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The application of neural networks to optimal 
robot trajectory planning 

Dan Simo n 
fRW RlllIi,l'lie Mi.~,~i"'.\' /);",.1';011, Spun' 1111</ T,-"'",,,/,,.,"'- (im"", 1'.0. 8m /3/0, Building Sill. Ro"", 1m,!. \,/11 /la,,,,,.di,,,,. 
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IUIC"rpula!;"" of minimum jerk mho! joilll lrajc":l" ric'~ through ;,n arbilrary numher .,1' kn"ts j, ,.c" li~"d ,,~int! :0 h:.rUwir.;d 
ncural nelwork . Minimum je rk joint trajccluric, an: de,irahk fur their simibrily h' human j"illl m""cm<'[u, ,,,,,I thc ir 
",""n<lhil;1y to 'ICc"r;,!e tr .. ding. Th..· r<::sllh~nt lr,ljt:clorie, arc numeric,, 1 T:.[h"T than a!lil ly!;..: fu ndi"n, "I limc . This 
"ppli(;,tinn fmmuialcs the inkrpo,)lalinll problem a~ a conSln,incd quadratic minimiZ: I1;oll prohkm "WI' a <:(l111i"'lOllS jnint 
angle d<)main and" discrete time domain. Time is discrc!;:tnl ;I<:cord ing In lhe rob" l ~~ mlwlk r rate. rI'e neun", "ulpnls 
lIdine lhe join! angks (nne nt:uron fur ea~h disne!c value or limcl and th<: L,gr,mge mu llip lier, (,m~' n<:uwlI fur e;,\;h 
Irajectory ,,,,,slr:oinll. An :onnealing- lype mdhud i~ u s~d I() preve nl Ihe n<:(work frum gelling ~Iuck in :0 1< 1<:,,1 minimu",. This 
IMpel' di>cu>.ws Ih<' oplimizing neuTal n~lw"rk ' lIld il s applical ion 10 rot~)1 p:olh planning, pres,·nt ~ 'ome ~ imllbl i "n rOlllh. 
:o",ll·,\mpar~·> Ihe ,,<,ur,,1 ne twork method wilh " I her ",i,,;mum jerk IrujeChlry planning metho<l , 

h,',r"""h' N<: lITal Ilt"twork: Optimiza ti un: Ro t"ll path planning: Minimum jnk. 

I . Introduction 	 algorithm. The outpu t of the path-planning algo-
rithm 	is then input 10 1I pat h-tracking algorithm. 

There arc algorithms for thl' moot control This section first gives a brief review of robot 
problem which do not scpara tl' path plann ing and !"lath plann ing. Then an introduction to robot 

path plan ning using neural networks is presen ted. 

1.1. Path plallllillg 

The industrial robot is a highly non linea r, cou -
pled multivariable :-.ystem with nonlinear ron -
st rain ts. For this reason, robot control algorithms 
:1T1' often divided inlo two stages: puth {,lalllliIl8 
and path trackiflM [4]. Path pla nning is often done 
without much consideration for the robot dynam-
ics. and with simpl ificd constrain ts. This reduces 
the computa tion al expense of the path-pla nn ing 
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path tracking. These algorithms take source and 
destination Cartesian points as inputs, and deter-
mine optimal joint torques. The details of the 
robot dynamics and constraints are taken into 
account at various levels of complexity. A concise 
review of such algorithms is given in [30]. While 
such methods are attractive in that they provide 
optimal solutions to some robot control problem, 
they result in impractically complicated algo-
rithms and a large computational expense. For 
this reason, several researchers [11,32,34,37] have 
simplified the problem as follows: given a desired 
path in Cartesian space (e.g. a straight line), 
derive the optimum joint trajectories subject to 
the full dynamics and constraints. This approach 
assumes that the Cartesian path is already speci-
fied. While this assumption reduces the computa-
tional expense somewhat, the expense is still much 
too high for on-line implementation. 

Some researchers [9,31,33] do not assume that 
the path is specified, but that it has some known 
form (e.g. algebraic or trigonometric spline). They 
then optimize the spline parameters with respect 
to some objective function. 

A simpler approach to the robot control prob-
lem is to generate a suboptimal joint trajectory, 
and then track the trajectory with a controller. 
This approach ignores most of the dynamics of 
the robot. So the resultant trajectories do not 
take full advantage of the robot's capabilities, but 
are computationally much easier to obtain. In this 
approach, a number of knot points are chosen 
along the desired Cartesian path. The number of 
knots chosen is a tradeoff between exactness and 
computational expense. The Cartesian knots are 
then mapped into joint knots using inverse kine-
matics. Finally, for each robot joint, an analytic 
interpolating curve is fit to the joint knots. Some 
of the initial and final derivatives of the curve are 
constrained to zero as to ensure that the robot 
begins and ends its motion smoothly. 'Smooth-
ness' is a concept which combines the ideas of 
derivative continuity and derivative magnitudes. 
The analytic interpolating curve provides the path 
tracker with joint angles and derivatives at the 
controller rate. 

The most popular type of interpolation is alge-
braic splines [21,22,35]. Higher-order splines re-
sult in continuity of higher-order derivatives, 
which reduces wear and tear on the robot [4], but 
this is at the expense of large oscillations of the 

trajectory. Trigonometric splines can be used to 
provide a less oscillatory interpolating curve [33]. 

1.2. Neural networks applied to robot path planning 

Neural networks have been applied to many 
fields of engineering, and the field of robotics is 
no exception [38]. Robotics applications of neural 
nets include object recognition [20], dynamics 
identification [19], control [29], path planning [16], 
inverse kinematics [10], trajectory generation [26], 
and task scheduling [23]. This paper presents a 
new application of a hardwired optimization net-
work to the problem of trajectory generation 
through a set of given knots. The optimization 
network is in the form of first-order differential 
equations, and can thus be directly implemented 
in hardware. Performing constrained optimiza-
tion at the raw speed of VLSI seems like a 
promising technique for solving large-scale robot 
trajectory planning problems. 

The robot path-planning problem can be 
viewed as a constrained optimization problem. 
Given a desired set of knots and endpoint con-
straints, find the 'best' interpolating curve such 
that the knot errors and endpoint derivatives are 
not 'too large'. It is shown in this paper that the 
robot path-planning problem can be reduced to a 
constrained quadratic programming problem. 
Closed form quadratic programming methods 
cannot be used to solve the problem due to the 
fact that the problem is not positive definite, and 
the constraints are not full rank. Classical itera-
tive quadratic programming methods (such as 
Hildreth's method [24] or Newton's method) could 
be used, but typically require a good deal of 
computation at each iteration [25]. 

The past decade has seen a proliferation of 
more 'natural' methods of optimization for 
large-scale problems. Only a small fraction can be 
mentioned here. For instance, simulated anneal-
ing mimics the freezing of liquids or the anneal-
ing of metals. It has solved difficult problems, but 
the required computational times are often exces-
sive. Some recent work has focused on speeding 
up simulated annealing methods [15,27]. Hop-
field-type nets have also been used on large-scale 
optimization problems. Many of these networks 
have restrictions (such as limits on the norm of 
the quadratic weight matrix) which limit their 
applications [13,14,39]. In [12] a neural network 
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for finding the inverse or pseudoinverse of a 
matrix is given. Such a network could be used for 
quadratic optimization. Kohonen nets, or Learn-
ing Vector Quantizers. have also been applied to 
combinatorial optimization problems [1,7]. Platt 
and Barr [28] formulate a neural network which 
can calculate a minimum of a general function 
subject to inequality or equality constraints. This 
is the network which is used in this paper to 
determine a minimum jerk robot joint path 
through a given set of knots. The reason that 
Platt and Barr's network is used in this paper is 
that it can be shown to be locally stable for 
quadratic problems. But in view of the many 
different network architectures which have been 
used for optimization, some other network may 
indeed be more suitable for robot path planning. 
The purpose of this paper is not to find the 'best' 
path planning network. but rather to demonstrate 
the applicability of neural nets to this problem. 

In order to plan an optimal robot trajectory, 
the measure of optimality must be defined. Hu-
man arm movements satisfy some optimality cri-
terion. and this would seem to be a desirable 
criterion to adopt when planning trajectories for 
robot arms. Previous work [5,6] suggests that hu-
man arm movements minimize a measure of 
Cartesian jerk or joint jerk. Others [17.36] argue 
that the objective function is a measure of the 
derivative of the joint torques, and propose a 
neural network to learn such a trajectory. In this 
paper. a joint jerk objective function is used. 
While this choice ignores the dynamics of the 
robot. it reduces the error of the path tracker [IK] 
and thus is suitable for robotics applications. 
Pontryagin's minimum principle has been used to 
analytically determine minimum joint jerk trajec-
tories between two points subject to the con-
traints of zero velocity and acceleration at the 
endpoints [18]. The minimum Cartesian jerk tra-
jectory between two points has also been derived 
[36]. But numerical methods must be used if more 
than two knots are given. This paper presents a 
method which is used to plan minimum joint jerk 
trajectories through an arbitrary number of knots. 

Section 2 of this paper discusses the neural 
network architecture which is used, and Section 3 
applies the network to the robot trajectory formu-
lation problem. Section 4 presents some simula-
tion results. and Section 5 presents some conclud-
ing remarks. 

2. Constrained minimization using neural net-
works 

Platt and Barr [28] formulate a neural network 
which can be used for constrained minimization. 
Their algorithm. along with some straightforward 
extensions. is summarized in this section. 

Consider the following constrained minimiza-
tion problem: 

min f( .t') subject to i?( .\") = o. (I ) 

where f( . ) is a scalar functionaL r' is an lI-vector 
of independent variables, and }/(.) is a vector-val-
ued function mapping J'ln~4J/'", 

Lagrange multipliers can be u,ed to convcrt 
the constrained problem of Eq. ( 1 ) to the follow-
ing unconstrained problem: 

(2) 

where A is an tn-vector or Lagrange multipliers 
associated with the constraints ,if(' l. A necessary 
condition for the solution of Eq. (2) is 

ilf''~T il7~ 
~+A ~=O. (.1)
dx ilx 

Now consider a neural network with dynamics of 
the form 

ilf 11/ du 
·...,11 

~,-x,= [ (A" + cn gn )
ilx, n - I ' I ~ \ 

(i = I., ... fI). 

( .i = 1.,.,.171). (of) 

where ('. is an /1l-veetor of constants. Assume that 
the constraints g'(.) of the original problem (Eq. 
(1)) arc linear functions of x'. Then differentiat-
ing i, in Eq. (4) gives 

fl ()-:.( 

i, + [ -,--,-~t~, 
rlx dxI - I I I 

11/ [(' /I ilg" ,\.~ ') ',Il,', 
= () ~ 

Ir-I , I_I ilx, " (Ix 
+ [ e" g" + [-

Now consider the candidate Lvapullov energy 
function 

n In 

1:' = ~ [ ( It, ) 2 + I [('o' g ,~ , ( h) 
i I (~ - I 



The derivative of this energy function is 

E = ~ ( '" ~ aga . )i...J XiX i + i...J caga-xi (7)
i~ 1 a~ 1 aX i 

(8) 

(9) 
where the element in the ith row and jth column 
of matrix A is given by 

a2f m aga aga 
Ai,j=--+ L C a--· (10)

oxiax j a~ 1 aXj aXi 

It has been shown [2,3,28] that there exists a 
finite vector c such that matrix A is positive 
definite at the constrained minima of Eq. 0). If 
A is continuous, then it is positive definite in 
some region surrounding each constrained mini-
mum. Therefore if the dynamic system defined by 
Eq. (4). begins in that region and remains in that 
region, E will remain less than zero unless Xi = O'r/ 
i. The energy E will therefore achieve a mini-
mum when Xi = O'r/ i. But E is not a minimum 
unless each of the constraints g(x) are zero, 
since g(.) is linear. Therefore the system will 
settle into the zero-energy state where 

x=O. (11 ) 

j(X) =0. (12) 
Now j(X) = 0 implies thilt the original con-
straints are satisfied, and x= 0 implies (Eq. (4» 
that 
af m aga 
- + L (Aa +caga)
aXi a~l aX i 

af m aga
=-+LA- (13) 

ax; a~l a aXi 

af ---> aj
= _ +AT-ax ax 
=0, 

which satisfies the necessary conditions for a lo-
cal minimum of the original constrained problem 
(see Eq. (3». 

To sum up, Eq. (4), with an appropriately 
chosen C, converges to a solution of the original 
constrained minimization problem of Eq. (1). 
Equation (4) is in the form of a first-order differ-

entia 1 equation, which implies that it can be im-
plemented in parallel hardware to yield a very 
quick solution. 

3. The solution of the robot path planning prob-
lem 

When interpolating the path of a robot joint 
between a set of joint space knots, it is desirable 
to obtain as smooth a solution as possible. This 
results in an appearance of coordination [5], re-
duces wear on the robot joints and prevents the 
excitation of resonances [4], and improves the 
accuracy of the path tracker [18]. Therefore, in 
robot trajectory generation, the interpolation 
problem for each joint can be stated as foHows. 

Given a set of L knots for a robot joint, 
determine a function (J(t) which 

- is as 'smooth' as possible; 
- has 'small' errors at the knots; and 
- has 'small' derivatives at the endpoints. 

Smoothness can be defined as the integral of the 
square of the jerk of the position trajectory [5]. In 
order for the robot joint to start and stop its 
motion in a smooth manner, the first three 
derivatives at the endpoints should be small. If 
the path length is T seconds, and the desired 
knot angles are 8(t) = 8j (j = 1, ... , L), then the 
optimization problem for each joint can be writ-
ten as 

min fT[8"'(t)f dt subject to (14) 
o 

8(t j ) = 4>j (j = 1, ... , L) 

8'(0) = 0 

8'(T)=0 

8"(0) = 0 

8"(T) =0 

8"'(0) = 0 

8"'(T) =0. 
If the L knots are equally spaced in time, then 
the knot times ti satisfy 
ti=(i-1)Tj(L-l) (i=I, ... ,L). (15) 

The joint trajectory at the endpoint is exactly 
constrained. That is, the joint angles at t = 0 and 
t = T are fixed constants. But the joint angles at 



the interior knot times are not truly equality 
constraints: the interior knot angles are more like 
centers of tolerance near which the joint trajec-
tory is required to pass. Also, the first three 
endpoint derivatives do not need to be exactly 
zero. As long as they arc very small, the robot 
motion will begin and cnd smoothly. Therefore 
the constraints H(t l ) = 4YI and O(t L ) = 4YI can be 
considered . hard' constraints, while the remain-
ing (L + 4) constraints in Eq. (14) can be consid-
ered ·soft· constraints. 

Since the joint trajectory is input to the path 
tracker at discrete values of time. the trajectory 
does not need to be a continuous function of 
time. It ean be a discrete set of joint angles, 
defined only at times kh (j = 0, 1, ... , N) where 
Ii is the sample period of the path tracker (typi-
cally on the order of (J.()j seconds), and Nh is the 
length of the trajectory. 

The angle H, is input to the path tracker every 
iz seconds. starting at t = 0 and ending at I = r. 
Therc arc exactly M discrete times per knot. so 
each knot angle is separated from its neighboring 
kl1ot~ by Mh seconds. Thus the path length T 
satisfies. 

r = At ( L - I) h . ( 16) 

Also. from I = () to I = T, there arc exactly N + I 
discrete time steps. Thus the number of discrete 
time steps satisfies 

S+I=M(L-I)+l. ( 17) 

These relationships arc depicted graphically in 
Fig. J. So the optimization problem of Eq. (14) 
can be discretized (with the help of the trape-
zoidal integration rule) into the following proh-
lem. 

subject to 

( I k) 

H\II I I) = (/I I (j = 1. .... L) 

H:,~~ ()  
H~ = ()  

H;; = ()  

H~ = ()  

fI~' = 0, 

angies illPllt t(1 On III II.\[ li.Hl1 11 ,\ 
path tracker 

time t - () I ,II Ii 

Fig. I. Relatiomhirs hetween nct~(lrk \'ari"bks. 

where 8 11 = 4Y I and 8MU II = (/I I arc hard con-
straints. and the rest of the constraints arc soft. 

Finite difference expressions for the first three 
derivatives of fI(r) can be formed using Taylor 
series. These finite differences are as follows: 

HIII(t) = [-8(t - 21z) + 28( /- Iz) 

- 2& ( I + h) + & ( I + 2 h )l!(217 1 
) 

+O(h'). 

8"(t)= [8(t+h) 28(1) +0(1 h)]/II: 

+O(h1), 

H'(t) = [&(t+II) --8(I-h)] 1(21zl -t O(h'). 

( 19) 

Since the values of and H\ are hard con-8 11 
straints, they can be considered constants. Then 
the independent variables of the optimization 
problem arc 8,(i = 1, .... N ~ I J. Note that since 
we are constraining 8;;' and 8~' to zero. they can 
be omitted from the objecti\e function of Eq. 
(] IS). Then, using Eq. (] 9), the optimization prob-
lem of Eq. (18) can be converted into the equiva-
lent problem 

,\ - I 

min L (- 0, 2 + 20,_ I - 2f1, I ~ H, \ ,)"' 
I -I 

subject to (2() ) 

0ll<i II=(P( (j=2, .... L 1 ) 

HI =¢I 

IJ: = (I> I 

0\ 2=4Y1 

8.... I = 4YI' 

where we have defined 8 I == 8(1 and () \' . I '=' H.\' . 
Now Eqs. (20) can be written as 

(21 ) 

wherc 8'= [8 1 ... H, _I rl. g(f}') is the ('" + 2)-
element constraint vector defined by Eq. (20). 



and A and b are respectively an (n - 1) X (n - 1) 
matrix and an (n - I)-vector. Matrix A is a posi-
tive semidefinite matrix of bandwidth four whose 
diagonal and first through fourth upper and lower 
diagonals are given as follows. (See [8] for a 
definition of 'matrix bandwidth'). 
diagonal = (5910 10 ... 10 10 9 5) 
first upper and lower diagonal 

= (-2 -4 -4 ... -4 -4 -2) 
second upper and lower diagonal 

= (-4 -4 ... -4 -4) 
third upper and lower diagonal 

=(44···44) 
fourth upper and lower diagonal 

=(-1-1··· -1-1). (22) 
Vector b is given by 

b= (-4cPl -4cP16cPl -2cPl 0 ... 00 

-2cPL 6cPL -4cPL -4cPL)T. (23) 
According to the results given by Eq. (4), Eq. (2I) 
is solved by the dynamic system 

..:. ---> ---> ai ( --+ )o= - 2AO - b - --=. A + Co i , 
ao 

(24) 
where Co i is the (L + 2)-vector Hadamard 
product of C and i whose ith element is given by 
c;g;. The element in the ith row and jth column 
of ai/ail is given by agJao;. 

Since matrix A has bandwidth four, the neural 
network is not fully connected. In fact, the inter-
connections are quite sparse, which reduces the 
complexity of the network. Each 0 neuron re-
ceives inputs only from itself and its four closest 
neighbors on each side, and from one of the A 
neurons. Each A neuron receives inputs only from 
one of the 0 neurons. 

If matrix A was positive definite, we would set 
C equal to the zero vector and still be guaranteed 
convergence. However, if A is only positive 
semidefinite, we need to use a nonzero c. Even if 
A is positive definite, a nonzero C will improve 
the convergence properties of the neural net-
work. 

It is important to note that the neural net 
considered in this paper may converge to a local 

minimum rather than a global minimum. A given 
trajectory planning problem, discretized into (N 
+ 1) joint angles, is a function of (N - 1) vari-
ables (see Eq. (20)) and may have many local 
minima. The solution to which the neural net 
converges depends on the initial state of the 
network. Some sort of simulated annealing tech-
nique can be used in conjunction with the net-
work described in this paper [13,14]. This idea 
results in the longer computational time charac-
teristic of annealing, but it also enables the net-
work to find the best solution among many local 
minima. 

The annealing-type method which is suggested 
in this paper is as follows. Once the network 
converges to a local minimum, the network state 
is perturbed in a random direction and by a 
random magnitude. Then the network dynamics 
are reactivated, and another local minimum is 
found. During this process, the algorithm keeps 
track of the best solution. After a predetermined 
number of local minima are found, the algorithm 
terminates and the solution with the lowest en-
ergy is accepted as the best solution. 

This method is thus a cross between an ex-
haustive search and simulated annealing. It is not 
an exhaustive search, because a relatively few 
number of initial states are chosen from which 
the network converges to a minimum. But it is 
not stimulated annealing either, because the net-
work energy (in this case the integral of the 
square of the jerk) always decreases and there is 
no cooling schedule. 

4. Simulation results 

The neural network proposed in the previous 
section was simulated on a Sun-4 Workstation in 
the C language. The neural net dynamics were 
integrated using a basic fourth-order Runge-Kutta 
method with an integration step size of 5 msec. 

Six multiple-knot joint trajectories were calcu-
lated using the simulated neural network. Each 
joint trajectory has eight evenly spaced knots, 
corresponding to the examples given in previous 
work [22,33,35]. The knots were chosen along a 
desired path of the end-effector of a Unimate 
PUMA 560 type robot with six revolute joints. 
Each path length is 35 seconds. The joint space 
knot angles are given in Table 1. Each trajectory 
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Table 1 
PUMA 560 knot angles 

Knot Joint 

2 3 4 5 6 
1 10 15 45 5 10 6 
2 60 25 180 20 30 40 
3 75 30 200 60 -40 80 
4 130 -45 120 110 -60 70 
5 110 -55 15 20 10 -10 
6 100 -70 -10 60 50 10 
7 -10 -10 100 -100 -40 30 
8 -50 10 50 -30 10 20 

knot constraints can be increased (see Eqs. (20)-
(21)). Table 2 shows the decrease of the jerk 
objective function due to the evolution of the 
network dynamics. It should be noted that the 
trigonometric splines have zero velocity, accelera-
tion, and jerk at the endpoints, and pass exactly 
through the knots. The neural network trajecto-
ries have a small nonzero velocity, acceleration, 
and jerk at the endpoints. In addition, they pass 
near but not exactly through the knots. 

Due to the nonlinearity of the network, changes 
in network parameters lead to unpredictable re-
sults. The constraint weights C, the initial state of 
the network, and the annealing schedule all have 
a hand in determining the local minimum to 
which the network eventually converges. In gen-
eral, it is expected that an increase in constraint 
weights c leads to a decrease in the constraint 
violations and an increase in the objective func-
tion value. This is shown in Table 3 for joint 1. 
(Note that the results in Table 3 do not corre-
spond to Fig. 2 or Table 2 because different 

Table 2 
Jerk objective function values 

Joint Minimum jerk Minimum jerk Percent 
trigonometric neural net decrease 

127 106 16.5 
2 44 28 36.3 
3 558 462 17.2 
4 765 662 13.5 
5 252 206 18.3 
6 38 33 13.2 

Averages 297 250 19.2 

Table 3 
Effect of constraint weight c on joint 1 trajectory 

Constraint Objective RMS knot Max knot 
weight function angle error angle error 
c" value (degrees) (degrees) 

0.2 87 6.5 9.6 
0.4 93 6.4 9.4 
0.6 96 5.6 ~.3 

0.8 99 5.3 7.8 
1.0 101 5.0 7.3 
1.2 103 4.6 6.7 
1.4 105 4.1 6.0 

initial conditions and annealing strategies were 
used,) 

5. Conclusion 

Minimum jerk joint trajectories have the prop-
erties of similarity to human joint movements [5] 
and amenability to tracking [18). This makes them 
attractive choices for robotics applications in spite 
of the fact that the dynamics are not taken into 
account. Analytic formulations of minimum jerk 
trajectories between two points are known [18,36]. 
But if there are more than two knots, analytic 
solutions cannot be obtained and numerical solu-
tions must be used. 

In this paper, the minimum jerk point trajec-
tory formulation problem is posed as a con-
strained quadratic optimization problem. The 
joint angle domain is continuous, and the time 
domain is discretized at the robot controller rate. 
Several neural network architectures have been 
proposed for quadratic optimization over a con-
tinuous domain. Most of those proposed, how-
ever, impose restrictions on the quadratic weight-
ing matrix in order for convergence to be assured. 
The network used in this paper does not impose 
any restrictions on the quadratic weighting ma-
trix. The minimum jerk problem is thus amenable 
to implementation by a neural network. 

The network discussed in this paper may con-
verge to a local minimum rather than the global 
minimum. The solution obtained by the network 
depends on the initial state of the network. An 
annealing-type technique is used in conjunction 
with the network to climb out of local minimum 
and find the best among many solutions. This 
prevents the algorithm from being appropriate 



for real-time use, but significantly improves the 
quality of the final solution. The simulation re-
sults presented in this paper verify that the net-
work can be successfully applied to robot trajec-
tory generation. 

Note that the neural network generated trajec-
tories pass near but not exactly through the speci-
fied knot~. If it is important that the trajectory 
pass exactly through thc knots, this method may 
not be suitable for joint interpolation. While this 
paper ha~ dealt specifically with minimum jerk 
joint trajectories. there are no theoretical limita-
tions to applying this method to other objective 
functions. More specifically, minimum energy or 
mInimum torque-change trajectories could he 
generated with the network discussed in this pa-
per. 

References 

[I] 	B. Angeniol. (j. De La Croix Van Broi, and J.-Y. I.e 
Texier, Self-organizing map, and the traveling ,alesman 
problem, :Veural Networks 1 (J9kk) 2R9-29:l. 

[2J 	 K. Arrow, L. lIurwicz and 1-1. Uzawa, Studies ill 1,lflellr 

and Nonlinear Programming (Stanford Univer,ity Press, 
Stanford, CA I 'I5R). 

[1] D. Bertseka,. Autmllatica 12 (] '176) D3-14:'i. 
[4J J. Craig. Introduction to Robotics (Addison-Wesley. 

Reading. Mi\. I'IR'I). 
['I 	J. Flanagan and D. Ostry. Trajectories of human multi-

joint arm movements: Evidence of joint level planning. 
111' V. Hayward and O. Khatib. e(b.. Experimental 

RohOli( \ I. The Fint International Symposium (Springer-
Verlag. New York. Iq9m. 

[hJ 	 T. Flash and N. Hogan. The coordination of arm move-
ments: an experimentally confirmed mathematical mndel. 
journal or Neuroscience 5 (l'lk5) 16RR-170.1. 

[7] 	 B. Frit/ke and P. Wilke. FLEXMAP - A neural network 
for the travelling salesman problem with linear time and 
space complexity. International joint Conference on .Ym-
ral ,VetlVorks 2 ( 1'191) 929-934. 

[~] 	 G. Golub and C. van Loan. Matrix Computation Cnd cd.) 
(The Johns Ilopkim University Press. Baltimore. MD. 
19R9). 

19J 	 J. Bobrow, Optimal robot path planning using the mini-
mum-time criterion, IF!:'!: journal of'Robotics and Au
tOlllation 4 (19R~) 443- 449. 

[IIlJ J. Guo and V. Cherkassky, A solution to the imer,e 
kinematics problem in robotics using neural network 
processing, International joint Conference on Neural Net
"'orkl :2 (I 4k9) 299-c\04. 

II I] 	 A Hejase. Optimal robot trajectory planning using dy-
namic models. Ph.D. Dissertation. Department of Elec-
trical Engineenng. Syracuse University. Syracuse. NY. 
19~7. 

[121 	 J . .lang et aI., An optimization network for matrix inver-

sion. in: D. Anderson, ed., Nellral Ililimnlllio/l Processing 

Srstems (American Institute of Physics. New York. Il)R~) 

397-401. 
[13] 	W. Jeffrey and R. Rosner. Optimization Algorithms: 

Simulated annealing and neural network processing, The 
A.ltropilysical journal .I I 0 (I ) part 1 (llJR6) 4 n -4~ I. 

[14] W. 	Jeffrey and R. Rosner, Neural network processing as 
a tool for function optimization. In: J. Denker. cd .. /Vm-
ral Networkl ji". Compllling (American Institute of 
Physics, New York. IlJRfI) 241-24h. 

[15] 	 H. Jeong and J. Park, Lower boumb 01 annealing sched-
uic for Boltzmann and Cauchy machine,. II:'!:'!: IN.VS 

Iliternational COIl/,'rence onYclIral '''etworkl I (Il)~l) 

5K 1-5K6. 
[161 c. Jorgensen, Neural network repre,entation of sensor 

graphs in autonomous robot path planning. Firsl ILLF 

Internatiollal COIl/'Tellce ollVellml \','Iwud.1 4 (19S7) 
507-515. 

117] M. Kawat". Y. Uno and R. Suzik!. Trajectory formation 
of arm movement by cascade neural network model based 
on minimum torque-change critLTion. fliolo~iU11 ('vh('/'
netin n2 (194m 27S-2RK. 

[IS] K. Kyriakopoulos and G. Saridi,. Vlinimum jerk path 
generation. ILl:'!:' Interill/tiollal ('oll/iT"III'<' on Rohotics 
alld Automatioll I (19Rk) J64-3611. 

[19] 	 M. Leahy et al.. Neural network payload estimation for 
adaptive robot control. IFFI' I ra/l.l act;OI1.l (ill ,Veilra I 
N"tlmrks 2 (I9l)II II.1-I()O. 

[20] S. 	Lee ct al.. A computer vision architecture for intelli-
gent control of neural recognition lfl dynamic environ-
ments. AAAI Worklho!) Oil ,Vellwl Architecture.1 fin' COIll
puter Visioll (19RKI. 

[21] 	 C. Lin and P. Chang. Joint tralectoric, "I mechanical 
manipulators for Cartesian path approximation. IEI:E 

Transactions Oil S)'Items, iV/II!\' alld (I'hernetics SMC-13 
(I9SJ) 1094-1 lO2. 

[22J 	 C. Lin. P. Chang and J. Luh. Formulation and optimiza-
tion of cubic polynomial joint trajectmies tor industrial 
robots, IEEI:' Tral/mctio/1,\ (III Autoll1atic ('(}IlIml AC-2~ 
(llJR3) I06h-11l7J. 

[n] 	Z. Lo and B. Bavarian, ;\ modifled Ilopficid neural 
network for optimization of manufacturing task schedul-
ing. in: M. Jamsbidi and M. S;liL cds., /?ohotic.l lind 

Manufacturil1g: Recel1t Trends III !?esearch. Fducaliol1. 11l1d 
Applicatiol1s (ASME Press. Nell Ynrk. I lll)lI) vol. 3. 
IOOI-IOOn. 

124J 	 D. Luenberger, ()ptimi:lltion /" 11'('/(11' .'{lllCI' ,Heti1(1<i.1 
(Wiley, New York. IlJ6K). 

[25] 	 D. Luenberger. Linear ([l1d :Vo/lline"r f'mgwlllming Ad-
dison-Wesley. Reading. MA, IlJR41. 

126] 	 L. Massone and E. Bizzi. Generation of limb trajectories 
with a sequential network. Interilational.folllt ('onfi'renC(' 
Oil Ne/[ral Networkl :2 (19K9) .145 .\·FI. 

I27J 	 I. Matsuba. Optimal simulated annealing mcthud and it, 
application to combinatorial problem" II:I.E I,'iSS Illter
n([tional .foilll Conli'rellce on Nellral .\'('(",or/.;I I (llJW)) 
541-546. 

[2RJ 	 J. Platt and A. Barr. Constrained differential optimiza-
tion, in: D. Anderson. cd.. lV(,lIral In/imnlltion Proces.llIlg 
Svstems (American Institute of Phvsic,. New Ylnk. 19KR) 
612-621. 



[29] 	 D. Psaltis et a!., Neural controllers, First IEEE Interna
tional Conference on Neural Networks 4 (1987) 551-558. 

[30] 	 Z. Shiller and S. Dubowsky, Robot path planning with 
obstacles, actuator, gripper, and payload constraints, The 
International Journal of Robotics Research 8 (1989) 3-18. 

[31] 	 Z. Shiller and H. Lu, Robust computation of path con-
strained time optimal motions, IEEE International Con
ference on Robotics and Automation 1 (1990) 144-149. 

[32] 	K. Shin and N. McKay, Minimum-time control of robotic 
manipulators with geometric path constraints, IEEE 
Transactions on Automatic Control AC-30 (1985) 531-541. 

[33] 	D. Simon and C. Isik, Optimal trigonometric joint trajec-
tories, Robotica 9 (1991) 379-386. 

[34] H. 	Tan and R. Potts, A discrete trajectory planner for 
robotic arms with six degrees of freedom, IEEE Transac
tions on Robotics and Automation 5 (1989) 681-690. 

[35] 	S. Thompson and R. Patel, Formulation of joint trajecto-
ries for industrial robots using B-splines, IEEE Transac
tions on Industrial Electronics IE-34 (1987) 192-199. 

[36] 	Y. Uno, M. Kawato and R. Suziki, Formation and con-
trol of optimal trajectory in human multijoint arm move-
ment, Biological Cybernetics 61 (1989) 89-101. 

[37] 	 M. Vukobratovic and M. Kircnski, Scientific Fundamen
tals of Robotics 3: Kinematics and Trajectory Synthesis of 
Manipulator Robots (Springer-Verlag, New York, 1986). 

[38] 	 P. Wasserman and R. Detzel, Neural Source: The Biblio
graphic Guide to Artificial Neural Networks, (Van Nos-
trand Reinhold, New York, 1990) 960~966. 

[39] 	X. Zhao and J. Mendel, An artificial neural minimum-
variance estimator, IEEE Conference on Neural Networks 
2 (J 988) 499-506. 

VernM
Typewritten Text

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014


	Cleveland State University
	EngagedScholarship@CSU
	5-1993

	The Application of Neural Networks to Optimal Robot Trajectory Planning
	Daniel J. Simon
	Publisher's Statement
	Original Citation
	Repository Citation


	Simon_Application_Done1

