‘I am Alive” message from a neighbor q. It is not correct
to assume that node q has failed because the communica­
tion link between p and q may have failed, while q contin­
ues to remain operational. If a link between two processes
p and q failed, perhaps due to q moving out of the trans­
mission range of p, the failure detector at p should no long­
er keep track of q.

1 We will demonstrate a use for this command in Section 4.
2 A different neighborhood abstraction (e.g. Hood [34], abstract region

[38]) can also be used.

http:LeaseFD.We

Fig. 1. The FailureDetector interface.

Fig. 2. Lease-based failure detector algorithm.

Why is this such a big deal? What is the problem with p
continuing to suspect q? The reason is that if p suspects q
to be failed, it is going to sacrifice local progress. However,
in reality, q is still alive, but is no longer p’s neighbor. The
correct way of dealing with this, is for p to distinguish be­
tween the process q failing, and the link between p and q
failing.

Consider Fig. 3. In both cases, the nodes inside the circle
are in each other’s neighborhood. In the picture on the left
side, node e has failed, and nodes c, d, and g recognize this
failure using the eventually perfect ð}PÞ failure detector
[22] and sacrifice their claim to the resource, thereby
allowing nodes a and b to make progress. In the case on
the right side of Fig. 3, there is no failure. Node e has simply
moved out of range of c, d, and g. However, if the failure

detector is based on message passing, the detector may
suspect e to have failed. Accordingly, c, d, and g again go
into the starve mode. This case, however, is unnecessary
(and wrong), and is caused simply by virtue of the fact that
the failure detector is not able to distinguish between a
failure and mobility.

In order to deal with this problem, we present our sec­
ond failure detector. This one is an implementation of the
}Pm failure detector presented in [39]. An algorithm that ‘

this link failure detector implements is presented in
Fig. 4. The MobilityAwareFD component implements this
algorithm and this is executed at each node u, at a low
rate.

4.1. Implementing }Pm as MobilityAwareFD ‘

This section presents a brief sketch of design of the }Pm
‘

failure detector [39]. The algorithm is presented in Fig. 4.
The basic idea of the }Pm failure detector is that a local ‘

failure detector that uses message exchanges in a one-
hop neighborhood alone cannot distinguish between a
node that is failed in its neighborhood and one that has left
its neighborhood. In order to make this distinction, the
node uses the knowledge available in the rest of the net­
work. Periodically, some node in the network initiates a
gossip diffusing computation [40] in the communication
graph. In this message, the initiator node u sends out the
list of nodes that are in its local suspect list ðSu Þ. For each
suspect t in the suspect list, u also sends the duration of
time for which t has been suspected. This is shown in lines
2–7. Note that there is only one active gossip in the net­
work at any given time. At the time of deployment, some
node is designated as the initiator. The initiator for subse­
quent rounds is nominated at the end of each round.

Expanding phase. When a node w receives the gossip
message for the first time, it examines the suspect group
SG in the message, and performs two sets of actions to
modify the suspect group. First, it checks to see if there is
some process t that is a correct neighbor of w and yet is
a member of SG. In this case, w determines that t has been
(wrongly) suspected by some other process, and exonerates
v (lines 12–15). This is shown in Fig. 5a. In the second set of
actions, the process w adds to SG all the processes that it

Fig. 3. Nodes unable to distinguish failure from mobility.

Fig. 4. The }Pm algorithm that distinguishes node mobility from node failure. ‘

currently suspects (the contents of Sw) (lines 18–19). This Shrinking phase. Once the gossip message has reached
is shown in Fig. 6. After the suspect group SG in the gossip the edge of the graph (leaf nodes have received the mes­
message has been modified, w sends this updated message sage), the gossip algorithm switches to the shrinking phase,
to each of its neighbors (except the node from whence it where messages are sent back to the initiator. Each leaf
received the gossip message; this node is w’s parent). This node, immediately upon updating SG and E, sends the up-
phase is called the expanding phase of gossip. During this dated gossip message back to its parent (line 25). When a
phase, each process updates the suspect group SG and non-leaf node has received the gossip message back from
the set of exonerated processes E based on local each of its children, it examines the exonerated set E and
knowledge. if it finds some node t in this E that is also in Sw and/or

Fig. 5. Process t is exonerated and u is restored to good state.

Fig. 6. w adds t, which it suspects, to SG before propagating SG.

Nw, w removes t from these sets (shown in Fig. 5b). The
gossip message is then sent to the parent node.

It is important to note that if a process w sees one of its
neighbors t in the exonerated set E, w removes t from its
neighborhood ðNwÞ. This prevents w from suspecting t
again in the future. This situation is shown in Fig. 7.

The algorithm presented here uses purely local knowl­
edge along with a limited amount of knowledge that the
rest of the network shares in order to make (correct) deter­
minations of which nodes have actually failed and which
nodes have simply moved out of communication range.
The failure detector, while functioning like a global failure
detector exhibits performance characteristics similar to a
local failure detector. More details of this are presented in
Section 5.

4.2. Proof of correctness

Here, we present a brief proof that the algorithm in the
preceding section is indeed correct. The complete rigorous
proof can be found in [39].

Claim 1.	 The mobility detection layer is guaranteed to ter­
minate. The core of the mobility detection layer
is a terminating diffusing computation. The algo­
rithm does not add any new messages to this dif­
fusing computation, and as such, does not modify
its termination property.

Claim 2.	 No crashed node is removed from any suspect
list incorrectly. There are only two places in sus­
pect sharing algorithm presented in Fig. 4 where
a process x is removed from the suspect set Su

(Line 30 and line 35). In the first case, the node
x is removed because some other node in the net­
work (downstream in the gossip tree) exoner­
ated x. This means that x is no longer a
neighbor, and is therefore removed from the
neighborhood as well. In the second case, node
x is indeed failed, but is being suspected by some
other node that is further than two hops away. In
this case as well, x is no longer a neighbor, and
the removal from the suspect list is correct.

Claim 3. No running node is suspected by the mobility
detection layer. The function of adding nodes to
a suspect list is performed by the local failure
detection layer, and not by the mobility detec­
tion layer. Therefore this claim is trivially true.

4.3. Case study example: resource allocation using dining
philosophers

Let us now consider an example to see the utility of our
failure detection components in a WSAS. Consider a net­
work of nodes that use a dining philosophers scheme for
distributed resource allocation. One popular algorithm for
solving the dining philosophers problem is the hygienic
algorithm proposed by Chandy and Misra [41]. This is a
fork-based scheme; neighboring processes share forks,
and the set of forks that a node p shares with its neighbors
together represent a resource that the node wants to use.
This means that if two neighbors share a fork, only one
of them can be using the resource at any time. The nodes
and the edges that represent forks comprise the conflict
graph.

The hygienic solution to dining philosophers is based on
maintaining a partial order of priority among processes.
That is, the edges of the conflict graph are given directions
such that the graph is acyclic. A fork held by a neighbor
who has higher priority in the partial order is said to be
clean, while one held by a lower priority neighbor is said
to be dirty.

When two hungry processes compete for the same fork,
the conflict is resolved in favor of the higher-priority pro­
cess. There is no deadlock because of the acyclicity of the
partial order (a ‘‘waits-for” cycle cannot form among
processes).

Fig. 7. Process u discovers that although t is crashed, t is no longer a neighbor, and hence u can stay in good state.

Fig. 8. Hygienic dining philosopher algorithm (adapted from [42]).

There are two key parts to the hygienic solution. The
first is that a higher priority hungry process never yields
to a lower-priority neighbor (i.e., a hungry process never
relinquishes a clean fork). The second is that after a process
eats, it lowers its priority below that of all its neighbors.
This operation preserves the acyclicity of the conflict
graph. Together, these properties are sufficient to ensure
that the liveness specification is met. For a complete proof
of correctness of this algorithm, please refer to [41]. Fig. 8
shows the pseudocode for the hygienic algorithm.

While this algorithm is extremely simple to understand
and implement, and performs well with respect to mes­
sage complexity and response time, its failure locality3 is
poor. In fact, it is as bad as it can get! The failure locality
of the hygienic algorithm is d, the diameter of the conflict
graph. This means that a single node that fails while holding
its forks will bring the entire network to a halt. As an illustra­
tion, consider Fig. 9. In Fig. 9a, node a has failed while hold­
ing the fork that it shares with node b. Nodes c and d are
higher priority than b, which is hungry. While c and d will
not yield immediately when b requests their forks, eventu­
ally they will eat and will reduce their priorities below that
of b. Therefore, b will collect and hold on to those forks.
However, it will never get the fork that a is holding, since
a is failed. Since b is still hungry, and is higher in priority
than c and d, b will not yield to c or d. Meanwhile, e becomes
hungry and is waiting on d’s fork. Thus, a single failure has
caused the entire network to halt, as shown in Fig. 9(b).

In [42], Pike and Sivilotti propose a transformation of
the hygienic algorithm to reduce the failure locality to 1
(Fig. 10). The strategy is as follows. When a node p in the
network suspects that one of its neighbors (say, q) is failed,
it enters a special state in which it honors all fork requests,
regardless of the priority of the requesting node. In this
manner, p shields the rest of the network from q’s failure;
only q’s immediate neighbors in the conflict graph are af­
fected by this failure.

If the network topology is static, we could implement
this transformation using the LeaseFD component. The

A measure of the impact of a fault in a single node on the rest of a
distributed system.

failure detector can keep track of each node’s neighbor­
hood, and allow the dining algorithm to make progress.
When a node q fails, it will fail to renew its lease with its
neighbor p. When p checks to see if all of its neighbors have
renewed their leases, it will see that q has not, and will sus­
pect q. Consequently, it will set its state to be skeptical. A
node in the skeptical state will always yield forks to other
neighbors (Fig. 10). Therefore, the failure locality is re­
duced to 1.

However, consider that the network’s topology is dy­
namic, and nodes in the network may move around. In this
case, the LeaseFD failure detector cannot distinguish be­
tween a node that is failed and one that has moved away
from range. Consider Fig. 11a for example. In this picture,
solid lines denote active links, while dotted lines represent
that the two nodes were neighbors at some point in the
past. The node a is a mobile node, and it moved around in
the network. After a while, nodes b, c, and d are all starving,
thinking that a is one of their failed neighbors (see Fig. 12).

Now consider the same transformation (Fig. 10), this
time using the MobilityAwareFD failure detector compo­
nent. This component can distinguish node failure from
node mobility. Nodes b, c, and d will suspect a to be failed,
but eventually (after the suspect group has been gossiped
around), they return back to normal state; node e exoner­
ates a.

5. Evaluation of performance overhead

The experimental evaluation of our failure detection
middleware was conducted on the NESTbed Tmote Sky
testbed at Clemson University [43]. The testbed has 80
Tmote Sky nodes arranged in a 16 x 5 grid. Even though
the physical separation between the motes is only about
one foot, the radios on the motes are set to transmit at a
low enough power level so as to form multi-hop network
topologies.

We ran several experiments on the testbed to measure
the quality of service provided by our failure detection
components. We measure these metrics for both the com­
ponents presented here – LeaseFD (static topologies) and
MobilityAwareFD (dynamic topologies). All of the experi­
ments ran on the entire testbed. Each run of the experi­
ment lasted 10 min. Each experiment was run multiple
times, and the results were averaged to account for
anomalies.

5.1. Message complexity

The first set of experiments here measure the message
complexity of our two failure detection components. The
message overhead of the }Pm failure detector is the sum ‘

of the overhead introduced by the local failure detector,
and the overhead of gossip. Consider a WSAS with n nodes,
e links between nodes, and maximum number of neighbors
of a node d. As is common with typical WSAN applications,
d « n.

In the lease-based local failure detector, each node peri­
odically sends out one lease message to each of its neigh­
bors. If we assume that the lease durations of all nodes

3

Fig. 9. Hygienic dining philosophers; failure locality is diameter of graph ðdÞ.

Fig. 10. Hygienic dining philosopher algorithm, transformed to tolerate
crashes (adapted from [42]).

are roughly the same, then the total number of messages
sent out in the entire network is Oðn · dÞ for each round
of leases.

The message complexity of gossip is Oðn · eÞ. Each node
participates in propagating the message out to the edge of
the graph, and then propagating the message back to the
initiator in the shrinking phase.

Supposing that there were l rounds of lease messages
exchanged among neighbors for each round of gossip in
}Pm , the message overhead in the WSAS is‘

Oðn · e þ l · n · dÞ. The additional overhead introduced by
gossip is much smaller than the overhead introduced by
the local failure detector alone.

For each component, we measured both the overall load
on the entire network (total number of additional mes­
sages sent by all nodes in the network), as well as the aver­
age number of additional messages sent by each node. The
average number of neighbors (average degree) for each
node in the network is 6.7. Given this, the measurement
of average number of extra message traffic introduced by
the LeaseFD component is consistent with the analytical
prediction of Oðn · dÞ for each round of lease messages ex­
changed. Fig. 13a shows the average number of messages
sent out by LeaseFD per round of leases at each node in
the network, for various values of lease durations.

The second part of the message complexity experiments
measure the additional message overhead introduced by
the MobilityAwareFD component, when running in conjunc­
tion with the LeaseFD local failure detector. Again, we mea­
sure this for different values of gossip durations (rate at
which the suspect sharing algorithm is initiated). Fig. 13b
shows the average message overhead introduced by the
MobilityAwareFD component.

5.1.1. Speed of failure detection
The speed of failure detection depends on the speed of

the local failure detection module (lease in our case). If a
node p does not renew its lease with a neighbor q, then q
will suspect p when it checks to see if p renewed its lease.
In the worst case, p fails the instant after it sends out a
lease renewal request. q will detect this failure once the
p’s lease expires. So if the average lease duration is ld,
and the rate at which each process checks on its neighbors
is sd, then the speed of failure detection is Oðld þ sdÞ.

Our second set of experiments measure how quickly a
failure is detected. We measured this on both of our com­
ponents, LeaseFD and MobilityAwareFD. Since the speed of
failure detection is a function of the local failure detector
alone, in this case LeaseFD, we only evaluate this compo­
nent. Fig. 14a shows the speed of failure detection for the
LeaseFD component for varying values of lease duration
ðldÞ and suspect duration ðsdÞ. Fig. 14(b) confirms that gos­
sip duration has no effect on the speed of failure detection.

Fig. 11. The MobilityAwareFD component reduces the failure locality of hygienic dining philosophers to 1 in networks that allow node mobility.

Fig. 12. Experimental setup: The Tmote Sky testbed at Clemson University.

5.1.2. Mistake duration
The }Pm detector at process p learns of mistakes it may ‘

have made when it sees that some process q that is sus­
pected has been exonerated by someone else in the net­
work. For such exoneration to happen, a round of gossip
needs to be executed. At the end of each round of gossip,
any mistakes that any node made will be corrected. There­
fore, the mistake duration of }Pm is Oðn · e · DmÞ if Dm is the ‘

average message transmission delay between two nodes.
The next metric we measure by experimentation is the

mistake duration of our components – the time taken by
the failure detector to correct a mistake. This is a function

of how often the suspect sharing algorithm executes (gos­
sip duration, qg and how long it takes for a round of the
gossip to terminate. Fig. 15b shows the mistake duration
of the MobilityAwareFD component for different values of
gossip duration. The local failure detector does not have
an impact on this metric. Fig. 15a confirms this: the results
do not vary much with different values of lease duration or
suspect duration.

5.1.3. Mistake recurrence time
The mistake recurrence time of a failure detector mea­

sures the time between two consecutive mistakes that

Fig. 13. Message complexity of LeaseFD and MobilityAwareFD components.

Fig. 14. Speed of detection.

Fig. 15. Mistake duration of }Pm implementation. This measures how quickly a wrongly-suspected node is exonerated, and the suspecter is returned to ‘

good state.

the detector makes. This metric is a function only of the lo- and lease duration. Fig. 16a shows the mistake recurrence
cal failure detector, in the case of the LeaseFD detector, de- time for different values of lease duration. Fig. 16b shows
pends on the relationship between the suspect duration the mistake recurrence times for different values of gossip

Fig. 16. Mistake recurrence time.

Fig. 17. Events detected in the network.

Fig. 18. Memory footprint for telosb node running }Pm .‘

duration, and confirms that the suspect sharing part has no
essential effect on this metric.

5.1.4. Mistake rate
Next, we measured the actual rate of mistakes in the

system. We also measured how often a single mistake is
repeated by a given node. Fig. 17a shows the comparison
of events detected as a function of lease duration in net­
works with node crashes, and without. It also shows the
number of repeat mistakes in these different scenarios. No­
tice how the rate of mistakes decreases with increasing
lease duration. This metric is also a function only of the lo­
cal failure detector, and the gossip algorithm does not have
an effect. Fig. 17b confirms this.

5.1.5. Memory overhead
Finally, we measured the memory overhead that is

introduced by the failure detection components we have
presented in this paper. We measured this in the context
of the case study example of hygienic dining philosophers
with and without failure detection. Fig. 18 shows the com­
parison in RAM and ROM usage for the hygienic dining
implementation in TinyOS with and without the failure
detection components.

The memory overhead introduced by the failure detec­
tion components is not dependent on the underlying appli­
cation. The increase in ROM is caused by the additional
code introduced. The increase in RAM is in account of the
state that the failure detection components have to

maintain in order to function. This state size is determined
by the size of the local neighborhood of nodes in the net­
work. This size is currently set statically, based on design
parameters. An approach recently presented in [44] can
be used to optimize the size of neighborhood sets based
on network observation at run-time. Such optimization
can control the memory overhead to what is actually nec­
essary for the given configuration.

6. Conclusions

In this paper, we presented two failure detectors for
WSAS. Since individual nodes in a sensor network deploy­
ment are frequently of very low cost, and are hence dis­
pensable, failure considerations are elevated to a first-
class level in the design of software for such systems. As
a consequence, the ability to detect when failures occur,
and react to such failures in the most reasonable manner
is important. The components presented in this paper
implement efficient solutions to detecting failures.

The failure detectors can be considered as a middleware
service and include a way of distinguishing between node
failures and link failures. We use this quality of the service
in tolerating mobility of nodes in the network, and yet pro­
viding consistent failure localization when faults do occur.
We have presented implementations of our middleware
service components in a readily usable form – the compo­
nents themselves are completely self-contained, and pro­
vide an easy-to-use interface that applications can wire to.

Finally, as an aid to developers wishing to use these
components, we have provided experimental measure­
ments of the overheads and costs associated with using
the middleware service. These measurements will allow
developers to be able to make predictions of performance
of their own applications while used in conjunction with
the failure detection middleware.

References

[1] D. Doolin, N. Sitar, Wireless	 sensors for wildfire monitoring, in:
Proceedings of the SPIE Symposium on Smart Structures and
Materials/NDE 2005, SPIE Press, 2005, pp. 477–484.

[2] S. Glaser, Some real-world applications of wireless sensor nodes, in:
SPIE Symposium on Smart Structures & Materials/NDE 2004, 2004,
pp. 344–355.

[3] A. Mainwaring, D. Culler,	 J. Polastre, R. Szewczyk, J. Anderson,
Wireless sensor networks for habitat monitoring, in: WSNA’02:
Proceedings of the First ACM International Workshop on Wireless
Sensor Networks and Applications, ACM Press, New York, NY, USA,
2002, pp. 88–97.

[4] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J.
Sallai, K. Frampton, Sensor network-based countersniper system, in:
The Second ACM Conference on Embedded Networked Sensor
Systems (SenSys’04), 2004, pp. 1–12.

[5] S. Yang, Redwoods go high tech: researchers use wireless sensors to
study california’s state tree, 2003. <www.berkeley.edu/news/media/
releases/2003/07/28_redwood.shtml>.

[6] N. Hayslip, S. Sastry, J. Gerhardt, Networked embedded automation,
Assembly Automation 26 (3) (2006) 235–241.

[7] A.	 Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V.
Kulathumani, H. Zhang, H. Cao, M. Sridharan, S. Kumar, N. Seddon,
C. Anderson, T. Herman, N. Trivedi, C. Zhang, M. Nesterenko, R. Shah,
S. Kulkarni, M. Aramugam, L. Wang, M. Gouda, Y. ri Choi, D. Culler, P.
Dutta, C. Sharp, G. Tolle, M. Grimmer, B. Ferriera, K. Parker, Exscal:
elements of an extreme scale wireless sensor network, in: RTCSA’05:
Proceedings of the 11th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA’05),
IEEE Computer Society, Washington, DC, USA, 2005, pp. 102–108.

[8] G. Zhou, T. He, S. Krishnamurthy, J. Stankovic, Impact of radio
irregularity on wireless sensor networks, in: The Second
International Conference on Mobile Systems Applications and
Services, ACM Press, 2004, pp. 125–138.

[9] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, D. Estrin,
Sympathy for the sensor network debugger, in: SenSys’05:
Proceedings of the Third International Conference on Embedded
Networked Sensor Systems, ACM Press, New York, NY, USA, 2005, pp.
255–267.

[10] A. Woo, T. Tong, D. Culler, Taming the underlying challenges of
reliable multihop routing in sensor networks, in: SenSys’03:
Proceedings of the First International Conference on Embedded
Networked Sensor Systems, ACM Press, New York, NY, USA, 2003,
pp. 14–27.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System
architecture directions for networked sensors, in: ASPLOS-IX:
Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM
Press, New York, NY, USA, 2000, pp. 93–104.

[12] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, D. Culler, Design of	 a
wireless sensor network platform for detecting rare, random, and
ephemeral events, in: IPSN’05: Proceedings of the Fourth
International Symposium on Information Processing in Sensor
Networks, IEEE Press, Piscataway, NJ, USA, 2005, p. 70.

[13] J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power
wireless research, in: IPSN’05: Proceedings of the Fourth
International Symposium on Information Processing in Sensor
Networks, IEEE Press, Piscataway, NJ, USA, 2005, p. 48.

[14] J. Hill, M. Horton, R. Kling, L. Krishnamurthy, The platforms enabling
wireless sensor networks, Communications of the ACM 47 (6) (2004)
41–46.

[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The
nesc language: a holistic approach to networked embedded systems,
in: PLDI’03: Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, ACM Press,
New York, NY, USA, 2003, pp. 1–11.

[16] P. Levis, D. Culler, Maté: a tiny virtual machine for sensor networks,
in: ASPLOS-X: Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ACM Press, New York, NY, USA, 2002, pp. 85–95.

[17] C.-C. Han, R. Kumar, R. Shea, E. Kohler, M. Srivastava, A dynamic
operating system for sensor nodes, in: MobiSys’05: Proceedings of
the Third International Conference on Mobile Systems, Applications,
and Services, ACM Press, New York, NY, USA, 2005, pp. 163–176.

[18] A. Dunkels, B. Gronvall, T. Voigt, Contiki – a lightweight and flexible
operating system for tiny networked sensors, in: LCN’04:
Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks (LCN’04), IEEE Computer Society,
Washington, DC, USA, 2004, pp. 455–462.

[19] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.
Gruenwald, A. Torgerson, R. Han, MANTIS OS: an embedded
multithreaded operating system for wireless micro sensor
platforms, Mobile Networks and Applications 10 (4) (2005) 563–
579.

[20] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E.A.
Brewer, D.E. Culler, The emergence of networking abstractions and
techniques in tinyos, in: NSDI, 2004, pp. 1–14.

[21] A. Arora, M. Gouda, W. Leal, J.O. Hallstrom, T. Herman, N. Sridhar, A
state-based language for sensor-actuator networks, in: Proceedings
of WWSNA 2007, 2007.

[22] T.D. Chandra, S. Toueg, Unreliable failure detectors	 for reliable
distributed systems, Journal of ACM 43 (2) (1996) 225–267.

[23] M.K. Aguilera, W. Chen, S. Toueg, Heartbeat: a timeout-free failure
detector for quiescent reliable communication, in: WDAG’97:
Proceedings of the 11th International Workshop on Dist. Alg.,
Springer-Verlag, London, UK, 1997, pp. 126–140.

[24] I. Gupta, T.D. Chandra, G.S. Goldszmidt, On scalable and efficient
distributed failure detectors, in: PODC’01: Proceedings of the 20th
ACM symposium on Principles of Distributed Computing, ACM Press,
New York, NY, USA, 2001, pp. 170–179.

[25] C. Almeida, P. Veríssimo, Timing failure detection and real-time
group communication in real-time systems, in: Proceedings of the
Eighth Euromicro Workshop on Real-time Systems, 1996, pp. 230–
235.

[26] R.V. Renesse, Y. Minsky, M. Hayden, A gossip-style failure detection
service, Tech. rep., Cornell University, Ithaca, NY, USA, 1998.

http://www.berkeley.edu/news/media/releases/2003/07/28_redwood.shtml
http://www.berkeley.edu/news/media/releases/2003/07/28_redwood.shtml

[27] N. Hayashibara, A. Cherif, T. Katayama, Failure detectors for large-
scale distributed systems, in: SRDS’02: Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems (SRDS’02), IEEE
Computer Society, Washington, DC, USA, 2002, p. 404.

[28] C. Fetzer, U. Schmid, M. Susskraut, On the possibility of consensus in
asynchronous systems with finite average response times, in: 25th
IEEE International Conference on Distributed Computing Systems
(ICDCS’05), 2005, pp. 271–280.

[29] R. Boichat, P. Dutta, R. Guerraoui, Asynchronous leasing, in: Seventh
IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS’02), 2002, pp. 180–187.

[30] M. Hutle, J. Widder, Time free self-stabilizing local failure detection,
Research Report 33/2004, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-2, 1040 Vienna, Austria,
2004.

[31] C.	 Fetzer, K. Högstedt, Rejuvenation and failure detection in
partitionable systems, in: PRDC’01: Proceedings of the 2001 Pacific
Rim International Symposium on Dependable Computing, IEEE
Computer Society, Washington, DC, USA, 2001, p. 154.

[32] N. Kolettis, N.D. Fulton, Software rejuvenation: analysis module and
applications, in: FTCS’95: Proceedings of the Twenty-Fifth
International Symposium on Fault-Tolerant Computing, IEEE
Computer Society, Washington, DC, USA, 1995, p. 381.

[33] M.K. Aguilera, W. Chen, S. Toueg, Using the heartbeat failure detector
for quiescent reliable communication and consensus in partitionable
networks, Theoretical Computer Science 220 (1) (1999) 3–30.

[34] K. Whitehouse, C. Sharp, E. Brewer, D. Culler, Hood: a neighborhood
abstraction for sensor networks, in: MobiSys’04: Proceedings of the
Second International Conference on Mobile Systems, Applications,
and Services, ACM Press, New York, NY, USA, 2004, pp. 99–110.

[35] S. Rost, H. Balakrishnan, Memento: a health monitoring system for
wireless sensor networks, in: IEEE SECON, Reston, VA, 2006, pp.
575–584.

[36] M. Elhadef, A. Boukerche, H. Elkadiki, Performance analysis of	 a
distributed comparison-based self-diagnosis protocol for wireless
ad-hoc networks, in: MSWiM’06: Proceedings of the Ninth ACM
International Symposium on Modeling Analysis and Simulation of
Wireless and Mobile Systems, ACM Press, New York, NY, USA, 2006,
pp. 165–172.

[37] M.	 Elhadef, A. Boukerche, H. Elkadiki, A distributed fault
identification protocol for wireless and mobile ad hoc networks,
Journal of Parallel and Distributed Computing 68 (3) (2008) 321–
335.

[38] M.	 Welsh, G. Mainland, Programming sensor networks using
abstract regions, in: NSDI, 2004, pp. 29–42.

[39] N.	 Sridhar, Decentralized local failure detection in dynamic
distributed systems, in: SRDS’06: Proceedings of the 25th IEEE
Symposium on Reliable Distributed Systems (SRDS’06), IEEE
Computer Society, Washington, DC, USA, 2006, pp. 143–154.

[40] E.W. Dijkstra, C.S. Scholten, Termination detection for diffusing
computations, Information Processing Letters 11 (1) (1980) 1–4.

[41] K.M. Chandy, J. Misra, The drinking philosophers problem, ACM
Transactions on Programming Languages and Systems 6 (4) (1984)
632–646.

[42] S.M. Pike, P.A. Sivilotti, Dining philosophers with crash locality 1, in:
Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2004, pp. 22–29.

[43] A.R. Dalton, J.O. Hallstrom, An interactive, server-centric testbed for
wireless sensor systems, International Journal of Distributed Sensor
Networks, in revision.

[44] S.K. Wahba, S. Dandamudi, A.R. Dalton, J.O. Hallstrom, Neptune:
Optimizing sensor networks, in: The Proceedings of The 17th

International Conference on Computer Communications and
Networks (IC3N’08), IEEE Computer Society, Washington, DC, USA,
2008.

VernM
Typewritten Text
Post-print prepared by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University (2014)

VernM
Typewritten Text

VernM
Typewritten Text

VernM
Typewritten Text

VernM
Typewritten Text

VernM
Typewritten Text

	Cleveland State University
	EngagedScholarship@CSU
	7-2009

	Failure Detectors for Wireless Sensor-Actuator Systems
	Hamza A. Zia
	Nigamanth Sridhar
	Shivakumar Sastry
	Publisher's Statement
	Original Citation
	Repository Citation

