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SUM NORMAL OPTIMIZATION OF 

FUZZY MEMBERSHIP FUNCTIONS 


DAN SIMON 

CI1l1le14nd State UniVeT3ity  

Department of ElectriCIU and Computer Engineering  
1960 E<ut 2.lth Street 

Cleveland, Ohio 4.115 

Given a. fuzzy logic system, how can we determine the membership functions that will 
result in the best performance? H we constrain the membership functions to a certain 
shape (e.g., t riangles or trapezoids) then each membership function can be parameteri'l:ed 
by a small number of variables and the membership optimization problem can be reduced 
to a parameter optimization problem. This is the approach that is typically taken, 
hut it results in membership functions that are not (in general) sum normal. That is, 
the resulting membership function values do not add up to one at each point in the 
domain. This optimization approach is modified in this paper so that the resulting 
membership functions are sum normal. Sum normality is desirable not only for its 
intuitive appeal but also for computational reasons in the real time implementation of 
fuzzy logic systems. The sum normal constraint is applied in t his paper to both gradient 
descent optimization and Kalman filter optimization of fuzzy membership fu nctions. The 
methods are illustrated on a fuzzy automotive cruise controller. 

Keyword.J: Learning; estimation; training; optimization; gradient descent; K alman fil. 
tering; constraints . 

1. Introduction 

The design of a fuzzy logic system (FLS) includes the design of a rule base, the 
design of input scale factors, the design of output scale factors, and the design 
of the membership functions. Input scale factors transform the real inputs into 
normalized values, and output scale factors transform t he normalized outputs into 
real values. 

Some studies have shown that FLS performance is more dependent on mem· 
bership function design t han rule base designl. Other studies have discussed rule 
base design2,3.4. The tuning of input and output scale factors is known as context 
adaptation (because t he scale factors are determined by the available data, i.e., the 
problem context). Some researchers have studied genetic algorithms for context 
adaptation&,6. Others have used genetic algorithms to design the rule base and the 
scale factors when the normalized membership functions are fixed7 . Some studies 



used neural networks for context adaptation8. A statistical approach for input scal­
ing has also been proposed9. This depends on the Gaussian distribution of the input 
data. A genetic learning process for the membership function design, coupled with 
a heuristic method for the rule base design, has been proposed2. A fuzzy training 
process for input scale factors has also been proposedlO. 

This paper is restricted to the tuning of membership functions. Researchers have 
used many different methods over the past decade to optimize fuzzy membership 
functions. These methods include genetic algorithmsll ,12, neural networks13,14, 
evolutionary programming15 , geometric methods16 , fuzzy equivalence relations17 , 
heuristic methods18 , gradient descent19,1l,20, and Kalman filtering21. Other meth­
ods for membership optimization include the simplex method22,23, least squares24,25, 
and other numerical techniques26 . 

Some of these methods use the derivatives of the fuzzy system's performance 
with respect to the membership function parameters, and some of these methods do 
not use these derivatives. Derivative-free methods can be desirable in that they do 
not require the derivative of the objective function with respect to the membership 
function parameters. They are more robust than derivative-based methods with 
respect to finding a global minimum and with respect to their applicability to a 
wide range of objective functions and membership function forms. However, they 
typically tend to converge more slowly than derivative-based methods. Derivative­
based methods have the advantage of fast convergence but they tend to converge to 
local minima. In addition, due to their dependence on analytical derivatives, they 
are limited to specific objective functions, specific types of inference, and specific 
types of membership functions. 

In this paper we present a modified form of the gradient descent and Kalman 
filter methods27,28,21 for the optimization of asymmetric triangular membership 
functions. Gradient descent and Kalman filtering are effective for fuzzy membership 
function optimization but they result in membership functions that are not sum 
normal. That is, the membership function values do not add up to one at each 
point in the domain. Sum normal membership functions are desirable for several 
reasons. First, sum normality is assumed in some approaches to fuzzy decision 
making29 . Also, sum normality is desired by many fuzzy system engineers for its 
aesthetic and intuitive appea13o . Some rule base reduction algorithms guarantee 
that a sum normal set of membership functions will remain sum normal even after 
rule base reduction31 . Finally, fuzzy logic software can be written with less code 
and greater computational efficiency if it can be assumed that the membership 
functions are sum normal. This last item is simply an example of the general rule 
that software can be written smaller and faster if its inputs have more constraints 
and therefore the software requirements can be made less general. 

Membership function optimization subject to the constraint of sum normality 
could also be performed via context adaptation. That is, a set of sum normal mem­
bership functions could be defined, and then scaling functions could be tuned under 
the constraint that the scaled membership functions remain sum normal. An ap­



proach similar to this has already been proposed 2 . However, in that paper a genetic 
algorithm was used for context adaptation. As mentioned above, this derivative­
free method has the benefit that it can easily escape from a local minimum. On 
the other hand, there is no guarantee that the final solution is even locally min­
imum. The approach we consider in this paper is based on the derivatives of an 
error function with respect to the membership function parameters. This has the 
advantage of fast convergence to a local minimum, but some heuristics are needed 
to escape from a local minimum. This is not to say that one method is superior or 
inferior to another. The choice of derivative-based or derivative-free optimization 
must be based on tradeoffs between a wide range of issues, including the fidelity of 
the initial guess, computational effort, and flexibility with respect to membership 
function types. 

The next section reviews the use of gradient descent and Kalman filtering for 
membership function optimization. Section 3 shows how those methods can be 
modified to guarantee sum normality in the resulting membership functions. Sec­
tion 4 contains some simulati.on results of a fuzzy automotive cruise controller, and 
Section 5 contains some concluding remarks. The Appendix contains the derivative 
formulas that are used in this paper. 

2. Fuzzy system optimization via gradient descent and Kalman filtering 

We assume that our fuzzy system uses correlation-product inference32 , fit values 
are combined with the min operator, and the input and output membership func­
tions are (possibly asymmetric) triangles. The initial rule base and some initial 
membership functions are given, perhaps constructed on the basis of experience, or 
trial and error. The generation of rule bases is a difficult and important task in the 
construction of fuzzy logic systems but is not discussed in this paper. 

Consider the ith fuzzy membership function of the jth input Zj. We will denote 
its modal point as Cij, its lower half-width as bij, and its upper half width as bt. 
The membership function attains a value of 1 when the input is Cij. As the input 
decreases from Cij, the membership function value decreases linearly to 0 at Cij - bij, 
and remains at 0 for all inputs less than Cij - bij. As the input increases from Cij, 

the membership function value decreases linearly to 0 at Cij + bt, and remains at 
o for all inputs greater than Cij + bt. The degree of membership of the jth crisp 
input Zj in its ith fuzzy set is therefore given by 

if - b-:-. < (z· - c··) < 02J - J 2J-

if 0 ::; (Zj - Cij) ::; bt (1) 
otherwise. 

We will further assume that our fuzzy system has only one output. This restriction 
is made only for notational convenience and does not affect the theoretical results 
presented herein. Suppose there are a total of M rules in the FLS. The consequent 
of the jth rule is a triangular fuzzy set with modal point "(j, lower half-width as 
(3;, and upper half width (3j. That is, the fuzzy set of the consequent of the jth 
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rule is given as 

l+(y-,j)/13; if -13;:::; (y-,j):::;O 
mj(Y) ~ { 1 - (y - ,j) /131 if 0 :::; (y - ,j) :::; 131 (2) 

o otherwise. 

Suppose that the jth rule is a consequent of Zl belonging to fuzzy set i and Z2 

belonging to fuzzy set k. Then the activation level of the consequent of the jth rule 
is Wj, which is given as 

Wj = min[Ji1 (zd, fk2(Z2)]. (3) 

So the fuzzy output when Zl E fuzzy set i and Z2 E fuzzy set k is given as 

(4) 

The overall fuzzy output m(y) takes into account the possibility that each input 
falls into more than one fuzzy set so more than one rule can be fired at the same 
time. 

M 

m(y) = L rlij(Y). (5) 
j=l 

The fuzzy output is mapped to a crisp number f) using centroid defuzzification33 . 

, "2:f=1 WjrjJj 
y= M . (6)

"2: j=l wjJj 

r j and Jj are the centroid and area of the jth output fuzzy membership function. 
The centroid of mj (y), the jth output fuzzy set, is defined as as 

r. _ Jymj (y) dy (7)
J - Jmj (y) dy . 

After substituting (2) into the above equation and working through a couple of 
pages of straightforward calculus and algebra, we obtain 

r. _ 131 (3,j + 13j) + 13; (3,j - 13j) 
(8) 

J - 3(131 +13j) 

This can easily be extended to the case where there are more than two inputs and 
one output but the notation becomes cumbersome. 

If the fuzzy membership functions are triangles as assumed in this paper, derivative­
based methods can be used to optimize the modal points and the half-widths of the 
input and output membership functions. Consider an error function given by 

LN 
1 2E 2N gnEn 

n=l 
En Yn - Yn· (9) 



where N is the number of training samples, Yn is the target output of the fuzzy 
system, Yn is the actual output of the fuzzy system, and gn is a time-dependent 
weighting function. The role of gn will in illustrated in the example of Section 4. 
We can minimize E by using the partial derivatives of E with respect to the modal 
points and half-widths of the input and output fuzzy membership functions. We can 
obtain expressions for these derivatives using (1)-(6). Then, using the differentiation 
chain rule on (9), we can obtain expressions for the derivative of the error function 
with respect to the half-widths and modal points. We can then use those derivatives 
in an optimization scheme to minimize the error function with respect to the fuzzy 
membership function parameters. This idea has been previously suggested33 and 
later applied to phase-locked loop filter design and motor current estimationll ,28. 

The derivative formulas are shown in the Appendix. 

2.1. Gradient descent 

After the partial derivatives are computed as described above, the gradient descent 
rule can be used to update the independent variables from the kth iteration to the 
(k + l)st iteration as follows. 

Cij(k + 1) cij(k) - 'fJ -8E I 
8c··2J Gij (k) 

bij(k + 1) b-(k) 8E I
ij - 'fJ 8b-:-' 

2J bij(k) 

bt(k + 1) bt(k) - 'fJ :~ I 
2J b1j(k) 

'Yi(k + 1) 'Yi(k) - 'fJ 	 -8EI 
8'Yi ,,/i(k) 

(3i(k + 1) (3-(k) _ 8E I 
i 'fJ 8(3-

i f3;(k) 

(3t(k + 1) (3t(k) -	 'fJ :; I (10) 
i f3t(k) 

where 'fJ is the gradient descent step size. More generally, a different value of'fJ could 
be used in each of the six above equations, depending on the sensitivity of the error 
function to each of the independent variables. Usually some method is used with 
the gradient descent algorithm to try to avoid convergence to a local minimum. For 
instance, after a local minimum is found the solution can be randomly perturbed 
and the gradient descent algorithm can be restarted in an attempt to find a better 
local minimum. 



2.2. Extended Kalman filtering 

Derivations of the extended Kalman filter are widely available in the literature34,35. 

In this section we briefly outline the algorithm and its application to fuzzy mem­
bership function optimization. In general, we will use lower-case letters to refer to 
scalars, bold-faced lower case letters to refer to column vectors, and upper case let­
ters to refer to matrices. We use the convention that the derivative of an m-element 
vector a with respect to a p-element vector b is defined as 

(11) 

Consider a nonlinear finite dimensional discrete time system of the form 

(12) 

where the vector Xn is the state of the system at time n, Wn and Vn are noise, d n is 
the observation vector, and f(·) and hO are nonlinear vector functions of the state. 
The problem addressed by the extended Kalman filter is to find an estimate Xn+l 
of Xn+l given {do, ... , d n }. It can be shown that the desired estimate xn can be 
obtained by the recursive extended Kalman filter 

Fn a~~) Ix=xn 

Hn a~~) Ix=xn 
Kn PnHJ(R + HnPnHJ)-l 

xn f(Xn-l) + Kn[dn- 1 - h(Xn-l)) 

Pn+1 Fn(Pn - KnHnPn)FJ + Q (13) 

where Q and R are the covariance matrices of {wn } and {vn } respectively. It is 
assumed that {wn } and {vn } are independent zero-mean noise processes, although 
this assumption can be relaxed with modifications of the Kalman filter. Kn is known 
as the Kalman gain. In the case of a linear system it can be shown that Pn is the 
covariance matrix of the state estimation error, and the state estimate Xn+l is opti­
mal in the sense that it approaches the conditional mean E[Xn+l I (do, d 1,"', d n )) 

for large n. For nonlinear systems the filter is not optimal and the estimates are 
only approximately conditional means. 

We can view the optimization of fuzzy membership functions as a weighted least­
squares minimization problem, where the error vector is the difference between the 
fuzzy system outputs and the target values for those outputs. Consider a fuzzy 
system that has L outputs. We use d n to denote the target vector for the fuzzy 



system outputs at the the nth time step, and h(k) to denote the actual outputs at 
this time step at the kth iteration of the Kalman filter. In order to cast the mem­
bership function optimization problem in a form suitable for Kalman filtering, we 
let the membership function parameters constitute the state of a nonlinear system, 
and we let the output of the fuzzy system constitute the output of the nonlinear 
system to which the Kalman filter is applied. 

We will consider a two-input, one-output fuzzy system. This restriction is made 
only for notational convenience and the results in this paper can be (conceptually) 
easily extended to an unlimited number of inputs and outputs. Consider a fuzzy 
system that has f.L fuzzy sets for the first input, v fuzzy sets for the second input, and 
Ii fuzzy sets for the output. As before we denote the modal point and half-widths of 
the ith fuzzy membership function of the jth input by Cij, bij, and bt respectively. 
We denote the modal point and half-widths of the ith fuzzy membership function 
of the output by "Ii, (3i- , and (3: respectively. The state of the nonlinear system can 
then be represented as 

x = [ b1l btl Cu b;;l btl CJod 

b12 bt2 C12 b;;2 bt2 Cv 2 

(31 (3t "II (3;; (3;; "II< ] T . (14) 

The vector x thus consists of all of the fuzzy membership function parameters 
arranged in a column vector. The nonlinear system model to which the Kalman 
filter can be applied is 

(15) 

where h(xn) is the fuzzy system's nonlinear mapping from the membership func­
tion parameters to the single fuzzy system output, and Wn and Vn are artificially 
added noise processes. The addition of these noise processes is a commonly prac­
ticed technique in parameter estimation algorithms to increase the stability of the 
estimator34,36. Now we can apply the Kalman recursion (13). f(·) is the identity 
mapping, d n is the target output of the fuzzy system, and h(xn) is the actual out­
put of the fuzzy system given the current membership function parameters. Hn 
is the partial derivative of the fuzzy output with respect to the membership func­
tion parameters (which can be computed as described and referenced earlier in this 
paper), and Fn is the identity matrix. 

The Q and R matrices are tuning parameters which can be considered as the 
covariance matrices of the artificial noise processes W n and v n respectively. The 
determination of Q and R is a difficult task that remains an open research problem37 . 

However, some general guidelines can be given. Looking back at (12), we see that 
Wn is the noise process that affects the state vector and v n is the noise process 
that affects the measurement. As we increase Q we tell the filter that the state 
is likely to change more at each time step. This results in a filter that is more 



responsive to changes in the measurement. As we increase R we tell the filter that 
our measurement is more noisy. This results in a filter that is less responsive to 
changes in the measurement. 

2.3. Computational savings 

In order to reduce the computational effort of the gradient descent iteration in 
Section 2.1, a pseudo-steady-state assumption can be made in (10) that 

8E I ~ 8EI 
Oc" 8e··'J Cij (k) 'J Cij(O) 

8E I ~ 8E I 
8b-:: 8b-::· 

'J bij(k) 'J bij (0) 

8E I ~ 8EI 
8bt + ( ) 8bt +()bij k bij 0 

8EI ~ 8EI 
8'Yi ,ilk) 8'Yi ,i(O) 

8E I ~ 8E I 
8/3i- f3; (k) 8/3i- f3; (0) 

8E I 8E I~ -----=i=" . (16) 
8/3: f3t(k) 8/3i f3t (0) 

That is, if we assume that we begin the optimization process close to the optimal 
membership function values then we can assume that the gradients do not change 
much during the optimization process. That means we can calculate the partial 
derivatives only once (at the first iteration), which saves a lot of computational 
effort. 

We can do something similar for the Kalman filter of Section 2.2. We assume 
in (13) that 

(17) 

So the calculation of the partial derivative matrix can be performed only once. This 
assumption is only valid if the partial derivative of the system output h(·) with 
respect to the state estimate xn does not change much from iteration to iteration35 . 

This technique is simply a tradeoff between computational effort and theoretical 
integrity. In practice it turns out that this tradeoff often results in only a small 
dropoff in peformance at a fraction of the computational cost. 



3. Fuzzy system optimization with sum normal constraints 

The optimization proposed in the previous section works well but results in member­
ship functions that are not sum normal. This will be seen in the simulation results 
presented later in this paper. Sum normality is sometimes desirable in membership 
functions for several reasons as described in Section 1 of this paper. 

At first glance it might be thought that sum normality could be imposed on 
gradient descent and Kalman filtering by simply optimizing the membership func­
tions with respect to the modal points, and then using the sum normal condition 
to determine the half-widths. That is, we could optimize with respect to the modal 
points but not the half-widths. Then the sum-normal constraint could be used to 
determine the half-widths. This sounds feasible but it does not work either in prin­
ciple or in practice. When the modal point derivatives are computed apart from 
the half-width derivatives, and then the half-widths are computed by some other 
method, the resultant fuzzy logic system does not perform well. This approach is 
like minimizing a multivariable function with respect to one parameter and then 
independently changing all the other parameters. The resultant function value will 
not be minimum and there is no reason to suppose it will even have moved in the 
right direction. If we independently change all the other parameters then the point 
at which we are located in function space has changed and our derivative calcu­
lation is no longer valid. This section shows that the optimization discussed in 
the previous section can be modified in a more rigorous way so that the resultant 
membership functions are optimal under the sum normality constraint. 

As above we consider a two-input, one-output fuzzy logic system. The first 
input has f.J, fuzzy sets. We denote the modal points and half-widths of the fuzzy 

, membership functions of the first input by Cil, biJ., and btl (i = 1, ... , f.J,). If the 
membership functions for the first input are sum normal then the following equalities 
hold: 

Cll + btl C2l 

Cll + b2l = C2l 

C2l + btl c3l 

c2l + b3l C3l 

CJ.L-l,l + bt-l,l CJ.Ll 

CJ.L-l,l + b~l CJ.Ll· (18) 

We have a similar set of equalities for the second input. The fuzzy logic system has 
v fuzzy sets for the second input. We denote the modal points and half-widths of the 
fuzzy membership functions of the second input by Ci2, bi2, and bi2 (i = 1, ... , v). If 
the membership functions for the second input are sum normal then the following 
equalities hold: 



C12 + bt2 C22 
C12 + b2"2 C22 
C22 + bt2 C32 
C22 + b3"2 C32 

Cv -l,2 + bt-l,2 Cv 2 

Cv -l,2 + b-;;2 (19) 

Finally we have another set of equalities for the output. The fuzzy logic system 
has 1'1, fuzzy sets for the output. We denote the modal points and half-widths of the 
fuzzy membership functions of the output by "Ii, fJi, and fJt (i = 1, ... ,1'1,). If the 
membership functions for the output are sum normal then the following equalities 
hold: 

"II + fJi "12 
"II + fJ2" "12 
"12 + fJi "13 
"12 + fJ3" "13 

"11<-1 + fJ:- 1 "II< 
"11<-1 + fJ;; = "II<' (20) 

Equalities (18)-(20) can be written in matrix form as 

Lx=O (21) 

where x is the vector in (14) and L is the block diagonal matrix 

(22) 

The Li matrices are derived from (18), (19), and (20) respectively. Ll is a 2(p, -
1) x 3p, matrix, L2 is a 2(v -1) x 3v matrix, andL3 is a 2(1'1, -1) x 31'1, matrix. Each 
Li matrix is of the form 

M2 02X3 02x3 

Li = 
[ M, 

02;X3 
Ml M2 02x3 

(23) 

02X3 02X3 Ml M2 1 



where 02X3 is the 2 x 3 matrix containing all zeros, and the M j matrices are given 
by 

o 1 
o 0 ~ ] 
o 0 -1 ] (24)-1 .1 0 

Therefore, in order to optimize fuzzy membership functions but with the constraint 
that they remain sum normal, we can project the unconstrained solution onto the 
constraint surface defined by (21). If we use gradient descent then we want to project 
the solution at each gradient descent iteration given by (10) onto the constraint 
surface. If we use Kalman filtering then we want to project the solution at each 
Kalaman filter iteration given by (13) onto the constraint surface. 

This projection problem has previously been explored for general parameter 
estimation and Kalman filtering problems38 ,39. Suppose that we have a parameter 
estimate x such as that given by (10) or (13). We desire to find a related parameter 
estimate x that is "close" to x in some sense but that satisfies a constraint like (21). 
That is, we want to find the solution to 

mjn(x - xfW(x - x) such that Lx = [; (25) 
x 

where W is an arbitrary positive-definite weighting matrix and L is full rank. The 
solution to this problem is given by the following38 ,39. 

(26) 

It can be see from (21) that in our case [; = O. It can be seen from (22)-(24) that L 
is full rank and thus satisfies the premise of (25). Therefore we can carry out a sum 
normal contrained fuzzy membership optimization algorithm using (10) for gradient 
descent or (13) for Kalman filtering, augmented with the projection formula (26). 

4. Simulation results 

In this section we illustrate the use of gradient descent and Kalman filter training 
for fuzzy membership function parameters, both with and without sum normal 
constraints. The application is a fuzzy automotive cruise control system30 . An 
automobile's acceleration can be stated as a function of the external forces acting 
on the vehicle: engine force fe (a function of the throttle position), drag force fd (a 
function of velocity), and gravity-induced force fg (a function ofroad grade). If we 
assume that the time constant of the engine is small relative to the time constant 
of the vehicle, we obtain 

mv = fe(8) - iJ(v) - fg 

where m is the vehicle mass, v is the velocity, and 8 is the throttle position. The 
external forces are given by 



Jg = mgsin(grade) 

where ,,(, a, g, and Ji are constants. We will use the values m = 1000 kg, "( = 12500 
Newtons, and a = 4 N / (m/s)2. Ji is the engine idle force, which we will assume 
to be 1000 N, and 9 is the acceleration due to gravity, which is about 9.81 m/s2. 

A 2-input, I-output fuzzy cruise control can be designed by defining error as 
the reference speed minus the measured speed, and implementing rules such as 
the following: "If the error is small positive, and the change in error is zero, then 
change the throttle position by a small positive amount." Another rule might be, "If 
the error is zero, and the change in error is large positive, then change the throttle 
position by a small positive amount." A rule base was defined with five membership 
functions each for the two inputs and the output. So /1, v, and K, in (14) are all 
equal to five. The rule base is shown in Table 1. 

Table 1. Rule Base for Fuzzy Cruise Controller. NL = Negative Large, NS = Negative Small, Z 
= Zero, PS = Positive Small, PL = Positive Large. 

Error 
NL NS Z PS PL 

NL NL NL NS NS NS 
Error NS NL NS Z Z Z 

Change Z NL NS Z PS PL 
PS Z Z Z PS PL 
PL PS PS PS PL PL 

Since there are a total of three fuzzy variables (two inputs and one output), and 
each fuzzy variable has five membership functions, the fuzzy cruise control has a 
total of 15 membership functions. Each membership function is constrained to be 
triangular so each membership function has three parameters (a modal point and 
two half-widths). The fuzzy cruise control therefore has a total of 45 parameters to 
be determined. 

Gradient descent can be used to optimize the fuzzy cruise control with respect to 
these 45 parameters. For the Kalman filter, these 45 parameters are arranged in a 
vector as shown in (14) and hence comprise the 45-element state of the Kalman filter. 
If we desire to maintain sum normality in our optimized membership functions, 
we use the projection equation (26). In this paper we use W = I so that each 
membership function parameter is given an equal weight in the projection equation. 
The matrix L in (26) is a 24 x 45 matrix. 

The error function (9) was defined as the reference speed minus the vehicle speed. 
The fuzzy cruise control was simulated using Matlab for 15 s with a controller update 
period of 0.25 s, so N in (9) was equal to 60. The weighting function gn in (9) was 
set to n/N to give a greater weight to errors at the end of the training interval; in 
other words, we were more interested in decreasing settling time than in decreasing 
overshoot. 

Gradient descent and Kalman filtering (both with and without sum normal 



constraints) were implemented in Matlab to optimize the membership functions of 
the controller inputs and output. The pseudo-steady-state formulation as described 
in Section 2.3 was used to decrease training time. We tuned the gradient descent and 
Kalman filter parameters manually for the best convergence results. For gradient 
descent we obtained rJ = 10 (unconstrained) and rJ = 30 (constrained). For Kalman 
filtering we obtained Po = lE6, Q = 4E3, and R = 1 (unconstrained) and Po = 
lE18, Q = 4E3, and R = IE - 8 (constrained). The training setup consisted of the 
cruise control operating in steady state on a fiat road with a sudden 10% increase 
in the road grade at time = O. The reference speed of the cruise control was set at 
40 mls so the objective of the controller was to maintain a 40 mls velocity even 
after encountering a sudden 10% increase in road grade. 

Figure 1 depicts the progress of training with gradient descent and Kalman 
filtering (both with and without sum normal constraints). The figure indicates that 
the Kalman filter methods converge to better solutions than the gradient descent 
methods. As expected, the unconstrained algorithms converge more quickly and to 
better solutions than the constrained algorithms. 

constrained gradient descent 

unconstrained gradient descent 

constrained Karman filter 

unconstrained Kalman filter 

10'OL----cC10--2:'c-O-----c30~-~40-----,J50 
iteration 

Fig. 1. Training Progress. 

The computational requirements of the gradient descent and Kalman filter meth­
ods are about the same. Although the Kalman filter equations are more complex 
than the gradient descent equations, the matrix inversion in (13) involves only a 
1 x 1 matrix (since the dynamic system has only one output). The optimization 
algorithms were run on a 233 MHz Pentium PC. The computational effort for the 
two methods was about 7 s at the first iteration for the partial derivative calcula­
tions. Each iteration after the first required only about 1.7 s per iteration (since the 
derivative calculations were skipped). If we had not used the pseudo-steady-state 
approximation described in Section 2.3 then each method would have required 7 
s per iteration. The CPU time required by the optimization algorithms will be 
highly dependent on the implementation details. The computational effort given 
here should be used only for relative comparisons. 



Now we move from the training scenario to the test scenario. Figure 2 shows a 
test case comparing the default fuzzy cruise controller with the cruise controller that 
was optimized without sum normal constraints. In this test scenario the automobile 
encountered a sudden 8% increase in the road grade at time = O. The optimized 
cruise controllers were the same as those that were trained with a 10% increase in 
the road grade. 

402 

~ 40 

.~ -- default controller (solid) 
~ 398 

10 
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Fig. 2. Test Data Before and After Unconstrained Optimization. 

Figure 2 illustrates the cruise controller performance in a scenario other than 
that for which it was trained. The reference velocity was fixed at 40 mls so the 
cruise control attempted to maintain that velocity in the presence of the increased 
road grade. The reduction in settling time is noticeable for the optimized cruise 
control. This reflects our choice of gn in (9) as described above. The optimized 
membership functions are not sum normal in this case since we did not use the sum 
normal constraints. 
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Fig. 3. Output Membership functions. (a) Default; (b) Optimized via Unconstrained Kalman 
Filtering; (c) Optimized via Unconstrained Gradient Descent. 

Figure 3 shows the original membership functions and unconstrained optimized 
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membership functions for the output. (The input membership functions are not 
shown because they changed only slightly during the optimization process.) The op­
timized membership functions work well as seen from Figure 2, but they are clearly 
not sum normal, which may be undesirable. In fact, the optimized membership 
functions do not even cover the entire range of crisp values. This is nonintuitive, 
but there is nothing problematic about this from a mathematical point of view. 
This just means that the crisp output of the fuzzy system will never be equal to the 
uncovered values. 

Figure 4 shows a comparison of the default fuzzy cruise controller with the cruise 
controller that was optimized with sum normal constraints (for the same test case 
as described above). As above, the reduction in settling time is noticeable for the 
optimized cruise control. However, a comparison with Figure 2 shows that (as 
expected) the constrained controller does not perform as well as the unconstrained 
controller. As seen from Figure 5, the optimized membership functions are indeed 
sum normal. Comparison with Figure 3 shows what a drastic difference sum normal 
constraints can make in the resultant membership functions. 
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Fig. 4. Test Data Before and After Constrained Optimization. 

Table 2 compares the cruise controller's normalized training error as defined 
by (9) for various membership functions. The table also shows the improvement 
that is obtained when the algorithm is run without the pseudo-steady-state approx­
imation. 

Table 2. Test Case Error Comparison. The initial fuzzy controller in all cases had a normalized 
training error of 100. 

Normalized Training Error 
Optimization Method Steady State Non-Steady-State 

Unconstrained Gradient Descent 11.33 11.15 
Constrained Gradient Descent 19.46 19.05 

Unconstrained Kalman Filtering 1.75 1.48 
Constrained Kalman Filtering 8.59 7.87 



It is seen that the removal of the pseudo-steady-state approximation results in a 
decrease of the error function value in all cases, but only by a small amount. In addi­
tion, the unconstrained optimization methods result in better performance than the 
constrained methods. We can also see that Kalman filtering results in better perfor­
mance than gradient descent. However, this should not be taken as an inviolable law. 
The performance of gradient descent and Kalman filtering both depend strongly on 
the initial conditions of the membership functions and the tuning parameters of 
the optimization algorithm. For gradient descent we need to choose an appropriate 
value of the scalar 1] in (10), and it may be best to use different values of 1] for 
different parameters. For Kalman filtering we need to choose appropriate values of 
of the matrices Po, Q, and R in (13). In general we can get better performance from 
Kalman filtering simply because we have more parameters to tune. However, gradi­
ent descent may be preferred in some instances because its application is simpler and 
more straightforward. The Matlab code that was used to generate these results can 
be downloaded from the internet at academic. csuohio. edu/simond/fuzzyopt/. 
These results can then be reproduced by running those Matlab m-files. 
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Fig. 5. Output Membership functions. (a) Default; (b) Optimized via Constrained Kalman 
Filtering; (c) Optimized via Constrained Gradient Descent. 

5. Conclusion 

We have shown that the membership functions of a fuzzy controller can be optimized 
via gradient descent and Kalman filtering. In general, these optimization methods 
result in membership functions that are not sum normal; that is, the membership 
function values do not add up to one at each point in the domain. We have extended 
the gradient descent and Kalman filtering algorithms to ensure that the resulting 
membership functions are sum normal. This results in a fuzzy controller with worse 
performance that the unconstrained membership functions, but sum normality may 
be desirable for several reasons (as discussed in Section 1). 

The optimization methods presented in this paper were demonstrated on a sim­



ulated fuzzy automotive cruise controller. As expected, unconstrained optimization 
resulted in better performance than constrained optimization. But unconstrained 
optimization also resulted in non-normal membership functions while constrained 
optimization resulted in sum normal membership functions. In general, Kalman fil­
tering resulted in better performance than gradient descent. This is to be expected 
because the Kalman filter has more tunable optimization parameters. 

Gradient descent and Kalman filtering are both sensitive to the values of their 
tunable parameters and to initial conditions. They should be viewed as "fine­
tuning" methods rather than as global optimization methods. Initial optimization 
should be conducted with a more global method, such as one of the derivative-free 
methods discussed in Section 1. After the global optimization method finds the 
general neighborhood of the optimal membership function parameters, gradient de­
scent or Kalman filtering can be used to fine-tune the results. Further work in this 
area could focus on the convergence properties of the Kalman filter in this applica­
tion, the effect of the tunable parameters of the Kalman filter, the optimization of 
fuzzy systems with non-triangular membership functions, or the extension of this 
work to other derivative-based optimization schemes. 
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Appendix A 

This appendix contains the formulas for the derivatives of the error function with 
respect to the modal points and half-widths of the input and output fuzzy sets. 

These derivatives can be obtained by straightforward calculus and algebra. 

Input Modal Points 

From (1)-(9) we obtain 

(A.l) 

= 	 (A.2) 

(A.3) 

Next we define rilk = 1 if Zl E fuzzy set i is a premise of the kth rule and Wk = 
fil(Zl), and rilk = 0 otherwise. In other words, rilk = 1 if Zl determines the 
activation level of the kth rule because of its membership in the ith fuzzy set. 
Similarly, ri2k = 1 if Z2 E fuzzy set i is a premise of the kth rule and Wk = fi2(Z2), 



and Ti2k = 0 otherwise. With these definitions we can determine 

8Wk 8fil(zd
8 Tilk (A.4) 

8Cil Cil 

8Wk 8fdz2) 
(A.5)8 Ti2k·8Ci2 Ci2 

{ 
The partials of the input fuzzy sets with respect to their modal points are given as 

-l/bii if Cil - bii :::; Zl :::; Cil8fil(zd 
l/bti if Cil :::; Zl :::; Cil + bti (A.6) 

8Cil 0 otherwise 

{-l/bi2 if Ci2 - bi2 :::; Z2 :::; Ci28fi2(Z2) 
l/b1; if Ci2 ::; Z2 :::; Ci2 + b1; (A.7)

8Ci2 0 otherwise 

This completes the presentation of the derivatives of the error function with respect 
to the modal points of the input fuzzy sets. 

Input Half-Widths 

Again using (1)-(9) we obtain 

8E J:... ~ E 8Yn = (A.8)N ~ n8b-:'8bij n=l 'J 

8Yn (A.9)
8bij  

8W k  
(A.lO)

8bij  

8fij(zj)  if Cij - bij :::; Zj :::; Cij 
(A.ll)

8bij otherwise 

These formulas give the partials of the error function with respect to the lower 
half-widths of the input fuzzy sets. Similarly, we obtain 

8E J:... ~ E 8Yn = (A.12)N ~ n 8b+.8b& n=l 'J 

8Yn (A.13) 
8b&  
8Wk  

(A.14) 
8b&  

8fij(Zj)  if Cij ::; Zj ::; Cij + b& 
(A.15) 

8b& otherwise 



These formulas give the partials of the error function with respect to the upper 
half-widths of the input fuzzy sets. 

Output Modal Points 

The partials of the error function with respect to the modal points of the output 
fuzzy sets are given as 

(A.I6) 

(A.I7) 

Output Half-Widths 

The partials of the error function with respect to the upper half-widths of the output 
fuzzy sets are obtained from the following formulas. 

8E ~~ E 8Yn (A.I8)
8(3: M ~ n 8(3: 
8Yn 8Yn 8r k 8Yn 8Jk 

(A.I9)
8(3: 8rk 8(3: + 8Jk 8(3: 
8Yn WkJk 

(A.20)
8rk 

8rk 


(A.2I)
8(3: 3((3: + (3/;) 

8Yn Wkrk 2:J!,1 wjJj - Wk 2:J!,1 WjrjJj 
8Jk (2:J!,1 Wj Jj ) 2 

Wk(rk - Yn) 
(A.22)

2:J!,1 wjJj 
1 

(A.23)"2' 
Substituting (A.20)-(A.23) into (A.I9) results in 

8Yn Wk [Jk r k - Yn]
-----:j:" = M + + . (A.24)
8(3k 2: j=l Wj Jj 3((3k + (3k ) 2 

This equation is then substituted into (A.I8) to obtain the partials of the error 
function with respect to the upper half-widths of the output fuzzy sets. Similarly, 

http:A.20)-(A.23


we obtain the partials with respect to the lower half-widths as 

aE M
J... LE aYn (A.25)= aff; M nairn=l k 

aYn aYn ark aYn aJk--+--. (A.26)
af3; ark af3; aJkaf3; 

The four terms on the right side of the above equation are given by (A.20), (A.22), 
and the following two equations. 

-1 
(A.27) 

- (A.28)
2 

Substituting these equations in (A.26) results in 

(A.29) 

This equation is then substituted into (A.25) to obtain the partials of the error 
function with respect to the lower half-widths of the output fuzzy sets. 
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