
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

5-1995

Navigation Satellite Selection Using Neural
Networks
Daniel J. Simon
Cleveland State University, d.j.simon@csuohio.edu

Hossny El-Sherief
TRW System Integration Group

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub
Part of the Digital Communications and Networking Commons

How does access to this work benefit you? Let us know!
Publisher's Statement
NOTICE: this is the author’s version of a work that was accepted for publication in
Neurocomputing. Changes resulting from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was submitted for publication. A
definitive version was subsequently published in Neurocomputing, 7, 3, (05-01-1995); 10.1016/
0925-2312(94)00024-M

Repository Citation
Simon, Daniel J. and El-Sherief, Hossny, "Navigation Satellite Selection Using Neural Networks" (1995). Electrical Engineering & Computer Science
Faculty Publications. 133.
https://engagedscholarship.csuohio.edu/enece_facpub/133

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Original Citation
Dan Simon, Hossny El-Sherief. (1995) Navigation satellite selection using neural networks. Neurocomputing, 7(3), 247-258, doi:
10.1016/0925-2312(94)00024-M.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216944804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/133?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


Navigation satellite selection using neural networks 

Dan Simon a,*, Hossny El-Sherief b 

a 1RWTu f Lo/Jorutory, 4f)51 N. Higky Rood, Mesa, AZ 85215, USA.  
b Mwwge, Guidance Syslons and CmtroIlNport~n1, TRW Systems Integraticll Group, Bui/dirJg S82, 


Room 1051, PO Box 1310, San BenumJiIlQ, CA 924()2, USA. 

The application of neural networks to optimal satellite subset selection for navigation 
use is discussed. The methods presented in this paper are general enough to be applicable 
regardless of how many satellite signals are being processed by the receiver. The optimal 
satellite subset is chosen by minimizing a quantity known as Geometric Dilution of Precision 
(GOOP), which is given by the trace of the inverse of the measurement matrix. Ari artificial 
neural network learns the functional relationships between the entries of a measurement 
matrix and the eigenvalues of its inverse, and thus generates GDOP without inverting a 
matrix.. Simulation results are given, and the computationaJ benefit of neural network-based 
satellite selection is discussed. 

Keywords: Neural networks; Global Positioning System; Geometric dilution of precision; 
Approximation; Oassification 

1. Introduction 

A Global Positioning System (GPS) receiver generates a user position and time 
by measuring the range from the user to four or more GPS sateUites [8,9,3}. but a 
GPS receiver can process only a subset of available satellite signals. For instance, 
there may be nine satellites visible, but the receiver hardware may be limited to 
processing no more than six satellites. So before processing, the receiver must 
decide which subset to use. The optimal choice can be made by using tbe subset 
which results in the smallest magnification of satellite errors onto resultant user 



position and time. This magnification can be determined for each satellite subset 
by inverting a 4 X 4 matrix. 

Phillips [16] presented a simple and geometrically intuitive approach to this 
problem under the assumption that the GPS receiver processes exactly four 
satellite signals, and the user is not concerned with obtaining an accurate time 
reference. He showed that the optimal satellite set is that set which minimizes a 
certain geometrical measurement of a tetrahedron formed by the four satellites 
and the user. 

The approach taken in this paper is applicable to any number of satellite 
signals. It is based on the learning properties of artificial neurons, and as such 
gives an approximate rather than an exact answer. Its primary advantage lies in the 
fact that no matrix inversions are required. This translates into less required 
computational time for satellite subset selection, and the ability to begin navigating 
sooner with the best satellite subset. 

2. Geometric dilution of precision (GDOP) 

A user's GPS receiver measures a set of n ranges (R1, R2, ... , Rn) between the 
user and n GPS satellites. The GPS satellites are at positions (Xj, Yj' z), (i = 
1, ... , n). The four unknowns which the user needs to determine are the offset T 
between receiver time and GPS time, and the user position (x, y, z). We denote 
the user's best estimate of time offset and position as f and (X, y, i). We denote 
the corresponding best estimates of range as (R1, R2 , ••• , Rn). The errors between 
the true and estimated quantities are denoted by 

.1x =x-x (1) 

.1y =y-y (2) 

.1z=z-i (3) 

.1T= T- f (4) 

.1R j = R j - Ri • (5) 
The errors of the user's estimate of time and position can be determined by solving 
the following n simultaneous nonlinear equations for .1x, .1y, .1z, and .1T [10], 

2 2 2 (" ,,)2(x +.1x - Xi) + ( y +.1y - y;) + (i +.1z - Zi) = R j + .1R; - cT - c.1T 

(6) 
(i=1, ... ,n) 

where c is the speed of light. These equations can be linearized to obtain the 
matrix equation 

all a12 a13 1 .1x .1Rl 
a21 a22 a23 1 .1y 

.1z 
.1R2 

(7) 

anI an2 an3 1 c.1T .1Rn 



The n X 4 matrix in Eq. 7 is called the measurement matrix, and its elements are 
given by 

ail = (x-xi)/(Ri-cf) 

aiZ = ( y - y;) I( Ri - cf) (8) 

ai3 = (i -Zi)/(Ri - cf). 

Eq. 7 can be written more compactly as 
,.;;> --. 

fU, = r. (9) 
The least-squares solution for x is given by [15] 

x= (A1A) -lAT? (10) 
A1A is invertible if A has full rank. The uncertainty of the solution of user position 
and time is therefore related to the uncertainty of the measured ranges by follows. 

(11) 

If the covariance of r is normalized to an identity matrix, we obtain a simplified 
expression for the covariance of user position and time as 

cov(r) = I = cov(.i') = (A1A) -1. (12) 

A useful scalar measure of the uncertainty of the solution of the user position and 
time is the trace of the above matrix. This quantifies the magnification of GPS 
range measurement errors (e.g. due to satellite and receiver inaccuracies) onto 
user position and time errors. GOOP is thus defined as 

1] 1/2GOOP = [trace(A1A) - . (13) 

So GOOP can be calculated by inverting a 4 x 4 matrix. But how can GOOP be 
computed without resorting to matrix inversion? The way that humans learn most 
effectively is through induction, which is reasoning from the particular to the 
general. A computer algorithm can be designed to inductively generate a mathe-
matical function by generalizing from known input/output relationships ([22], p. 
182). Two ways of doing this are reviewed in the following sections. 

3. Neural network-based approximation 

The term backpropagation refers to a general learning rule which is imple-
mented in an artificial neural network. Good overviews can be found in [1,13,19]. 
A typical backpropagation network has three layers of neurons - an input layer, a 
middle layer (also called a hidden layer), and an output layer. The outputs of the 
input layer neurons are weighted to activate the middle layer neurons, and the 
outputs of the middle layer neurons are weighted to activate the output layer 



neurons. The effectiveness of backpropagation in learning complex, multidimen-
sional functions can be partially explained by Kolmogorov's Theorem, which was 
extended to neural networks by Hecht-Nielson [1,5,7]. This theorem states that any 
functional !Jim ~gzn mapping can be exactly represented by a three-layer neural 
network with (2m + 1) middle-layer neurons, assuming that the input components 
are normalized to lie in the range [0,1]. 

Knowing that GDOP is equal to the square root of the trace of (ATA)-l (see 
Eq. 13), we will use the following general facts about the trace and eigenvalues of a 
matrix to compute GDOP. 
(1) 	The trace of a matrix is equal to the sum of its eigenvalues ([6], p. 40). More 

specifically, the GDOP of a GPS navigation solution is equal to the square root 
of the sum of the eigenvalues of (A1A)-l, where A is defined in Eq. 7-9. 

(2) If (ATA) has eigenvalues Ai then (ATA)-l has the eigenvalues Ai-
l ([15], p. 

292). 
(3) 	The determinant of a matrix is equal to the product of its eigenvalues ([4], p. 

332). 
(4) 	If (ATA) has eigenvalues Ai then (ATA)k has the eigenvalues A~, where k is 

anY"p0sitive integer ([6], p. 43). 
Using A to denote the four-element vector of the eigenvalues of ATA, we can 
define the four functions 

Il(A) = Al + A2 + A3 + A4 = trace( ATA) 	 \ 14) 

12(A) = A~ + A~ + A~ + A~ = trace [ (A1A)2] 	 (15) 

13(A) = A{ + A~ + A~ + A~ = trace [ (ATA)3] 	 (16) 

= det(A1A). 	 (17) 

Using the above notation, the GDOP which we wish to calculate is precisely given 
by 

GDOP=(AIl+Ail+Ail+Ail)l/Z. 	 (18) 

So GDOP can be viewed as the scalar functional of the .9t4 ~.9t4 mapping t1."M 
GDOP = GDOP[ l(A)]. 	 (19) 

The mapping from j7X) to GDOP cannot be determined analytically. But this 
complex, nonlinear mapping is the type of problem at which neural networks excel. 
A neural network can be designed with four easily computable inputs 
(fl' Iz, 13' 14)' one hidden layer, and four outputs (All, Ail, Ail, Ail). The 
outputs can then be summed to give the square of GDOP. 

At this point it is of interest to investigate the solution space of Eq. 14-17. That 
is, given Ii (i = 1, 2, 3, 4), is there a unique solution for Ai (i = 1, 2, 3, 4)? We 
know that there is at least one solution. But if there is more than one solution, 
then a neural network may converge to the wrong solution and hence produce an 



incorrect GDOP for a given satellite subset. The following lemma states that the 
solution to Eq. 14-17 is unique, and thus implies that a well-trained network will 
produce an accurate value for GDOP. 

Lemma 1. Consider two 4 X 4 matrices A and B such that trace(A) = trace(B), 
trace(A2) = trace(B 2), trace(A3) = trace(B 3), and det(A) = det(B). Then A and B 
have the same eigenvalues. 

Proof. See Appendix A. 0 

4. Neural-network based classification 

Note that in picking a satellite subset to use for navigation, the receiver does 
not need to compute GDOP for every satellite subset. It only needs to find a 
subset which gives a satisfactorily low GDOP. So it can be argued that using 
backpropagation to find an approximating function to GDOP [(11M] (see Eq. 19) 
entails more work than necessary. A more efficient approach is to create a network 
which classifies satellite subsets according to GDOP. If a network can be trained 
to classify a satellite group into one of n sets (Sl"'" Sn) according to GDOP, then 
those satellite groups which are classed in the best set are candidates for naviga-
tion use. 

Classification may be the most popular application of neural networks. So it is 
not surprising that there are many different network architectures which have been 
proposed for classification. One recently proposed architecture is the Optimal 
Interpolative Net (01 Net) [20,21]. The 01 Net is a three-layer classification 
network which grows during training according to how many neurons are necessary 
for correct classification. The efficient recursive learning formulation presented in 
[20] makes the 01 Net an attractive architecture. In addition, fault tolerance can 
be implemented in 01 Net training in a straightforward manner [17,18]. 

The 01 Net can be used to select a good group of satellites with which to 
navigate by classifying groups according to GDOP. Given a group G of satellites, 
the 01 Net can be trained to classify the group as 

GESi iff GDOP(G)<~ (i=l, ... ,n) (20) 

where GDOP(G) is the GDOP of satellite group G, and T; (i = 1, ... , n) is some 
set of thresholds. 

Now the issue becomes one of determining suitable thresholds T; to use in the 
classification. If too many thresholds are used, it becomes difficult to find a diverse 
enough set of training samples, and the probability of misclassification increases. 
But if too few thresholds are used, the classification becomes too coarse, too many 
satellite groups are correctly classified in the best set, and there is less chance of 
selecting the best satellite group. 

One method of solving the dilemma of how many classes to use is to implement 
mUltiple 01 Nets. Each 01 Net uses all of the training samples, and is trained to 



classify a satellite group in one of two sets. Each 01 Net uses a different threshold 
for classification. So we use n 01 Nets, and the jth 01 Net classifies a satellite 
group according to whether its GDOP is less than or greater than the threshold 1j. 
We will use the convention TI < T2 < ... < Tn. A sequence of 01 Nets running in 
series operates as follows. 
(1) 	Set j = 1. 
(2) 	If the jth 01 Net classifies any of its inputs as being less than 1j, then any of 

the corresponding satellite groups can be used for navigation. Exit the loop. 
(3) 	If the test in step (2) fails, i.e. if the jth 01 Net classifies all of its inputs as 

being greater than 1j, then increment j by one and repeat step (2). 
Note that if all n 01 Nets classify the inputs as being greater than their 

respective thresholds, then all of the satellite groups have a GDOP greater than 
Tn. In this case, any satellite group can be used for navigation. 

At this point it is of interest to inquire as to the optimal number of OJ Nets to 
use. Fewer 01 Nets means less operational complexity and less computational 
effort, but also results in a more coarse separation of classes. A coarse separation 
of classes means that there is less likelihood of selecting the single best satellite 
group for navigation use. So the choice of how many 01 Nets to use is a trade-off 
between complexity and desired navigation accuracy. 

In determining the optimal number of 01 Nets to use, we will assume the 
following. 
(1) 	We assume that the best GOOP is a random variable taken from a uniform 

distribution on [To, Tn+d. 
(2) 	We assume that the n 01 Nets have thresholds Ti(i = 1, ... , n) which are 

equally spaced by ~T. 
(3) We assume that the relative importance of operational complexity is W, while 

the relative importance of navigation accuracy is 1 - W. 
Under these assumptions we determine the optimal number of 01 Nets as 

follows. 

Theorem 1. The optimal number n of 01 Nets is given by 

n = max[ 1, round(V(1- W)(Tn+l - To)/W -1)]. 	 (21) 

Proof. See Appendix B. 0 

5. Simulation results 

The two neural networks described in this paper were simulated on a VAX 8650 
computer. Training took place for a GPS receiver located at 5000 feet above San 
Francisco (37.5 degrees latitude, 122 degrees longitude) in an 18-satellite constella-
tion. Once each hour, for 12 hours, the measurement matrix (A) was generated for 
each visible four-satellite subset. The functions fi(· ) (i = 1, 2, 3, 4) (see Eq. 14-17) 
were calculated, and Ail (i = 1, 2, 3, 4) were calculated using the IMSL math 



library. The function values Ii were normalized to the range [0.2, 0.8], saved in a 
training file, and then used to train the neural networks. If Ii') (the determinant 
of AJA) was less then 0.12, the satellite set was immediately discarded from 
consideration. Such a low determinant can be shown by simulation to correspond 
to a GOOP too high for possible use. At each measurement time there were 
between five and seven visible satellites. There were thus between 15 and 35 
four-satellite sets from which to choose the best set. 

The networks were then tested on a simulated missile trajectory originating 
from Vandenberg Air Force Base in California. The powered portion of the flight 
lasted for 120 seconds, during which the missile travelled about 3S in longitude, 
0.20 in latitude, and 150 miles in altitude. The trained neural networks were used 
to choose the best satellite group every two seconds. There were between five and 
seven satellites visible during the 120-second boost phase, and the satellite configu-
ration with the best GOOP changed twice during that time (from a high of about 
3.1 to a low of about 2.3). 

5.1. Backpropagation simulation 

Backpropagation was used to learn the correct network weights and external 
inputs so that the four I/i> inputs were mapped into the correct eigenvalue 
inverses. The backpropagation network had four input neurons corresponding to Ii 
(i = 1, 2, 3, 4), nine hidden layer neurons, and four output neurons corresponding 
to Ai-

1 (i = 1, 2, 3, 4) (see Eqs. 14-17). The network was trained with a learning 
rate of 0.9 and a momentum rate of 0.7. In order to achieve good training, we 
found it necessary to generate weight changes only for output errors above a 
specified error tolerance. In other words, any errors below the tolerance were 
considered perfect responses [2]. We used an initial tolerance of 50%, and 
decreased it as learning progressed. Backpropagation is a notoriously slow learning 
method, and it lived up to its reputation. The network converged to a minimum 
after about 23400 learning iterations (four hours and 47 minutes of VAX CPU 
time). 

It can be easily shown from Eqs. 7-9 that trace (ATA) = 2n, where n is the 
number of satellites processed by the receiver. So the input /1(·) is a constant. 
This constant was still used as an input to the neural network, however, for the 
sake of generality. In addition, this constant input increased the size of the 
network, thus affording more flexibility in learning. The backpropagation net 
calculated a total of 1036 GOOPs during the simulated flight with a maximum 
error of 4.00% and an rms error of 1.44%. 

5.2. Optimal interpolative net simulation 

Several 01 Nets were trained for several different thresholds of GOOP. Each 
01 Net had only three input neurons corresponding to (f2' 13' and 14) (recall that 
11 is constant). Each 01 Net had two output neurons. Ideally, a satellite group with 
a GOOP less than the threshold would have an output vector of [1,0] and a group 



Table 1  
Optimal interpolative net characteristics (150 training inputs)  

GDOP threshold Number of hidden neurons Classification rate (%) 

2.4 12 97.0 
2.6 14 93.1 
2.8 17 87.4 
3.0 16 94.0 
3.2 15 100 
3.4 12 92.3 

with a GDOP greater than the threshold would have an output vector of [0,1]. The 
number of hidden layer neurons varied from one 01 Net to the next as determined 
by the learning algorithm. Each 01 Net used a fitting parameter p = 0.1, an 
ill-conditioning threshold 1'1 = Ie - 8, and an error reduction threshold 1'2 = Ie - 3 
(see Sin and deFigueiredo [20] for descriptions of these parameters). Each 01 Net 
learned the training data in about one second of VAX CPU time. Table 1 shows 
the characteristics of several 01 Nets which were trained and tested with the data 
described earlier in this section. 

5.3. Comparison of backpropagation and 01 Net learning 

The most notable difference between backpropagation approximation and 01 
Net classification is the huge difference in training time. Backpropagation required 
about four hours and 47 minutes of VAX CPU time, while 01 Net training 
required about one second of training time. So using an 01 Net results in a savings 
of about 99.994% of the training time required for backpropagation. However, 
backpropagation gives a more accurate approximation than the 01 Net. Backprop-
agation can be used for arbitrarily exact approximation, but the 01 Net can only be 
used for either/or classification. The decision of which type of network to use 
must be made on the basis of the relative importance of training time versus 
exactness. 

6. Conclusion 

Two approximate methods of choosing an optimal subset of visible navigation 
satellites have been presented. The methods are based on the learning abilities of 
artificial neurons, and apply regardless of how many satellites the navigation 
system is tracking. A simulation study was shown to verify the applicability of the 
proposed approach. The results given in this paper clearly demonstrate the 
feasibility of neural network-based satellite selection. 

The strength of using a neural net to determine GDOP is in its computational 



efficiency. If a conventional LV-decomposition method [14] is used to invert a 
4 X 4 matrix in order to determine GOOP, a total of 160 floating point operations 
are required for each matrix inversion. (A floating point operation is an add, 
subtraction, multiply, or divide.) If there are nine visible satellites and the user's 
receiver has the capability of processing signals from four or five of those satellites, 
there are a total of 126 possible satellite configurations from which to choose. This 
would require a total of (126X160) = 20160 floating point operations in order to 
determine the best satellite set to use. The computational effort required could 
result in a short but noticeable delay before a navigation solution could be 
generated. This delay could be important for aircraft, missiles, or other platforms 
for which immediate navigation data are desired. An electronic implementation 
[12] of a neural network of the type described in this paper would be able to 
determine the best satellite configuration (in terms of GOOP) virtually instanta-
neously. This would enable the use of a high-integrity navigation solution without 
the delay required for many matrix inversions. 

Of course, a GPS receiver designer and user wants some assurance that the 
GOOP computation is not only quick, but also accurate under all possible 
conditions. The universal approximation property of multilayer networks can be 
used to give some assurance of the accuracy of neural network based GOOP 
compuation. Consider the GOOP estimator as a machine which inputs the ele-
ments of the A1A matrix and outputs GOOP. Since the eigenvalues of a matrix 
depend continuously on the elements of the matrix [6, Appendix 0], and since 
GOOP is a continuous function of the eigenvalues of the A1A matrix, we know 
that GOOP is a continuous function of the entries of the input matrix. We also 
know that there exists a feedforward neural network with one hidden layer which 
can approximate any given continuous function arbitrarily well [7]. Therefore, 
there exists a neural network with one hidden layer which can map the elements of 
the ATA matrix to GOOP with arbitrarily good accuracy. Of course, the GOOP 
networks in this paper include the intermediate step of computing the determinant 
and traces of A1A. Nevertheless, the universal approximation result of [7] gives us 
good reason to believe a properly trained GOOP network will give good results. As 
with any approximation method (neural network based or otherwise), extensive 
testing should be conducted to satisfy oneself of the accuracy of the approximation. 

The simulation results presented in this paper show that the backpropagation 
network gives very accurate results at the expense of long training time. Therefore 
a less accurate interpolative classification network which can be trained more 
quickly was presented as an alternative. Of course, other architectures and training 
algorithms could also be used. In general, one of the key questions which a neural 
network engineer needs to answer is, 'Which network architecture and training 
algorithm should I use?' The contribution of this paper is to demonstrate the 
general feasibility of navigation satellite selection using neural networks. The 
question of how to choose a network architecture and training method for a 
particular problem is an important issue which is not addressed in this paper, but 
which deserves consideration, and which has been receiving increased attention in 
the neural network community [11]. 



Appendix A - Proof of Lemma 1 

Consider two 4 X 4 matrices A and B such that trace(A) = trace(B), trace(A2) = 
trace(B 2), trace(A3) = trace(B 3), and det(A) = det(B). Denote the characteristic 
equations of A and B as 

.1( A) = A4 + a l A3 + a2A2+ a 3A+ a4 (22) 

.1( B) = A4 + bl A3 + b2A2 + b3A+ b4 • (23) 

Then, using Fadeev's method ([15] p. 285), the ak can be found using the recursion 

Pk+l =APk + akI, PI = I (24) 

ak = - k1 
trace(APk ) (25) 

and similarly for the bk • This gives 

= -trace( A) (26)a l 

a2 = - ttrace( A2 + alA) (27) 

a3 = -ttrace(A3 +aIA
2+a2 A) (28) 

a4= det( A) = - ±trace( A4 + alA 3 + a2 A 2 + a3A) (29) 

and similarly for the bk. Using these expressions for the ak and bk, it can be 
shown using the premise of the lemma that .1(A) = .1(B), and hence A(A) = A(B). 
o 

Appendix B - Proof of Theorem 1 

We want to choose the number of 01 Nets to minimize some combination of 
total computational effort and GDOP. More 01 Nets results in more computa-
tional effort, but also results in finer separation between GDOP classes. The finer 
separation results in a stronger possibility of choosing the optimal satellite set. 

Assume that the best GDOP is a random variable uniformly distributed on 
[To, Tn+tl. Assume that 01 Net j classifies each input as having a GDOP either 
above or below threshold ~(j = 1, ... , n), and ~+l - ~ = 8T (j = 0, ... , n). As-
sume that the 01 Nets are executed in sequential order. Let m be the number of 
01 Nets which must be exercised before a GDOP is classified as less than the 
corresponding threshold. That is, if GDOPo is the best available GDOP, then 
To < TI < '" < Tm- 1 < GDOPo< Trn < ... < Tn+l· Since GDOPo is assumed to 
be a random variable uniformly distributed on [To, Tn+tl, m is a discrete random 
variable with probabilities P(m = k) = (Tk - Tk-l)/(Tn+l - To) (k = 1, ... , n). 
Therefore the expected value of m is given by E(m) = n/2. Note that m = k = Trn 
= Tk (k = 1, ... , n - 1). But if m = n then either Trn = Tn (if the mth 01 Net 
classifies at least one GDOP less than Tn)' or Tm = Tn+l (if the mth 01 Net 



classifies all GnOps greater than Tn). So Tm is a discrete random variable with 
probabilities P(T = Tk ) = 1/(n + 1) (k = 1, ... , n + 1). Therefore the expectedm 
value of Tm is given by E(Tm) = To + 8T(n + 2)/2. So the problem of finding an 
optimal number n of 01 Nets can be stated as 

min[WE(m) + (1- W)E(Tm)] 	 (30) 
n 

where W is the relative importance of computational effort, and 1 - W is the 
relative importance of navigation accuracy. The above problem reduces to 

~n(Wnj2+ (1- W+O + (T'+I;:~~~ + 2)]) 	 (31) 

which has the solution 

n = -1 ± /(1- W)(Tn+l - To)/W. (32) 

Given the fact that n must be a positive integer, we obtain the result of Theorem 
1. 	 0 
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