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Biogeography-Based Optimization of Neuro-Fuzzy System  
Parameters for Diagnosis of Cardiac Disease  

Mirela Ovreiu 
The Cleveland Clinic 

Cleveland, Ohio 

ovreium@ccf.org 

ABSTRACT 
Cardiomyopathy refers to diseases of the heart muscle that 
becomes enlarged, thick, or rigid. These changes affect the 
electrical stability of the myocardial cells, which in turn 
predisposes the heart to failure or arrhythmias. Cardiomyopathy in 
its two common forms, dilated and hypertrophic, implies 
enlargement of the atria; therefore, we investigate its diagnosis 
through P wave features. In particular, we design a neuro-fuzzy 
network trained with a new evolutionary algorithm called 
biogeography-based optimization (BBO). The neuro-fuzzy 
network recognizes and classifies P wave features for the 
diagnosis of cardiomyopathy. In addition, we incorporate 
opposition-based learning in the BBO algorithm for improved 
training. First we develop a neuro-fuzzy model structure to 
diagnose cardiomyopathy using P wave features. Next we train 
the network using BBO and a clinical database of ECG signals. 
Preliminary results indicate that cardiomyopathy can be reliably 
diagnosed with these techniques. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Medical Information Systems 

General Terms 
Algorithms 

Keywords 
Evolutionary algorithm, biogeography-based optimization, neuro-
fuzzy system, electrocardiogram 

1. INTRODUCTION 
Cardiovascular diseases are the major cause of death in the 
western world, resulting in more than 800,000 deaths per year in 
the United States alone [1]. One in five Americans has some form 
of cardiovascular disease [20]. Cardiomyopathy is a significant 
clinical problem which is mainly generated by volume/diastolic 
overload. To accommodate the increased volume of blood, the 
heart chambers may stretch or dilate. Valvular regurgitation and 
congestive heart failure are two conditions that contribute to 
chamber dilation. 

Cardiomyopathy is generally diagnosed by an echocardiograph 
investigation, which is a sonogram of the heart. But an electro-
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cardiographic (ECG) investigation is always part of a cardiologic 
work-up. The ECG represents the deflection of ionic current 
across myocardial cell membranes and through the extra-cellular 
space of the tissues of the thoracic cavity. The ECG, in 
competition to many other techniques, retains an important role in 
diagnosis and prognosis of cardiovascular diseases. 

It has been suggested that cardiomyopathy is reflected in 
modification of ECG characteristics such as P wave morphology. 
Previous statistics-based attempts to classify cardiomyopathy 
from ECG data have been underwhelming [16], [17], but we 
hypothesize that these limitations can be overcome using a hybrid 
neuro-fuzzy classification model. To test this hypothesis and 
direct the results to patient care, we report the following results in 
this paper: first we design a neuro-fuzzy model to diagnose 
cardiomyopathy, and then we train the network using an acquired 
clinical database of ECG signals. 

Neuro-fuzzy systems can be trained with derivative-based 
methods like gradient descent [5], [13] or with evolutionary 
algorithms (EAs) such as genetic algorithms and swarm 
intelligence [11]. EAs have the advantage of not requiring 
derivative information, and have less likelihood of getting stuck in 
a local optimum. Here we use a new biologically motivated 
optimization algorithm called biogeography-based optimization 
(BBO) [30] to train the neuro-fuzzy ECG classification network. 
We also incorporate opposition-based learning in the BBO 
algorithm [8] for better classification. 

Section 2 provides preliminary background information about this 
research, including discussions of cardiomyopathy, neuro-fuzzy 
networks, BBO, and opposition-based learning. Section 3 
discusses ECG data collection, the neuro-fuzzy classification 
network, the BBO training algorithm, experimental results, and 
suggestions for neuro-fuzzy model refinement. Section 4 provides 
conclusions and directions for future work. 

2. BACKGROUND 
2.1 Cardiomyopathy 
The term “cardiomyopathy” defines a group of diseases primarily 
affecting the cardiac muscle by weakening it or changing its 
structure. Cardiomyopathy can be acquired or inherited, and in 
many cases its cause is unknown. Hypertrophic cardiomyopathy is 
inherited and is supposed to be a result of defects of the genes that 
regulate heart muscle growth. In dilated cardiomyopathy, which is 
the acquired type, two common conditions contributing to 
chamber dilation are valvular regurgitation and congestive heart 
failure. Studies have shown that the number of myocardial fibers 
in an adult human heart is essentially constant and equal across 
the population. Abnormal cardiac enlargement can thus be 
achieved only by an increase in the length or diameter of existing 
cardiac muscle cells [6]. Cardiomyopathy, through electrical 
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instability of myocardial cells due to structural or metabolic 
integrity loss, is associated with cardiac conduction abnormalities 
that can degenerate to arrhythmia or heart failure [18].  

The history of cardiomyopathy research reveals the evolution of 
analytic and diagnostic capabilities. Due to the critical role of the 
left ventricle, initial studies focused only on the 
electrocardiographic features of the hypertrophic left ventricle 
[32]. The QRS complexes and T waves, as the reflection of 
ventricular depolarization and repolarization respectively, were 
properly and precisely analyzed [39]. In the study by Sox et al., 
citing the Framingham Study, the left ventricular hypertrophy is 
defined by a prolonged ventricular activation period of 0.05 
seconds, tall R waves, depressed ST segments, and inverted T 
waves [32]. Ziegler was the first to introduce T wave analysis to 
the characterization of left ventricular hypertrophy; that study 
presented different patterns of the QRS and T configurations into 
left or right precordial limb leads [39].  

Other studies extend the analysis of other cardiac chambers to 
cardiomyopathy and also relate P wave changes to this disease. 
The P wave portrays atrial electrical activity and it is natural to 
assume that changes in the atrial action potential and substrate 
will be reflected in changes in P wave timing or morphology [4]. 
Bahl et al. presented the P wave changes associated with the type 
and stage of the disease [2]. Analyzing each of the four chamber 
enlargements, Johnson et al. emphasized P wave changes of 
duration and morphology for an enlarged left atrium as well as 
amplitude for an enlarged right atrium [10]. 

The atria, as chambers with relatively thin walls, respond to 
volume and pressure overload due to dilatation. Moreover, the 
enlargement of the associated ventricle is recognized as the cause 
of the enlargement of the atrium [16], [17]. The right atrium 
enlargement is recognized by the increased amplitude of the P 
wave (0.25 mV) while the left atrial abnormality is reflected by 
lengthened P wave duration (greater than 120 ms) as well as a 
notched P wave. 

In a recent document, the American Heart Association, the 
American College of Cardiology Foundation, and the Heart 

௜ܴ

The inputs xi and the output y are linguistic variables, Aij are fuzzy 
sets, and zi(x) is a function of the input x = [x1 … xm]T. The output 
function zi(x) typically takes one of the following forms: (1) 
singleton, (2) fuzzy set, (3) linear function. If the fuzzy system 
uses center average defuzzification, product inference, and 
singleton fuzzification, then zi(x) = zi (a singleton) and the fuzzy 
system output can be written as 

ݖ ∏௠ ௝൯ݔ௜௝൫ߤ
ݕ ൌ  
∑௣௜ୀଵ ௜ ௝ୀଵ (2)
∑௣ ∏௠௜ୀଵ ௝ୀଵ ߤ௜௝൫ݔ௝൯ 

where ij(xij) denotes the degree of membership of xj in Ri. As in 
many neuro-fuzzy networks, we use a Gaussian form for ij: 

௝൯ݔ௜௝൫ߤ ൌ  exp൭
– ൫ݔ௝ െ ܿ௜௝൯

ଶ

൱ (3)
௜௝ߪ
ଶ 

where cij is the jth element of the center of the ith rule, and ij is 
its standard deviation. In this case, Eq. (2) becomes 

ݓ
ݕ ൌ  ௣ (4)ሺݔሻ ௜݉௜ୀଵ ∑

௣ 

(5)ሺݔሻ ௜݉௜ݓ ൌ෍ݖ
௜ୀଵ 

ሾ ሿ (6)ሻ௜ ܿሺݔ െ ିଶ்ܲሻ௜ ܿݔ െሺെ ݌ൌ ݔ݁  ሻݔሺ௜݉

 (5) is in . Eq. ሻ௠,ڮ , iܲߪଵagሺߪ ൌ dand்ሿ௜௠ ڮ ܿ௜ଵܿሾൌ௜ ܿwhere 
the form of a radial basis function, which is a type of neural 
network [5]. The system of Eqs. (5) and (6) is therefore called a 
neuro-fuzzy system. It can be depicted as shown in Figure 1. 

m1 

then௜௠is ܣ௠and …  and ݔ ௜ଵ ܣisଵ: If ݔ
.ሻ ݌, ݅ڮ   ൌ 1,ሺ,ሻݔሺݕ ൌ ݖ

(1)
௜

Rhythm Society, review the current literature and conclude on 
recommendations and standards to be used when interpreting 
ECG data related to cardiomyopathy [9]. The changes of ECG 
associated with cardiac chamber hypertrophy are delineated and 
discussed for each disease localization. In left ventricular 
hypertrophy, the P wave shape is mentioned as a criterion. In right 
ventricular hypertrophy, a P wave amplitude larger than 0.25 mV 
in lead II is presented as a classification index. Left atrial 
abnormality implies a prolongation of the total atrial activation 
time (P wave duration longer than 120 ms), widely notched P 

w 

zp 

z1 

mp 

pm(xm) 

11(x1) 

xm 

x2 

x1 

wave, and possibly P wave area. The right atrial abnormality list 
includes an increase in the amplitude of the P wave (greater than 
0.25 mV) and a prolongation of the P wave after cardiac surgery, 
which is the case for our patients. 

2.2 Neuro-Fuzzy Networks 
Consider a multi-input, single-output fuzzy logic system. Our 
discussion can be easily generalized to multiple output systems, 
but restricting our discussion to single-output systems simplifies 
the notation considerably. In addition, the ECG classification 
system that we consider in this paper is single-output. The ith rule 
Ri of the fuzzy system can be written as follows [5]. 

Figure 1. Multi-input single-output  
neuro-fuzzy system architecture. 

The neuro-fuzzy system in Figure 1 is a function of the pm 
elements of the membership centers cij, the pm elements of the 
membership standard deviations ij, and the p elements of the 
singleton outputs zi. There are thus p(2m+1) parameters that 
define the neuro-fuzzy system. For a given neuro-fuzzy system 
architecture and a given training set of input/output data, the 
neuro-fuzzy system parameters can be optimized with respect to 
these p(2m+1) parameters. 



 

 
 

 

  

 
  

  

  
    

 
  

 
 

 

 

 
 

  

  
  

 
 

 
  
       
        
            
            
               
           
       
  
     

 
 

 

 

 

 

 
 

 

  
 

 
 

   

 

 
 

   
 

 
 

  

  
 

  

  

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

2.3 Biogeography-Based Optimization 
Biogeography-based optimization (BBO) is a recently-developed 
EA [30]. As its name implies, BBO is motivated by biogeography, 
which is the study of the distribution of species over time and 
space [14], [38]. BBO has demonstrated good performance on 
various benchmark functions [15], [30]. It has also been 
successfully applied to several real-world optimization problems, 
including sensor selection [30], power system optimization [22], 
groundwater detection [12], and satellite image classification [21]. 

Given an optimization problem and a population of candidate 
solutions (individuals), a BBO individual with high fitness is 
likely to share features with other individuals, and an individual 
with low fitness is unlikely to share features. Conversely, an 
individual with high fitness is unlikely to accept features from 
other individuals, while an individual with low fitness is likely to 
accept features. Solution feature sharing, which is called 
immigration and emigration, tends to improve the individuals and 
thus evolve a good solution to the problem. 

Each BBO individual has an immigration rate i and emigration 
rate i. A fit individual has high  and low , and vice versa for a 
poor solution. The immigration and emigration rates are functions 
of the individual’s fitness. They are often calculated as

by comparing the fitness of an individual to its opposite and 
retaining the fitter one in the population [25], [34]. The “opposite” 
of an individual is defined as the reflection of that individual’s 
features across the midpoint of the search space. Opposition-based 
differential evolution (ODE) [24] was the first application of OBL 
to EAs. OBL was first incorporated in BBO in [8] and was shown 
to improve BBO by a significant amount on standard optimization 
benchmarks. 

Given an EA population member x, there are at least three 
different types of oppositional points that can be defined. These 
oppositional points are referred to as the opposite xo, the quasi-
opposite xq, and the quasi-reflected-opposite xr. Figure 3 
illustrates these points for an arbitrary x in a one-dimensional 
domain. The point c is the center of the domain, xo the reflection 
of x across c, xq is a randomly generated point from a uniform 
distribution between c and xo, and xr is a randomly generated 
point from a uniform distribution between x and c. 

xr (random) xq (random) 

x c xo 

௜ߣ
 ௜ߤ

௜ ݂ൌ ݊⁄
ൌ 1 െ  ௜ߣ

(7) Figure 3. One-dimensional illustration of 
an arbitrary EA individual x, its opposite xo, 

where n is the population size and fi is the fitness rank of the ith 
individual (the most fit individual has a rank fi = 1). The 
immigration rates i are used as immigration probabilities. The 
emigration rates i are proportional to fitness and are used in a 
roulette-wheel type of algorithm to determine the emigrating 
solution in case immigration is selected for a solution. 

Although the migration rates in Eq. (7) are linear with respect to 
fitness rank [30], nature-inspired migration rates which are 
sigmoid with respect to fitness rank generally seem to give better 
optimization performance [15]. In this paper we retain the original 
linear migration rates for the sake of simplicity. 

As with other EAs, mutation is typically implemented to increase 
exploration, and elitism is often used to retain highly fit solutions. 
The standard BBO algorithm is shown in Figure 2. 

For each solution Hi

  For each solution feature s 
  Select solution Hi with probability proportional to i

  If solution Hi is selected then
  Select Hj with probability proportional to j

 If Hj is selected then
 Hi(s)  Hj(s) 

end
 end 

  next solution feature  
  Probabilistically mutate Hi  

next solution 

Figure 2. One generation of the standard BBO algorithm. 

2.4 Oppositional BBO 
Opposition-based learning (OBL) has been introduced as a 
method that can be used by EAs to accelerate convergence speed 

its quasi-opposite xq (randomly chosen in [c, xo], and its 
quasi-reflected-opposite xr (randomly chosen in [x, c]). 

OBL is essentially a more intelligent way of implementing 
exploration instead of generating random mutations. Another way 
of viewing OBL is from the perspective of social revolutions in 
human society. Society often progresses on the basis of a few 
individuals who embrace philosophies that are not just random, 
but that are deliberately contrary to accepted norms. Given that an 
EA individual is described by the vector x, and that the solution to 
the optimization problem is uniformly distributed in the search 
domain, it is shown in [25] that xq is probably closer to the 
solution than x or xo. Further, it is shown in [8] that xr is probably 
closer to the solution than xq. These results are nonintuitive, but 
probability is often nonintuitive, and the OBL results are derived 
not only analytically by also using simulation. 

In this paper we use oppositional BBO (OBBO) to train the neuro-
fuzzy ECG classification network. Suppose that the population 
size is N. OBBO works by generating a population of N opposite 
individuals which are the opposite of the current population. 
Then, given the entire 2N individuals comprised of both the 
original and the opposite populations, the best N individuals are 
retained for the next population. However, this does not occur at 
each generation. Instead it occurs randomly with a probability of 
Jr at each generation. Jr is called the jump rate. Based on [23] we 
use Jr = 0.3 in this paper. 

In order to increase the likelihood of improvement at each 
generation we implement OBBO as follows. At each generation, 
we save the original population of N individuals before creating a 
population of N new individuals via migration. We then create an 
opposite population of N additional individuals if indicated by the 
jump rate. Of the total 2N or 3N individuals, we finally select the 
best N for the next generation. Note that this approach guarantees 
that the best individual in each generation is at least as good as 
that of the previous generation. This is similar to a (+) 



  

  

   

   
  
       
        
            
            

                
           
       
  
     

 
 

     
 

     

   
 

 

 
 

 

 
  

 

 

 
 
 

 
 

  
  

 
 

 
 
  
  

 
  

 
  

  

 

  
 

 

 

 
 

 

 
  

 

 

  

  
  

 
 

  
 

 

 

  

 

 

    

evolutionary strategy [7], whose parameters are not to be Initial investigation revealed that the monophasicity / biphasicity 
confused with the  and  migration parameters in BBO. The parameter did not vary appreciably between cardiomyopathy and 
resulting OBBO algorithm is summarized in Figure 4. control patients. We therefore discarded the monophasicity / 

)H (make a copy of the population Hሺଵሻ ܪ
biphasicity parameter from our data set. Differences between the 
remaining P wave morphology parameters for cardiomyopathy 
and control patients in the training database are presented in 
Figure 5. Based on the standard deviation bars, there is apparently 

)N= 1, …, i(ሺଵሻ ܪiHFor each solution
  For each solution feature s 

important information included in these parameters. Their   Select solution Hi with probability proportional to i
usefulness in identifying the patients with cardiomyopathy is   If solution Hi is selected then
determined by the proposed neuro-fuzzy model as discussed in the   Select Hj with probability proportional to j
following section. If Hj is selected then 

ሺଵሻ
௝ ܪ)Hi(s

 end
 end 

  next solution feature  
  Probabilistically mutate Hi  

next solution 
if rand(0,1) < Jr then

ሺଶሻ  ܪ-member opposite population   Use H to create an N

ൌሺଶሻ ܪ
else 

end 
H} toሺଶሻ  ܪ, ሺଵሻܪ,Copy the best N individuals from {H

Figure 4. One generation of oppositional BBO (OBBO). 

 duration inflection   energy amplitude 
0.7 

0.8 

0.9 

1 

1.1 

1.2 

Cardiomyopathy 
Control 

3. EXPERIMENTAL RESULTS 
3.1 Data Collection 
In preparation for the testing of a cardiomyopathy diagnosis 
model, a database of long-duration ECG signals was collected. 
The database includes signals from 55 subjects, 18 of them with 
cardiomyopathy. Not all subjects experienced chronic or 
paroxysmal atrial fibrillation. The cardiomyopathy group 
contained 10 males and 8 females with a mean age of 54 (range 
2388) years. The control group contained 22 males and 15 
females with a mean age of 60 (range 2777) yrs. The inclusion 
criteria were the same for both groups: no chronic or paroxystic 
atrial fibrillation and no perioperative pacing. 

ECG parameters describing P wave morphology were computed 
for each minute of data recording for all 55 patients in the training 
data set. This set of ECG parameter values constitutes the input 
component of the training data set for neuro-fuzzy model 
development. For additional details of ECG parameter 
computation algorithms see [3], [35], [36], [37]. 

The ECG P wave reflects the electrical activity of the atria and 
may indicate the existence of irregularities in electrical 
conduction. Using a previously developed P wave detection 
method, the starting, ending, and maximum points of the P wave 
were determined [36]. The average P wave morphology 
parameters were computed once per minute. The P wave 
morphology parameters included the following: 
a) Duration; 
b) Amplitude; 
c) A shape parameter which represents mono- or bi-phasicity; 
d) Inflection point, which is the duration of the P wave between 

the onset and the peak points; 
e) Energy ratio, defined as the fraction between the right atrial 

excitation energy and the total atrial excitation energy. 

Figure 5. P wave characteristics of cardiomyopathy and 
control patients, normalized to the mean values of the control 

patients. Error bars show one standard deviation. 

3.2 Experimental Setup 
Cardiomyopathy diagnosis is performed by a multivariate, neuro-
fuzzy classification model that uses current values of ECG P wave 
parameters to generate a cardiomyopathy classification index. The 
initial model is a multi-input single-output fuzzy inference system 
with a three-layer architecture (Figure 1). The fuzzification layer 
takes crisp parameter values and determines their memberships in 
linguistic categories (low, medium, high, etc.). Each of these 
fuzzy variables are then input to each node of the fuzzy rule layer 
(i.e., the middle layer shown in Figure 1). The model output, 
which is the cardiomyopathy classification index, is the weighted 
average of the output rules. 

Since we have four inputs (see Figure 5), we have m = 4 in Figure 
1. The number of middle-layer neurons is equal to p and should be 
chosen as a tradeoff between good training performance and good 
generalization. If p is too small then training performance will be 
poor because we will not have enough degrees of freedom in the 
neuro-fuzzy network. If p is too large then test performance will 
be poor because the training algorithm will tend to “memorize” 
the training inputs rather than obtaining a good generalization for 
test data. 

The output y shown in Eq. (4) is chosen to be +1 for 
cardiomyopathy patients and 1 for control patients. The ECG 
database is used for training and the output of the neuro-fuzzy 
system is compared to the known classification of the ECG 
patient. The RMS training error is defined as



   

 

 
 

 
  
    
 

  
   
   
   

 
 
 
 

 

 

 
 

 
   

 

 

 

 
   
   

  
  
  
  

 
 

 

 
 

 
 

 

 
   
   

  
  
  

 
 

    
  

 
 

 

 

 

   

  

 
   
   

  
  
  
  
  
  
  

 

  
 

 

 
 

population size, mutation rate, and generation limit as discussed 
ே

݀ሺ෍ 
ܰ
1
ඩܧ ൌ  

earlier. We use 3 middle-layer neurons as indicated by Table 1. 
௜ െ  ௜ሻଶ (8) Table 2 shows that OBBO using quasi-opposition provides theݕ

௜ୀଵ best neuro-fuzzy classification performance when test 
performance is used as the criterion. 

where N is the number of training inputs, di is the desired output 
Table 2. Training error and correct classification rate (CCR) of the ith training datum (+1 or 1), and yi is the corresponding 

for training and testing for alternative implementations neuro-fuzzy output. In order to determine the best value of p (the 
oppositional BBO.number of middle-layer neurons) we run 10 Monte Carlo 

simulations with various values for p and compare training and 
testing errors. The BBO parameters that we use are as follows: 
 Population size = 200 
 Mutation rate = 2% per solution feature 
 Generation limit = 50 

Mutation is implemented by randomly generating a new 

Training Error Train CCR (%) Test CCR (%) 
Best Mean Best Mean Best Mean 

BBO 0.77 0.86 84 76 66 58 
Q-BBO 0.83 0.86 79 74 69 62 
R-BBO 0.80 0.85 81 75 65 60 

Note that the numbers in Tables 1 and 2 do not match exactly 
parameter from a uniform distribution between the minimum and  
maximum parameter bounds. The parameter bounds that we use  
are as follows:  
 Output singletons zi  [10, +10]  
 Membership centroids cij  [0, ]  
 Membership standard deviations ij  [0.01, 5]  

We use ECG data from 55 test subjects as described in Section 3,  
which includes 37 control patients and 18 cardiomyopathy  
patients. We randomly divide the patients into approximately  
equal numbers of training patients and test patients. We therefore  
have 9 cardiomyopathy patients and 19 control patients for  
training the network, and 9 cardiomyopathy patients and 18  
control patients for testing the network. We randomly choose 200  
ECG data points from a 700-minute time interval for each patient  
for both training and testing. Therefore, we have 200(9+19) =  
5600 data points for training, and 200(9+18) = 5400 data points  
for testing.  

3.3 Parameter Tuning and Test Results 
Table 1 shows the minimum training error attained as specified in 
Eq. (8) for various numbers of middle-layer neurons, along with 
the resulting correct classification rate for training and testing. An 
ECG data point is classified as cardiomyopathy if the neuro-fuzzy 
output y > 0, and control if the neuro-fuzzy output y < 0. The 
quantity of primary interest is the correct classification rate for the 
test data, and Table 1 shows that this is attained with 3 middle-
layer neurons. Fewer neurons gives too few degrees of freedom, 
and more neurons results in a tendency of the neuro-fuzzy system 
to overfit the training data and hence not provide adequate 
generalization for the test data. 

Table 1. Training error and correct classification rate (CCR) 
for training and testing as a function of the number of middle 

because they are the results of different sets of Monte Carlo 
simulations. Note that the p=3 row in Table 1 is the same 
experiment as the BBO row in Table 2. However, different 
random number seeds were used for the two experiments. Ideally 
the two rows should be identical, but due to different random 
number seeds in the 10 Monte Carlo runs, the two rows are 
somewhat different. The fact that two different sets of 
experiments performed under the same conditions lead to 
somewhat different results means either that we did not use 
enough Monte Carlo runs of the experiments, or the variance of 
results is relatively high. In future work we will analyze variance 
to allow for a better assessment of the significance of the results. 

After settling on Q-BBO with 3 middle-layer neurons, we explore 
the effect of mutation rate on Q-BBO performance. Table 3 shows 
neuro-fuzzy results for various mutation rates. We use the same 
population size and generation limit as before. Table 3 shows that 
mutation rate does not have a strong effect on neuro-fuzzy system 
results, but based on test data performance, a low mutation rate 
generally gives better results than a high mutation rate. 

Table 3. Training error and correct classification rate (CCR) 
for different mutation rates using Q-BBO. 

Mutation Training Error Train CCR (%) Test CCR (%) 
rate (%) Best Mean Best Mean Best Mean 

0.1 0.79 0.85 81 76 71 61 
0.2 0.82 0.86 80 75 72 59 
0.5 0.77 0.85 82 76 69 62 
1.0 0.80 0.85 80 74 67 57 
2.0 0.83 0.86 79 74 69 62 
5.0 0.82 0.87 81 74 68 58 

10.0 0.80 0.87 78 73 65 59 

Figure 6 shows the progress for a typical Q-BBO training 
layer neurons p. simulation. Note that the minimum training error in the top plot is 

p 
Training Error Train CCR (%) Test CCR (%) 
Best Mean Best Mean Best Mean 

2 0.85 0.88 76 72 66 58 
3 0.77 0.84 82 77 75 62 
4 0.78 0.83 84 77 65 55 
5 0.78 0.83 82 76 63 58 

Next we implement OBBO to explore the effect of OBL on 

monotonically nonincreasing due to the inherent elitism  of the 
algorithm (see Figure 3). However, the average cost in the top 
plot, along with the success rates in the bottom plot, sometimes 
increases and sometimes decreases from one generation to the 
next. The results shown in Figure 6 also indicate that better results 
might be obtained if the generation limit were increased. 
However, care must be taken when increasing the generation 
limit. As the generation count increases, the training error will 

classification performance. Table 2 shows results for three continue to decrease but the test error will eventually begin to 
different OBL options: standard BBO, quasi-opposition BBO (Q- increase due to overtraining [33]. 
BBO), and quasi-reflected BBO (R-BBO). We use the same 
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Figure 6. Typical Q-BBO training results. 

The Q-BBO training run illustrated in Figure 6 resulted in the 
following neuro-fuzzy parameters: 

0.513 0.116 0.981 0.065 
  (9)c  0.316 0.930 0.138 0.214 
0.899 0.235 0.041 0.613  

1.119 0.409 0.133 0.101 
  (10) 0.326 0.805 1.963 1.529    
1.825 0.356 0.858 0.438  

ݖ ൌ  ሾ1.641 െ0.967 0.779ሿ. (11) 

Recall that we used a c range of [0, ], but from Eq. (9) the 
highest membership centroid was less than 1 after Q-BBO 
training. This indicates that we could decrease the c range in order 
to get better resolution during training. 

Similarly, recall that we used a  range of [0.01, 5], but from Eq. 
(10) the highest standard deviation was less than 2 after Q-BBO 
training. This indicates that we could decrease the  range in 
order to get better resolution during training. 

Finally, recall that we used an output singleton z range of [10, 
+10], but from Eq. (11) the output singletons were between 1 
and 2 after Q-BBO training. This indicates that we could decrease 
the z range to get better resolution during training. 

3.4 Clustering and Pruning 
The appropriate number of clusters in the neuro-fuzzy system is 
equivalent to the number of middle-layer neurons p shown in 
Figure 1. Determination of the optimal number of fuzzy rules is 
equivalent to finding a suitable number of clusters for the given 
data set. This can also be performed using fuzzy c-means 
clustering [5], [13]. Clustering is itself a multiobjective 
optimization problem that maximizes compactness within 
clusters, maximizes separation between clusters, and maximizes 
neuro-fuzzy system performance. 

In the previous section we solved for cluster count using manual 
tuning (see Table 1). However, we could also solve for cluster 
count by observing the output singletons zi after training, 
discarding those that are significantly smaller than the others, and 

then retraining the network. For example, when using BBO to 
train the neuro-fuzzy system with 5 middle-layer neurons, a 
typical result for the output singletons after convergence is 

z ൌ  ሾ1.766 1.880 െ 1.712    ૙. ૜ૢ૛ െ 1.542ሿ. 

The magnitude of z4  (0.392ሻ is smaller by a factor of 4 than any 
other element of z. This indicates that the corresponding fuzzy 
rule could be removed from the system without sacrificing 
performance. Retuning should then be performed to adjust the 
neuro-fuzzy parameters for the network size reduction. 

Another way to check if we are using too many middle-layer 
neurons is by looking at the distance between fuzzy membership 
function centers. If, after training, two membership function 
centers are very close to each other, that indicates that those two 
fuzzy sets could be combined. For example, the matrix of fuzzy 
centroids after a typical training run with 5 middle-layer neurons 
(i.e., 5 fuzzy membership sets) is given by 

0.5587 0.0046 0.9480 0.6628 
 0.4908 0.3719 0.4274 0.2847  

c  0.5534 0.9005 0.9880 0.2659 . 
 
0.9839 0.7428 0.3904 0.2067  
0.9992 0.6061 0.2754 0.2185  

Each row of c corresponds to a fuzzy set centroid, and each 
column of c corresponds to one dimension of the input data. A 
cursory look at the c matrix shows that rows 4 and 5 are similar to 
each other. A matrix of Euclidean distances between centroids 
(i.e., between columns of c) can be derived as 

0 0.7439 0.9807 1.1157 1.0980  
 0.7439 0 0.7732 0.6231 0.5838  

c 0.9807 0.7732 0 0.7556 0.8919   
 
1.1157 0.6231 0.7556 0 0.1797  
1.0980 0.5838 0.7556 0.1797 0   

where cij is the Euclidean distance between centroids i and j. The 
c matrix indicates that fuzzy centroids 4 and 5 are much closer 
to each other than the other centroids, which implies that the 
corresponding membership functions overlap, and so they could 
be combined. Afterward, the neuro-fuzzy system should be 
retrained to compensate for the change in its structure. 

3.5 Fine Tuning Using Gradient Information 
The BBO algorithm that we used, like other EAs, does not depend 
on gradient information. Therein lies its strength relative to 
gradient-based optimization methods. EAs can used for global 
optimization since they do not rely on local gradient information. 
Since the neuro-fuzzy system shown in Figure 1 may have 
multiple optima, BBO training is less likely to get stuck in a local 
optima compared to gradient-based optimization. 

However, additional performance improvement could be obtained 
in the neuro-fuzzy classifier by using gradient information in 
conjunction with EA-based optimization. Gradient-based methods 
can be combined with EAs in order to take advantage of the 
strengths of each method. First we can use BBO, as above, in 
order to find neuro-fuzzy parameters that are in the neighborhood 
of the global optimum. Then we can use a gradient-based method 
to fine tune the BBO result. The most commonly-used gradient-



 

  
  

 

 

 
 

 

 
 

 
  

  

  
 

 

 

 

 
 

 

 
 

  
 

 

  

 

 

 

   
 

 
 

 
 

 
 

  

 

   
 

 

 
  

 
  

 
 

 
 

  

 

 
 

  

based method is gradient descent [5], [13]. Gradient descent can 
be further improved by using an adaptive learning rate and 
momentum term [19]. 

Kalman filtering is a gradient-based method that can give better 
fuzzy system and neural network training results than gradient 
descent [26], [27]. Constrained Kalman filtering can further 
improve fuzzy system results by optimally constraining the 
network parameters [28]. H-infinity estimation is another 
gradient-based method that can be used for fuzzy system training 
to improve robustness to data errors [29]. 

3.6 Training Criterion 
The ultimate goal of the neuro-fuzzy network is to maximize 
correct classification percentage. If the neuro-fuzzy output is 
greater than 0, then the ECG is classified as cardiomyopathy; 
otherwise, the ECG is classified as non-cardiomyopathy. The 
bottom plot in Figure 6 shows that while RMS training error is 
monotonically nondecreasing, the success rate for the training 
data is non-monotonic. We could more directly address the 
problem of ECG data classification by using classification success 
rate as our fitness function rather than trying to minimize the 
RMS error of Eq. (8). That is, in fact, one of the advantages of EA 
training relative to gradient-based methods  the fitness function 
does not have to be differentiable. However, if we use 
classification success rate as our fitness function, and then try to 
use a gradient-based method for fine-tuning, the cost functions of 
the two training methods would inconsistent. 

4. CONCLUSIONS 
We have shown that clinical ECG data can be correctly classified 
as cardiomyopathy or non-cardiomyopathy using a neuro-fuzzy 
network trained by BBO. Our results show a correct classification 
rate on test data of over 60%. Better results can undoubtedly be 
attained with further training, but the main goal of this initial 
research was to demonstrate feasibility and establish a framework 
for further refinement. 

Although preliminary results are good, there are enhancements 
that need to be made to improve performance and incorporate this 
work into a commercial product. For example, demographic 
information needs to be included with the ECG data. Some of the 
test ECGs were correctly classified 100% of the time, while 
others had a low success rate. Figure 7 shows the classification 
success rate for the test data sorted by patient ID. Some patient’s 
ECG data were successfully classified only 2% of the time, while 
others were successfully classified 100% of the time. This 
indicates that demographic data is important and that we should 
group patients into similar groups for testing and training. Some 
of these data include gender, race, medication usage, and age. 
This will become feasible as we perform more clinical studies and 
collect data from more patients. 

We note that our results are based on data snapshots at single 
instants of time. We could presumably get better results by using 
a “majority rules” strategy for data over several minutes. For 
example, suppose test accuracy is 60% for a given patient. We 
could use ECG data at three separate time instants and diagnose 
cardiomyopathy if the network predicts cardiomyopathy for two 
or more of the data. This would boost test accuracy from 60% to 
65%, assuming that the probability of correct classification is 
independent from one time instant to the next. We could then 
further improve accuracy by using more time instants. 
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Figure 7. ECG classification success rate for test patients. 
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