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TRANSIENT STABILIlY HIERARGUCAL CONTROL IN 
MULTIMACHlNE POWER SYSTEMS 

Ahmed Rubaai, Student Member, IEEE F. Eugenio Villaseca, Member, IEEE 
Electrical Engineering Department 

Cleveland State University 

Abstract This paper presents the optimal 
transient stability control problem in a hierarchical 
structure for multimachine power systems. The 
two-level structure retains the local closed-loop
controls, thereby easing its implementation on existing 
systems. The formulation accounts for nonlinearities 
and interconnections, and the optimization of the 
system transient performance is obtained at reduced 
computational efforts. Application of this method to a 
four-machine system is presented. 

Keywords: Power system stability, transient stability, 
optimal control, hierarchical structure, non1 inear
ities, interconnections. 

INTROOUCTION 

The topiC of this paper deals with a method to 
optimiZe the transient stability performance of multi
machine power systems. The implication of this 
optimization problem lies beyond the simple stabiliza
tion of the power system. Optimal performance 
increases the alternative operating modes that the 
powe: system can be operated in, while still supplying 
a glven load distribution and while still maintaining 
adequate system security. These alternative operating 
conditions may allow for more economical and more 
ecologically second usage of the resources available to 
the utilities. 

Recently, considerable attention has been given to 
the development of feasible control strategies [1-5], 
to operate the available control means in order to 
~rive the s~stem from an emergency operating state 
ln~o a reglon about its post-fault equilibrium. 
Melsel, et al. [1,2], have attempted a systematic 
approach for a power system transient stability 
augmentation. The approach is based on an Optimal Aim 
Strategy (OAS) decision process, which originated in 
the work by Barnard [3]. The OAS is used by the local 
controllers to select the control forces that move a 
machine from a known present state towards an 
equilibrium state. This selection is guided by the 
fact that the direction of the trajectory derivative at 
any state depends explicitly on the value of the 
applied control at that time. In [4,5J the task of 
augmenting stability is shared among several subsystems 
associated with their local control facilities. 
Adaptively, threshold limits are determined from each 
SUbsystem dominant state variables, and is an 
approximation to the stability margin of a subsystem. 
During some disturbances, the angular velocity 
deviation and torque angle are compared to the 
threshold limits. Feedback type decisions are derived 

from the relation of the state trajectory limits, and 
used to implement a bang-bang type control to load 
and unload generation in a subsystem. 

Both methods are based on the utilization of a 
single machine equivalent representing the dynamics of 
a group of machines. However, when a system contains 
machines with significantly different operating 
characteristics and prefault conditions, control 
schemes based on the state trajectory of a single 
equivalent machine may lead to undesirable multimachine 
performance. Furthermore, the dynamic equival ent must 
be changed in response to different fault locations. 
This makes them difficult for on-line applications. 
These methods, also require that suitable supplementary 
controls be strategically placed throughout the system. 

The control scheme presented here is a two-level 
hierarchical structure involving local feedback 
controllers and a central coordinating controller. 
A few studies have used this approach [6-9]. but their 
work has dealt with the linearized regulation problem 
and not the nonlinear transient stability problem. 

The approach described in this paper utilizes the 
hierarchical coordination scheme presented in [10J, 
which is a generalization of that in [11]. It 
decomposes the overall problem into subproblems that 
may be solved simultaneously using parallel computa
tions. The two-level structure retains the local 
closed-loop controls, thereby easing its implementation 
on existing systems. The coordination of the local 
feedback controls by the central controller, accounts 
for nonlinearities and interconnections, and yields the 
global optimization of the system transient perfor
mance. 

PHYSICAL DESCRIPTION OF ~HE MATHEMATICAL MODEL 

Before i nt roduci ng a mathematical formul at i on for 
the control strategy, a physical explanation is 
presented in this section to help clarify the concepts. 
The technique proposed in this paper assumes that an 
on line capability for computing the post-fault 
equilibrium state is available. Such a method has been 
presented by Smith [12J, where measured power flows are 
used for the fast prediction of this post-transient
steady-state or "target state". S1 nce the system model 
is an approximation to the real power system, the 
calculated post-fault equilibrium stata, which we call 
the "desired state" and denote by x, can only be 
guaranteed in some neighborhood of the actual 
equilibrium state. Furthermore, we also assume that 
the multimachine system at time t~O, corresponding to 
the inotant of fault removal, has a known initial st-te 
x(O)~x. Several techniques for the on-line monitoring 
of the current system state have been reported in the 
literature [13,14,15,16J. Therefore, the assumptions of 
known initial and desired states appear to be feasible. 

In the two-level control hierarchy, the local 
controllers associated with each subsystem constitute 
level 1, and the central coordinating controller forms 
level 2. Information available to level 2 includes the 
dynamical model for the entire system, the global as 
well as the local costs, the values of initial and 
current states. Feasibility of the coordination effort 
requires that level 2 be capable of choosing its 
control strategy before the local controllers choose 
theirs. The global strategy is to minimize the overall 



system cost funct ional. 
This policy is communicated down to the local 

feedback controllers in level 1. which in turn optimize 
the performance of their own subsystems. 

The system control variables are the steam ~nput 
powers to the turbines. The regulation of t~ese lnput 
powers has a direct effect on the rotor sWlngs under 
transient conditions. 

The nonl inear differential equations describing 
the transient behavior of an n-machine system are: 

i :: 1,2,,!, •••n 

1 (Pmi - Pei - Ojulj + Ui) ( 1) 
Mi 

where Ui represents an additive local power control for 
the i-th machine. and 

n 
Ei L Ej{Gij cos 0ij+ Bijsin 0ij) (2) 

j =1 
j*i 

Pei 

Please refer to the appendix for a definition of each 
of these terms. Taking the n-th machine as reference. 
the state vector for the ith machine is defined by 

Xi (oin. Win) T 
T 

(Xl i. X2i) 

With this definition. equations (I) and (2) become 

Xi AiXi + biUi + fi{X) + hi(xli) (3) 

i :: 1.2 •••••n-l 

where the overall state vector is equal to 

X = (oln.02n •••• 'on_1,n'w1n.W2n •••• 'Wn_l,n)T 

(X11. X12.···,X1,n-1,X21. X22,···.X2,n-1)T 

and -0 0 
Ai -Di • bi 

-1 
0 rTj ""lfi 

The term fi(X) represents the interconnection 
effects on the ith subsystem by the other subsystems, 
and is given by 

n-1 
fi(X)= -1 L EiEj[Gij COS(Xli-X1j)+ Bij sin(xli-Xlj)]

M; j=l 

j*i 


n-l 
+ 1 L EjEn[ -Gjn sin Xlj + Bjn cos Xlj J

Mn j=1 

The term hi(xli) includes only the nonlinearities 
of the ith subsystem, and is equal to 

hi(xli)" 	 -1 EiEn (Gin cos Xli + Bin sin Xli) 
t1i 

PERFORMANCS~SASURES 

The performance measure of each subsystem in 

level 1 is defined on appropriate sets of admissible 
trajectories. The state trajectories start at the 
init ial states at the time of fault removal, and end at 
fixed points at the desired states. defined 
as the post-fault equilibrium states, at time tf. 

A quadratic term included in the cost functional 
is the deviation of each of the states in the state 
vector from their post-fault equil ibrium condition. 
The weighting matrix on the state deviations is assumed 
positive definite. 

The other term in the cost functional penalizes
the control effort. The weighting matrix on the 
control is chosen as positive definite. 

Thus. the performance measure for the i-th 
subsystem in 1evel 1 is 

tf d T d T 
J i 1/2 f [( x i -x i) Qi (x i-x i) + U i R i Ui] dt (4) 

o 
for i=1,2, ••••n-l 

The overall objective function in level 2 is 
separable, and therefore equal to the sum of the local 
performance measures. That is 

n-l 
J = )' Ji 	 ( 5)

1=1 

HIER~RCHI~~,=- OPTII!UA~ION 

The coordinated minimization of each subproblem is 
obtained as follows. Level 2 initial izes the process 
by generating a constant state trajectory, equal to the 
initial state XO over the interval [0, tf], and sets 
the Lagrange multipliers equal to zero. This .i~for~a
t ion is received by Level 1. where the opt lmlzat lOn 
problem reduces to that of solving n-l independent
subproblems. At the k-th iteration these problems have 
the form. 

k t f ddT 
min Ji = 1/2 f [(Xi-Xi)T Qi(Xi-Xi) + UiRiUi + 

o 	 ( 6) 

k 	 k 
(Xi-Xi)T Vi(Xi-Xi)] dt 

Subject to the subsystem dynamics 

• 	 k k 
Xi = AiXi + biUi + hi(X1i) + fi(X ) (7) 

k
and the equal ity constraint Xi = Xi 	 (8) 

The set of resulting state trajectories are used 
by Level 2 to compute the error between t~e predict:d
and the received state trajectories. ThlS error 1S 
then used to produce a set of predicted st~te 
trajectories and Lagrange multipl iers. Note that thlS 
same error term has been added to (4) shown in (6) as a 
perla1ty term. . 

In order to solve the local problems, the maXlmum 
principle [17.18] is used. Appending (7) and (8) as 
equal ity constraints to the local perfo~manc~ measure 
(6) through suitable multipl iers, the Hamlltonlan takes 
the form 

n-1 k 
Hk = I Hi ( 9) 

;=1 

where the sub-Hamiltonians can be written as 



The optimization problem can only be considered 
solved when two conditions are satisfied: 1) the 
computed state trajector ies turn out to be the same as 
their predicted values, for a given vector function~; 
and 2) a value for ~ has been found which optimizes
the sumof the local performance measures. 

Level 2 therefore carries two nested optimization 
processes. The outer one searches for a set of 
Lagrange multipl iers ~i, and the inner one searches the 
state trajectory space to satisfy the constraints. One 
of the most effective means for updating ~i is the 
equal ity updating method [19J. The i-th Hamiltonian is 

k k 
extremized with respect to Xi and ~i' yields 

k 
Xi = Xi 

k kaT T I
~; -Vi(Xi-Xi) + TIi[hi(XU) + fi(X)] (Ki~i 

Xi=Xi 

The application of the optimal ity conditions to 
Levell subproblems yields the following equations 

K; 
T 

-AiKi - KiAi 
-1 T 

+ KibiRi biKi - (Oi + Vi) 

(13) 

Si 
-1 T T 

= (KibiRi bi- Ai) Si 
k 

- Ki hi(Xl i) 
k 

- Kifi(X ) 

k d k 
+ ViXi + OiXi - ~i 

(14) 

(15) 

To compute the feedback control law of (15), it is 
necessary to integrate (13) and (14) independently and 
backwards in time with Ki(tf) = 0, and Si(tf) = 0,
respectively, using the prediction vector generated by 
level 2. The results are sent upward to update these 
variables~ At the end of the optimization process, the 
resulting Ki' Xi, and Si are used to obtain the local 
optimal closed-loop control. 

NUMERICAL RESULTS 

To prove feasibility of concept the 4-machine lO
bus test system pesented in [20J. was used. The one-. 
1ine diagram is shown in Figure 1. The generator at 
bus 10 is considered to be the reference unit since it 
has a relatively large MW capacity (compared to other 
generating machines at buses 7, 8 and 9), with 
01 = 0.0014 rad. Please refer to the Appendix for 
data pertaining this system. 

A 3-phase to ground fault is considered on the 
1fne between buses 3 and 4, near bus 3. Th is is the 
worst poss ibl e 1 ocat ion for the fault in the 
transmiss ion system. The fault is cleared by the 

opening of the circuit breakers at both ends of the 
1 ine between buses 3 and 4, thus leaving machine 8 with 
only a weak link to the rest of the system. The 
critical clearing time is approximately 0.4244 sec for 
the uncontrolled system. For a fault-clearing time of 
0.4377 sees., machine 8 accelerates away from the other 
three machines and loses synchronism with the rest of 
the system. Figure 2 shows the state trajectories 07, 
68 and 69' Thus this is a good case to test the 
usefulness of our control strategies. The initial 
states, and the final desired states for this problem 
are given in Table 1. 

lOAO 

6 

Figure 1. One-line diagram. 
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Figure 2. 	 State trajectories for fault 
cleared at 0.4377 sec. 

TABLE I 

Four-Mach jne In it ial and Des ired States 


~7r.d 
Inlti<iT 

6S
rad 

&9 rad "'7 rad/sec "8rad/sec I '"9rad/sec 

State -0.01862 1.89815 -0.18245 -0.00021 0.01291 I 0.000046 

Des fred 
0.2411 0.05197 0 0 I 0State 0.1024 

The simulatlon of the proposed control structure 
on the system, under identical condit~ons, leads to the 
following observations. The re~ultlng rotor. angles 
versus time are shown in Flgure 3, wlth t~e 
corresponding power controls versus time shown In 
Figure 4. Note that the swing curves are quite stabl~. 
with generator 8 nicely damped, and remain near thelr 



---

2.00 

2.00 

respective deslred state values. The control function 
of machine 8 starts at its minimum value of -0.85 p.u. 
power, is then gradually damped, finally reaching zero. 
This solution is obtained with R =diag (100 10 10), Q 
=diag(5 5), and r =diag(O.Ol -0.01). -

IJl 1.00 
Z 
o 
~ 
~ 
o 

______ MACH .. 7 

......... """CH '*., 
-t--+--+- MACH ,. Q 

o ~ 0.00 bIL~-L~~~::~~~~~~==J:~:I~==C=~~ 

~ 
0:: 
o 
b 
0:: 

-1.00 
0.00 0.«1 0.80 1.211 1.60 2.00 2.«1 2.80 3.20 3.60 

TIME (SEC) 

Figure 3. Optimal state trajectories for 0.4377 sec. clearing time 
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Figure 4. C"ptimal control trajectories for 0.4377 sec. clearing time> 

Several additional tests were run for the same 
fault and performance measure but different fault 
clearing times. Due to limitations of space only one 
such test is included here, which will depict the 
effectiveness of the proposed control strategy.
Figures 5 and 6 show the deviations in rotor angles 
and control efforts, respectively. corresponding to a 
clearing time of 0.79578 seconds. In spite of the 
increased severity of the fault condition, the rotor 
angles settle to the desired values as in the previous 
case, but with even better damping. Also. the control 
efforts are much smoother. These are very important
characteristics of the proposed technique, which 
contrast with those reported in the literature 
[4.5,13,14J. where the effectiveness of control 
actually deteriorates or is expected to deteriorate 
with the severity of the fault condition. 

Testing of this technique on utility size systems
is under current consideration. This effort is not 
expected to pose any problems given that the prototype 
program is modular. That is, the modifications 
required to handle systems of different sizes and 
characteristics can easily be implemented without need 
to reformulate the entire procedure. 

CONCLUSIONS 

In this paper, a two-level hierarchical structure 

is oroposed to optimize the control of transient swings 
in multimachine power systems. This control technlque 
involves a number of independent local controllers 
communicating with a central coordinating controller, 
which accounts for nonlinearities and interconnections 
and yields the global optimal transient performance.
Since the computations are distributed among the many
local feedback subsystems, the storage and solution 
times are considerably less than those required by a 
single overall centralized controller. This advantage
becomes much stronger as the system size increases. 

For illustration purposes, this technique was 
applied successfully to a 4-machine system.

Although this paper considers a separable global 
cost functional. this is not an essential requirement.
A cost functional based on an energy type function 
would also be solvable, but at the expense of more 
information transfer between levels. 
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APPENDIX 


Li st of Symbols 


inertia constant of i-th machineHi 

M; (411'f )Hi 

http:diag(O.Ol


Di (2wf)di (di = damping coefficent of i-th 
machine) TABLE IV REDUCED MATRIX fOR fAULTED SYSTEM 

Ei magnitude of the voltage behind transient 
reactance of i-th machine 

rotor angle of i-th machine 

rotor speed of i-th machine 

Pei electrical output power to i-th machine 

Pmi mechanical input power to i-th machine 

Gii driving point conductance at machine i 

Gij the mutual conductance between machine and j 

Bij the mutual susceptance between machine and j 

Ui = power control for machine i-component i of U 

tf = time interval over which the control is active 

X = a state v~ctor with values in R2(n-1) 

R2(n-1) = 2(n-1) dimensional Euclidean space 

SYSTEM DATA 


TABLE I TRANSMISSION LINE CONSTANTS FOR THE SYSTEM 

(in pu of 100 MVA base) 


From Bus To Bus R(p.u.) X(p.u.) 

1 2 0.05 0.20 

2 3 0.10 0.50 

3 4 0.20 0.80 

4 5 0.10 0.30 

5 6 0.20 0.40 

6 1 0.10 0.15 

2 5 0.20 0.50 

TABLE II LOADS ON THE SYSTEM (on 100 MVA base) 


At Bus P(p.u.) Q(p.u.) 


2 0.20 0.10 

5 0.40 0.15 

6 0.30 0.10 

TABLE II I MACHINES CONSTANTS 

Generator 
Number 

MVA 
Capacity 

M 
p.u. 

I
X
d 

D 
p.u. 

p.u. 

10 100 75,350 0.004 1.0 

7 15 1,130 1.00 12.0 

8 40 2,260 0.500 2.5 

9 30 1,508 0.400 6.0 

Gij 10 

G MATRIX 

9 I'ij 10 

8 MATRIX ~-= 
10 1.0089 -0.00584 0.0 -0.0759 10 -2.7184 0.5809 0.0 0.5474 

7 -0.00584 0.0268~· 0.0 0.00691 7 0.5809 -0.8925 0,0 0.0438 

8 0.00 0.00 0.0 0.0 8 0.00 0.00 0.0 0.00 

9 -0.07585 0.00691 0.0 0.21712 9 0.5474 0.0438 b.o -1. 3363 

TABLE V REDUCED MATRIX FOR POST -FAULT SYSTEM 

G MATRIX 8 MATRIX 

10 8 9 10 8Gjj I'ij 
10 0.8477 -0.0125 -0.0775 -0.1177 10 -2.2956 0.6532 0.6504 0.744f 

7 ·0.0125 0.0294 ·0.01704 0.0085 7 0.6532 -0.8787 0.1229 0.0640 

8 -0.0776 0.01704 0.1088 0.0021 8 0.6504 0.1229 -0.8667 0.064i 

9 -0.1177 0.0085 0.0021 0.2538 9 0.7446 0.0640 0.0642 -0.981, 
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