
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

10-2005

Dynamic Voltage Scaling Techniques for Power
Efficient Video Decoding
Ben Lee
Oregon State University, benl@eecs.oregonstate.edu

Eriko Nurvitadhi
Carnegie Mellon University, enurvita@andrew.cmu.edu

Reshma Dixit
Oregon State University, dixit@eecs.oregonstate.edu

Chansu Yu
Cleveland State University, c.yu91@csuohio.edu

Myungchul Kim
Information and Communications University, mckim@icu.ac.kr

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

Part of the Computer and Systems Architecture Commons, and the Electrical and Computer
Engineering Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of
Systems Architecture. Changes resulting from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was submitted for publication. A
definitive version was subsequently published in Journal of Systems Architecture, 51, 10-11,
(10-01-2005); 10.1016/j.sysarc.2005.01.002

Repository Citation
Lee, Ben; Nurvitadhi, Eriko; Dixit, Reshma; Yu, Chansu; and Kim, Myungchul, "Dynamic Voltage Scaling Techniques for Power Efficient Video
Decoding" (2005). Electrical Engineering & Computer Science Faculty Publications. 66.
https://engagedscholarship.csuohio.edu/enece_facpub/66

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Original Citation
Lee, B., Nurvitadhi, E., Dixit, R., Yu, C., , & Kim, M. (2005). Dynamic voltage scaling techniques for power efficient video decoding.
Journal of Systems Architecture, 51(10-11), 633-652. doi:10.1016/j.sysarc.2005.01.002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216944708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/66?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Dynamic voltage scaling techniques for power efficient
video decoding

Ben Lee "", Eriko Nurvitadhi b, Reshma Dixit ", Chansu Yu " Myungchul Kim d

• Scllool of EII'clriml Ellgilll'aillg tlllIl Compllier Sciellce. Oregoll Siall' Ullin:".,"/),. Corw!lis, OR 9733/. Vlli ll'lf S[o/<'s
b Dl'/lflrIllWIlI of Electriclil (//11/ CompUler £lIgillcerillg. ClifIlegie Mellol/ Ulli t'l'rsif)'. Pilliiburgl!. P A 15213. Vlliteli SWII'S

<; Deparlmcnl (J/ Elect'ira/lmd COIIJfI"ler £lIg;",:er;II8. Clerdmul SllIle U" hw.lil),. Cfen'/mul. OH 44115·2425, U"iled SII1lI','-
d Schild 0/ EngineerillK. Ill/ormatioll alld Comm rllliculiollS Ul1il~l'rsil)'. 103-6 ,I[""ii-Dong. YllSl'l"'g-GII, Dmj"oll 305-714 , SOIllI! Korell

• Corresponding author. Tel.: +1 541 737 3148: fax: +1 541 737 1300.
E·mail (ltli/res,,'''.\': bcnl@cccs.orsl.OOU (8 . Lee). cnurvi\a@andrcw.cmu.cdu (E. Nurvi\adhi). dixit@ClXs.orSl.cdu (R. Dixi!).

c.yu91 @csuohio.cdu (C. Yu). mckim@;icu.ac.kr(M. Kim).

mailto:mckim@;icu.ac.kr(M
mailto:c.yu91@csuohio.cdu
mailto:dixit@ClXs.orSl.cdu
mailto:cnurvi\a@andrcw.cmu.cdu
mailto:bcnl@cccs.orsl.OOU

1. Introduction

Power efficient design is one of the most impor­

tant goals for mobile devices, such as laptops,
PDAs, handhelds, and mobile phones. As the pop­
ularity of multimedia applications for these porta­
ble devices increases, reducing their power
consumption will become increasingly important.
Among multimedia applications, delivering video
will become the most challenging and important
applications of future mobile devices. Video con­
ferencing and multimedia broadcasting are already
becoming more common, especially in conjunction
with the third generation (3G) wireless network ini­
tiative [11]. However, video decoding is a computa­

tionally intensive, power ravenous process. In
addition, due to different frame types and varia­
tion between scenes, there is a great degree of var­
iance in processing requirements during execution.
For example, the variance in per-frame MPEG
decoding time for the movie Terminator 2 can be
as much as a factor of three [1], and the number
of inverse discrete cosine transforms (IDCTs) per­
formed for each frame varies between 0 and 2000
[7]. This high variability in video streams can be
exploited to reduce power consumption of the pro­
cessor during video decoding.

Dynamic voltage scaling (DVS) has been shown
to take advantage of the high variability in pro­
cessing requirements by varying the processor's
operating voltage and frequency during run-time
[4,10]. In particular, DVS is suitable for eliminat­

ing idle times during low workload periods. Re­

cently, researchers have attempted to apply DVS
to video decoding to reduce power [18,17,21,
19,24,33]. These studies present approaches that
predict the decoding times of incoming frames or
group of pictures (GOPs), and reduce or increase
the processor setting based on this prediction. As
a result, idle processing time, which occurs when
a specific frame decoding completes earlier than
its playout time, is minimized. In an ideal case,
the decoding times are estimated perfectly, and
all the frames (or GOPs) are decoded at the exact

time span allowed. Thus, there is no power wasted
by an idle processor waiting for a frame to be
played. In practice, decoding time estimation leads
to errors that result in frames being decoded either
before or after their playout time. When the
decoding finishes early, the processor will be idle
while it waits for the frame to be played, and some
power will be wasted. When decoding finishes late,
the frame will miss its playout time, and the per­
ceptual quality of the video could be reduced.

Even if decoding time prediction is very accu­
rate, the maximum DVS performance can be
achieved only if the processor can scale to very
precise processor settings. Unfortunately, such a
processor design is impractical since there is cost
associated with having different processor supply
voltages. Moreover, the granularity of voltage/fre­
quency settings induces a tradeoff between power
savings and deadline misses. For example, fine-
grain processor settings may even increase the
number of deadline misses when it is used with
an inaccurate decoding time predictor. Coarse-
grain processor settings, on the other hand, lead
to overestimation by having voltage and frequency
set a bit higher than required. This reduces dead­
line misses in spite of prediction errors, but at
the cost of reduced power savings. Therefore, the
impact of processor settings on video decoding
with DVS needs to be further investigated.

Based on the aforementioned discussion, this
paper provides a comparative study of the existing
DVS techniques developed for low-power video
decoding, such as Dynamic [33], GOP [21], and
Direct [18,24], with respect to prediction accuracy
and the corresponding impact on performance.
These approaches are designed to perform well
even with a high-motion video by either using static
prediction model or dynamically adapting its pre­
diction model based on the decoding experience
of the particular video clip being played. However,
they also require video streams to be preprocessed
to obtain the necessary parameters for the
DVS algorithm, such as frame sizes, frame-size/
decoding-time relationship, or both. To overcome

this limitation, this paper also proposes an alterna­
tive method called frame-data computation aware
(FDCA) method. FDCA dynamically extracts useful
frame characteristics while a frame is being decoded
and uses this information to estimate the decoding
time. Extensive simulation study based on Simpl­

eScalar processor model [5], Wattch power tool
[3] and Berkeley MPEG Player [2] has been con­
ducted to compare these DVS approaches.

Our focus is to investigate two important trade­
offs: The impact of decoding time predictions and
granularity of processor settings on DVS perfor­
mance in terms of power savings, playout accu­
racy, and characteristics of deadline misses. To
the best of our knowledge, a comprehensive study
that provides such a comparison has not been per­
formed, yet such information is critical to better
understand the notion of applying DVS for low-
power video decoding. For example, existing
methods only use a specific number of processor
settings and thus do not provide any guidelines
on an appropriate granularity of processor settings
when designing DVS techniques for video decod­
ing. Moreover, these studies quantified the DVS
performance by only looking at power savings
and the number of deadline misses. In this paper,
we further expose the impact of deadline misses
by measuring the extent to which the deadline
misses exceed the desired playout time.

The rest of the paper is organized as follows.
Section 2 presents a background on DVS. Section
3 introduces the existing and proposed DVS tech­
niques on low-power video decoding and discusses
their decoding time predictors. Section 4 discusses
the simulation environment and characteristics of
video streams used in this study. It also presents
the simulation results on how the accuracy of
decoding time predictor and the granularity of
processor settings affect DVS performance. Final­
ly, Section 5 provides a conclusion and elaborates
on future work.

2. Background on dynamic voltage scaling (DVS)

DVS has been proposed as a mean for a proces­
sor to deliver high performance when required,
while significantly reduce power consumption dur­

ing low workload periods [4,9,10,12–24,33]. The
advantage of DVS can be observed from the
power consumption characteristics of digital static
CMOS circuits [21] and the clock frequency equa­

/ s /
fCLK ðV DD - V TÞ2

tion [24]:

P / Ceff V 2 fCLKDD ð1Þ

1 V DD ð2Þ

where Ceff is the effective switching capacitance,
VDD is the supply voltage, fCLK is the clock fre­
quency, s is the circuit delay that bounds the upper
limit of the clock frequency, and VT is the threshold
voltage. Decreasing the power supply voltage would
reduce power consumption significantly (Eq. (1)).
However, it would lead to higher propagation de­
lay, and thus force a reduction in clock frequency
(Eq. (2)). While it is generally desirable to have
the frequency as high as possible for faster instruc­
tion execution, for some tasks where maximum
execution speed is not required, the clock fre­
quency and supply voltage can be reduced to save
power.

DVS takes advantage of this tradeoff between
energy and speed. Since processor activity is vari­
able, there are idle periods when no useful work
is being performed, yet power is still consumed.
DVS can be used to eliminate these power-wasting
idle times by lowering the processor's voltage and
frequency during low workload periods so that
the processor will have meaningful work at all
times, which leads to reduction in the overall
power consumption.

However, the difficulty in applying DVS lies in
the estimation of future workload. For example,
Pering et al. took into account the global state of
the system to determine the most appropriate scal­
ing for the future [23], but the performance benefit
is limited because the estimation at the system level
is not generally accurate. Another work by Pering
and Brodersen considers the characteristics of indi­
vidual threads without differentiating their behav­
ior [22]. Flautner et al. classifies each thread by
their communication characteristics to well known
system tasks, such as X server or the sound dae­
mon [9]. Lorch and Smith assign pre-deadline and
post-deadline periods for each task and gradually

accelerate the speed in between these periods
[15]. While these approaches apply DVS at the
Operating System level, for some applications that
inhibit high variability in their execution, such as vi­
deo decoders, greater power savings can be
achieved if DVS is incorporated into the applica­
tion itself. The next section overviews existing
DVS approaches for low-power video decoding.

3. Prediction-based DVS approaches for
low-power video decoding

This section introduces various DVS ap­

proaches for low-power video decoding. They uti­
lize some form of a decoding time prediction
algorithm to dynamically perform voltage scaling
[18,17,21,24,32,33]. In Section 3.1, we show how
the low-power video decoding benefits from DVS
and how the accuracy of decoding time predictor
affects the performance of DVS. Section 3.2 de­
scribes three existing DVS approaches and the
proposed FDCA approach with a focus on predic­
tion algorithms. In Section 3.3, the impact of the
granularity of the processor settings on DVS per­
formance is discussed.

3.1. Prediction accuracy on DVS performance

Fig. 1 illustrates the advantage of DVS in video
decoding as well as the design tradeoff between
prediction accuracy, power savings, and deadline
misses. The processor speed on the y-axis directly
relates to voltage as discussed earlier, and reducing
the speed allows the reduction in supply voltage,
which in turn results in power savings. The shaded
area corresponds to the work required to decode
the four frames and it is the same in all three cases.
However, the corresponding power consumption
is the largest in Fig. 1a because it uses the highest
voltage/frequency setting and there is a quadratic
relationship between the supply voltage and power
consumption (see Eq. (1) in Section 2).

Fig. 1a shows the processor activity when DVS
is not used, which means that the processor runs at
a constant speed (in this case at 120 MHz). Once a
frame is decoded, the processor waits until (e.g.,
every 33.3 ms for the frame rate of 30 frames per

CPU decodes frame

CPU speed Frame 1 is Frame 2 is Frame 3 is Frame 4 is
(Mhz) displayed displayed displayed displayed

120
F F

100 r r
80 Frame 1 Frame

2
a
m

a
m

60
3
e

4
e

40 Time

1 2 3 4
(sec)

30 30 30 30

(a)

CPU speed Frame 1 is Frame 2 is Frame 3 is Frame 4 is
(Mhz) displayed displayed displayed displayed

120

100

80
Frame 160

Frame2 Frame 3 Frame 4 Time
(sec)

40

1 2 3 4
30 30 30 30

(b)

CPU speed Frame 1 is Frame 2 is Frame 3 is Frame 4 is
(Mhz) displayed displayed displayed displayed

120

100

80

Frame 1
Frame2

60
Frame 3 Frame 4 Time

(sec)
40

1 2 3 4
30 30 30 30

(c)

Fig. 1. Illustration of DVS. (a) Without DVS. (b) With DVS
(Ideal). (c) Prediction inaccuracies.

second or fps) when the frame must be played
out. During this idle period, the processor is still
running and consuming power. These idle periods
are the target for exploitation by DVS. Fig. 1b
shows the ideal case where the processor scales ex­
actly to the voltage/frequency setting required for
the desired time span. Therefore, no idle time ex­
ists and power saving is maximized. Achieving this
goal involves two important steps. First, the
decoding time must be predicted. Second, the pre­
dicted decoding time must be mapped to an appro­
priate voltage/frequency setting.

Inaccurate predictions in decoding time and/or
use of insufficient number of voltage/frequency set­
tings will introduce errors that lead to reduction in
power saving and/or increase in missed deadlines

as shown in Fig. 1c. In this figure, the decoding
times for frames 1 and 4 are overestimated, result­
ing in more power consumption than required. On
the other hand, the decoding time for frame 2 is
underestimated, which leads to a deadline miss
that may degrade the video quality. In summary,
DVS has great potential in applications with high
varying workload intensities such as video decod­
ing, but accurate workload prediction is prerequi­
site in realizing the benefit of DVS.

3.2. Overview of DVS approaches and their
prediction schemes

As clearly shown in Fig. 1, an accurate predic­
tion algorithm is essential to improve DVS perfor­
mance and to maintain video quality. Prediction
algorithms employed in several DVS approaches
differ based on the following two criteria: predic­
tion interval and prediction mechanism. Prediction
interval refers to how often predictions are made in
order to apply DVS. The existing approaches use
either per-frame or per-GOP scaling. In per-GOP
approaches, since the same voltage/frequency is
used while decoding a particular GOP, they do
not take full advantage of the high variability of
decoding times among frames within a GOP.

Prediction mechanism refers to the way the
decoding time of an incoming frame or GOP is esti­
mated. Currently, all the approaches utilize some
form of frame size vs. decoding time relationship
[1]. Some methods are based on a fixed relation­
ship, while others use a dynamically changing rela­
tionship. In the fixed approach, a linear equation
describing the relationship between frame sizes
and frame decoding times is provided ahead of
time. In the dynamic approach, the frame-size/
decoding-time relationship is dynamically adjusted
based on the actual frame-related data and decod­
ing times of a video stream being played. The dy­
namic approach is better for high-motion videos
where the workload variability is extremely high.
In other cases, the fixed approach performs better
than the dynamic approach but its practical value
is limited because the relationship is not usually
available before actually decoding the stream.

Aside from the two criteria explained above, the
DVS schemes are classified as either off-line or

on-line. A DVS scheme is classified as on-line if
no preprocessing is required to obtain information
to be used in the DVS algorithm and therefore is
equally adaptable for stored video and real-time
video applications. It is classified as off-line if pre­
processing is required to obtain information
needed by the DVS algorithm.

Four DVS techniques for video decoding and
the corresponding prediction algorithms are dis­
cussed and compared: GOP is a per-GOP, dynamic
off-line approach, Direct is a per-frame, fixed off­
line approach, while Dynamic and FDCA are per-
frame, dynamic approaches with Dynamic being
an off-line scheme and FDCA being an on-line
scheme. Intuitively, GOP consumes more energy
and incurs more deadline misses than Direct and
Dynamic but would result in the least overhead be­
cause the prediction interval is longer. Direct
would perform the best because it is based on a
priori information on decoding times and their
relationship with the corresponding frame sizes.
It should be noted that the offline methods have
one striking drawback in that they all require a pri­
ori knowledge of encoded frame sizes and there­
fore need some sort of preprocessing. There is
also a method that completely bypasses the decod­
ing time prediction at the client to eliminate the
possibilities of errors due to inaccurate scaling pre­
dictions [17]. This is done by preprocessing video
streams off-line on media servers to add accurate
video complexity information during the encoding
process. However, this approach requires knowl­
edge of client hardware and is therefore impracti­

cal. Moreover, it is not useful in case of existing
streams that do not include the video complexity
information. Choi et al. [32] have proposed a
method in which the frame is divided into a
frame-dependent and frame-independent part
and scale voltage accordingly. However, as men­

tioned in their work, it is possible for errors to
propagate across frames due to a single inaccurate
prediction, thereby degrading video quality. These
two methods are not included in the study.

3.2.1. Per-GOP approach with dynamic equation
(GOP)

GOP is a per-GOP scaling approach that dynam­

ically recalculates the slope of the frame-size/

decode-time relationship based on the decoding
times and sizes of past frames [21]. At the begin­
ning of a GOP, the sizes and types of the frames
of an incoming GOP are observed. This informa­

tion is then applied to the frame-size/decode-time
model, and the time needed to decode the GOP
is estimated. Based on this estimate, the lowest fre­
quency and voltage setting that would satisfy the
frame rate requirement is selected. The dynamic
slope adjustment was originally presented in [1],
where the slope adjustment is implemented by uti­
lizing the concept of decoding time per byte
(DTPB). DTPB essentially represents the slope of
the frame-size/decode-time equation and this value
is updated as the video is decoded using the actual
decoding times of the just-decoded frames. The
summary of the algorithm for GOP is presented
in Fig. 2.

Although the GOP method requires the least
overhead among the three approaches, the per-
GOP scaling will introduce more prediction errors.
The reason is that by having the same processor
setting for a GOP, prediction inaccuracy may
propagate across all the frames within the GOP.
Moreover, the fact that each frame type has its
own decoding time characteristic [1,19,21] is ig­
nored while it would be more reasonable to assign
a processor setting depending on the type of the
frame.

3.2.2. Per-frame approach with fixed equation
(Direct)

Direct was used by Pouwelse et al. in their
implementation of StrongARM based system for
power-aware video decoding [18,24]. In this tech­
nique, the scaling decision is made on a per-frame
basis. Based on a given linear model between
frame sizes and decoding times, decoding time of
a new frame is estimated and then it is associated
to a particular processor setting using a direct
mapping.

In order to obtain the size of the new frame, the
decoder examines the first half of the frame as it is
being decoded. Then, the size of the second half of
the frame is predicted by multiplying the size of the
first half with the complexity ratio between the first
and second halves of the previous frame. Based on
this, if the decoding time of the first half of the
frame is higher than the estimated decoding time,
it means that the decoding is too slow and the pro­
cessor setting is then increased.

In addition, they also present a case in which
the frame sizes are known a priori [24]. This is
achieved by feeding the algorithm with the size
of each frame gathered offline. Thus, voltage/fre­
quency scaling is done at the beginning of each
frame by looking at the frame size, estimating
the decoding time, and scaling the processor set­
ting accordingly. Our simulation study of Direct

Fig. 2. Algorithm for the GOP approach.

Fig. 3. Algorithm for the Direct approach.

is based on this case. Fig. 3 summarizes the Direct
approach implemented in our simulator.

3.2.3. Per-frame approach with dynamic equation
(Dynamic)

Dynamic [33] is a per-frame scaling method that
dynamically updates the frame-size/decoding-time
model and the weighted average decoding time.
Fig. 4 provides a description of the Dynamic
approach.

The mechanism used to dynamically adjust the
frame-size/decode-time relationship is similar to
one presented in [1]. In Dynamic, the adjustment
is made focusing on the differences of the decoding
times and frame sizes. The average decoding time
of previous frames of the same type is used as
the initial value for predicting the next frame.
The possible deviation from this average value is

then predicted by looking at the weighted differ­
ence of frame sizes and decoding times of previous
frames. This predicted fluctuation time is then
added to the average decoding time to obtain the
predicted decoding time of the incoming frame.

3.2.4. Per-frame, frame-data computation aware
dynamic (FDCA) approach

The principal idea behind the FDCA scheme is
to use information available within the video
stream while decoding the stream. In this way,
there is no need to rely on external or offline pre­
processing and data generating mechanisms to
provide input parameters to the DVS algorithm.

The main steps involved during the video
decoding process [30] are variable length decoding
(VLD), reconstruction of motion vectors (MC),
and pixel reconstruction, which comprises of

Fig. 4. Algorithm of the Dynamic approach.

inverse quantization (IQ), inverse discrete cosine
transform (IDCT), and incorporating the error
terms in the blocks (Recon). Ordinarily, an MPEG
decoder carries out decoding on a per-macroblock
basis and the above mentioned steps are repeated
for each macroblock until all macroblocks in a
frame are exhausted.

In order to gather and store valuable frame-re­

lated information during the decoding process, the
decoder was modified to carry out VLD for all
macroblocks in a frame ahead of the rest of the
steps. The information collected during the VLD
stage constitutes such parameters as (1) total num­
ber of motion vectors in a frame (nbrMV), (2) total
number of block coefficients in a frame (nbrCoeff),
(3) total number of blocks on which to carry out
IDCT (nbrIDCT), and (3) the number of blocks
to perform error term correction on (nbrRecon).
The rest of the decoding steps are then carried
out for the entire frame. The FDCA approach is
similar to the one proposed in [31] in that, VLD
is carried out for the entire frame ahead of the
other decoding steps. However, there are some
key differences between the two methods: First,
the method in [31] takes into consideration the
worst case execution time of frames and tries to
lower the overestimation as much as possible by
using various frame parameters. Therefore, this
not only causes an overhead due to decoder
restructuring, but also results in overestimation
of decoding time. On the other hand, FDCA takes
a ‘‘best effort’’ estimation approach by using mov­

ing averages in the estimation. Second, the ulti­
mate goal of FDCA is to use the decoding time
estimation for applying DVS. Therefore, unlike
the method in [31], FDCA does not buffer the entire
frame (which may possibly lead to some delay and
therefore more power consumption) to find out the
frame size in order to estimate the decoding time
for the VLD step. Instead, VLD is initiated right
away, thus bypassing the preprocessing step that
is required in their method.

In order to estimate the number of cycles that
will be required for frame decoding, each of MC,
IQ, IDCT, and Recon steps is considered as a unit
operation. That is, for each unit operation, same
blocks of code will be executed and will require
similar number of cycles every time a unit opera­

tion is carried out. Therefore, a moving average
can be maintained, at frame level, of the cycles re­
quired for all the unit operations after the VLD
step. These parameters consist of the number of
cycles required for (1) reconstructing one motion
vector (AvgTimeMC), (2) carrying out IQ on one
coefficient in a block (AvgTimeIQ), performing
IDCT on one block of pixels (AvgTimeIDCT),
and incorporating error terms on one block of pix­
els (AvgTimeRecon).

Using the information explained above, it is
now possible to estimate the number of cycles that
will be required for frame decoding after the VLD
step by simply multiplying the corresponding
parameters. A moving average of the prediction
error (PredError) is also maintained and used as
an adjustment to the final estimated decoding time
for a frame. The cycles for the unit operations are
not grouped according to the frame type because,
as previously stated, the same block of code will be
executed regardless of the type of the frame. The
error terms however, are grouped depending on
the frame type. The estimated number of cycles
for a frame is then used to apply DVS by selecting
the lowest frequency/voltage setting that would
meet the frame deadline. The VLD step is per­
formed at the highest voltage/frequency available
to leave as much time as possible to perform
DVS during the more computationally intensive
tasks after VLD. Fig. 5 gives an algorithmic
description of the FDCA scheme.

3.3. Granularity of processor settings on DVS
performance

In this subsection, the impact of granularity of
processor settings on DVS performance is dis­
cussed. Fig. 6a is the same ideal DVS approach
as in Fig. 1b. It is ideal not only because the decod­
ing time prediction is prefect but also because the
processor can be set precisely to any voltage/fre­
quency value. However, since there is some cost in­
volved in having different processor supply
voltages [25,27], a processor design with a large
number of voltage/frequency scales is unfeasible
[6,13]. For this reason, DVS capable commercial
processors typically employ a fixed number of
voltage and frequency settings. For example,

Fig. 5. Algorithm of the FDCA approach.

Transmeta TM5400 or ‘‘Crusoe’’ processor has 6
voltage scales ranging from 1.1 V to 1.65 V with
frequency settings of 200–700 MHz [24], while In­
tel StrongARM SA-100 has up to 13 voltage scales
from 0.79 V to 1.65 V with the frequency settings
of 59–251 MHz [10].

Consider a processor that has a fixed scale of
frequencies, e.g., 5 settings ranging from 40 MHz
to 120 MHz with steps of 20 MHz as in Fig. 6b.
The closest available frequency that can still satisfy
the deadline requirement is selected by DVS algo­
rithm. In Fig. 6c, the scales used in the previous
case are halved, which results in 9 frequency scales
with steps of 10 MHz. This result in less idle times
than the previous case and more power saving is
achieved. If finer granularity scales than Fig. 6c
are used, power savings would improve until at
some point when it reaches the maximum as in
the ideal case. Nevertheless, more frame deadline
misses will also start to occur as finer granularity
scales are used with inaccuracies in predicting
decoding times. That is, prediction errors together
with use of fine-grain settings would introduce
more deadline misses. On the other hand, use of
coarse-grain settings induces overestimation that
could avoid deadline misses in spite of prediction
errors. Thus, it is important to understand which
level of voltage scaling granularity in a DVS algo­

rithm is fine enough to give significant power sav­
ings and minimize deadline misses, while still
reasonably coarse to be implemented.

4. Performance evaluation and discussions

This section presents the simulation results
comparing different DVS schemes introduced in
Section 3.2, and also show the quantitative results
on the effect of the granularity of processor set­
tings on DVS performance discussed in Section
3.3. Performance measures are average power con­
sumption per frame, error rate, and deadline
misses. Before proceeding, the simulation environ­
ment and the workload video streams are first de­
scribed in Sections 4.1 and 4.2, respectively.

4.1. Simulation environment

Fig. 7 shows our simulation environment, which
consists of modified SimpleScalar [5], Wattch [3],
and Berkeley mpeg_play MPEG-1 Decoder [2].
SimpleScalar [5] is used as the basis of our simula­
tion framework. The simulator is configured to
resemble the characteristics of a five-stage pipeline
architecture, which is typical of processors used in
current portable multimedia devices. The proxy

CPU speed Frame 1 is Frame 2 is Frame 3 is Frame 4 is
(Mhz) displayed displayed displayed displayed

120

100

80

60

40

Frame 1
Frame 2 Frame 3 Frame 4 Time

1 2 3 4
(sec)

30 30 30 30

(a)

CPU speed Frame 1 is Frame 2 is Frame 3 is Frame 4 is
(Mhz) displayed displayed displayed displayed

120

100

80
Frame 1

60 Frame 2
Frame 3 Frame 4 Time

(sec)
40

1 2 3 4
30 30 30 30

(b)

CPU speed Frame 1 is Frame 2 is Frame 3 is Frame 4 is
(Mhz) displayed displayed displayed displayed

120
110
100
90
80
70
60 Frame 1

Frame 2 Frame 3 Frame 450
Time
(sec)

40

1 2 3 4
30 30 30 30

(c)

Fig. 6. Granularity of scales. (a) With DVS (Ideal). (b) Coarse-
grain scales. (c) Fine-grain scales.

system call handler in SimpleScalar was modified
and a system call for handling voltage and
frequency scaling was added. Thus, the MPEG

CC
BenchmarkBenchmark Source

MPEG decoderMPEG decoder

CompilerCompiler SimpleScalaSimpleScalar r

decoder makes a DVS system call to the simulator
to adjust the processor setting.

Wattch [3] is an extension to the SimpleScalar
framework for analyzing power consumption of
the processor. It takes into account the simulator's
states and computes the power consumption of
each of the processor structures as the simulation
progresses. The power parameters in Wattch con­
tain the values of the power consumption for each
hardware structure at a given cycle time. Thus, by
constantly observing these parameters, our simula­

tor is capable of obtaining the power used by the
processor during decoding of each frame.

The Berkeley mpeg_play MPEG-1 decoder [2]
was used as the video decoder in our simulation
environment. For the FDCA scheme, the original
decoder was restructured to carry out VLD ahead
of the other steps in video decoding. All the meth­

ods required modifications to the decoder to make
DVS system calls to the simulator. A DVS system
call modifies the voltage and frequency values
presently used by SimpleScalar. These system calls
are also used to determine the number of cycles re­
quired for decoding a frame and updating data
used in an algorithm during the decoding process.
In the GOP, Direct, and Dynamic methods, there
are two system calls made: One at the start of a
frame and one at the end of a frame. In the FDCA
method, there are also other system calls made to
update data related to cycles for unit operations.

For the simulation study, the overhead of pro­
cessor scaling was assumed to be negligible. In
practice, there is a little overhead related to scal­
ing. Previously implemented DVS systems have

HardwareHardware
ConfigurationConfiguration

TotalTotal Power
SimpleScala rSimpleScalarGCCOptionOption GCC consumptionconsumption

WattchWattch
Power EstimatorPower Estimator

SimpleScalaSimpleScalar
ExecutableExecutable File

PerformancePerformancesimsim-outorder-outorder
MPEG streamMPEG streamMPEG stream StatisticsStatisticsPerformancePerformance

SimulatorSimulator

Fig. 7. Simulation environment.

shown that processor scaling takes about 70–
140 ls [4,18,24]. Since this overhead is significantly
smaller than the granularity at which the DVS sys­
tem calls are made, they would have negligible af­
fect on the overall results.

4.2. Workload video streams

Three MPEG clips were used in our simula­

tions. These clips were chosen as representatives
of three types of videos—low-motion, animation,
and high-motion. A clip showing a public message
on childcare is selected for a low-motion video
(Children) and a clip named Red's Nightmare is se­
lected as an animation video. Lastly, a clip from
the action movie Under Siege is selected to repre­
sent a high-motion video. Table 1 shows the char­
acteristics of the clips. The table also includes
frame-size/decode-time equations, which were gen­
erated after preprocessing each clip. The R2 coeffi­

cient represents the accuracy of the linear
equations, i.e., the closer R2 is to unity, the more
likely the data points will lie on the predicted line.

Fig. 8 shows the decoding time characteristics
for each of the clips. As expected, frame decoding
times for Under Siege fluctuate greatly, while the
fluctuations in decoding times for Children are
very subtle and the separation of the decoding
times for the three types of frames can be clearly
seen. For Red's Nightmare, decoding times for I-
frames are relatively unvarying, but P-frames show
large variations and B-frames are distinguished by
peaks.

Table 1
The characteristics of the clips used in the simulation

4.3. Effect of prediction accuracy on DVS
performance

Figs. 9 and 10 summarize power savings and er­
ror results for the four DVS approaches simulated
(GOP, Dynamic, Direct, and FDCA). These simula­

tions were carried out using 13-voltage/frequency
settings as used in the Intel StrongARM processor
[18]. The ideal case (Ideal) was also included as a
reference. The ideal case represents perfect predic­
tion with voltage/frequency set to any accuracy re­
quired, and thus represents optimum DVS
performance. This was done by using previously
gathered actual frame decoding times to make
scaling decisions instead of the estimated decoding
times.

Fig. 9 shows the power savings in terms of aver­
age power consumption per frame relative to using
no DVS for all frames as well as for each frame
type. All four approaches achieve comparable
power savings to the ideal case, except GOP with
Children (i.e., only 35% improvement). It can be
observed that the FDCA method consumes more
power than the other three methods. This is be­
cause the restructured MPEG decoder used in
FDCA takes longer than the original MPEG deco­
der. Our simulations on the sample streams show
that FDCA has on average 12% more overhead
than the original unmodified decoder in terms of
the number of cycles required. Therefore, this
overhead represents loss opportunity to save
power using DVS. In addition, FDCA stores
frame-related data in the VLD step and loads it

Characteristics Children Red's Nightmare Under Siege

Type Slow (low-motion) Animation Action (high-motion)
Frame rate (fps) 29.97 25 30
Number of I frames 62 41 123
Number of P frames 238 81 122
Number of B frames 599 1089 486
Total number of frames 899 1211 731
Screen size (W · H) 320 · 240 pixels 320 · 240 pixels 352 · 240 pixels
Linear equation for Decoding time = Decoding time = Decoding time =
prediction 88.8 · frame size + 106 53.9 · frame size + 2 · 106 69.6 · frame size + 2 · 106

R2 coefficient 0.94 0.89 0.94

Children
25

20

I Frames

15
 P Frames
B Frames

10

5

0

0 100 200 300 400 500 600 700 800

Frame Number

Red's Nightmare
50

45

40

35
 I Frames

30
 P Frames
25

B Frames20

15

10

5

0

0 200 400 600 800 1000 1200

Frame Number

Under Siege
30

25

20
 I frames
P frames

15

B Frames

10

5

0

0 100 200 300 400 500 600 700

Frame Number

Fig. 8. Frame decoding times for each clip.

D
ec

od
e

Ti
m

e
(m

s)
D

ec
od

in
g

Ti
m

e
(m

s)
D

ec
od

in
g

Ti
m

e
(m

s)

Fig. 9. Relative average power consumption per frame for various DVS approaches.

Er
ro

r (
%

)

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
I P B All I P B All I P B All

Children Red’s Nightmare Under Siege

GOP Dynamic Direct FDAC

Fig. 10. Errors for various DVS approaches.

back again during the rest of the steps and thus re­
sults in 9–14% higher data cache miss rate com­

pared to the original decoder. However, the
FDCA method is still able to provide an average
of 68% of power saving which is quite substantial.

Among the off-line DVS methods, GOP per­
forms the worst because it applies the same proces­
sor setting over multiple types of frames in a GOP.
This consequently wastes the potential power sav­
ings that can be made for P- and B-frames, which
typically have shorter decoding times than I-

frames. On the average, Dynamic provides the
most power saving (80% improvement) but it is
only slightly better than Direct (77%).

Fig. 10 shows the accuracy of the four DVS
approaches in terms of error, defined as the ratio
of standard deviation of inter-frame playout times
[28] to playout interval. This parameter basically
defines how well a DVS method was able to meet
frame deadlines, as also how smooth a video clip
played with the given method. GOP has the high­
est overall average error (38.9%) for the three
clips. The FDCA approach was the most accurate
with average error of 9.4%, closely followed by
Direct at 10.5%, and Dynamic with 10.8%.
Neglecting the error results of GOP, the amount
of error for each frame type depends heavily on
the variability of decoding times for Direct, Dy­
namic, and FDCA. For example, for Red 's Night­

mare, both P- and B-frames resulted in significant
errors (14% and 11% for FDCA, 17% and 10% for
Direct, and 29% and 13% for Dynamic), and this is

reflected by the variability of decoding times
shown in Fig. 8. This was also the case for P-
frames in Under Siege.

4.4. Impact of processor settings granularity

The results of power consumption and accuracy
presented in the previous subsection were based on
13 frequency/voltage settings. Thus, even if very
accurate decoding time predictions are made, the
granularity of voltage/frequency settings will invari­
ably affect the performance of DVS. It seems that
having fine-grain voltage scales would lead to better
performance than having coarse-grain scales. Nev­

ertheless, a clearer understanding is needed about
the impact that various processor voltage/fre­

quency scaling granularities have on video decod­
ing in terms of power consumption and accuracy.

To show the aforementioned tradeoff, we exper­
imented with various scaling schemes consisting of
4, 7, 13, 25, and 49 scales. Table 2 presents the
voltage/frequency scaling schemes simulated. Each
of these schemes was simulated using the Dynamic
as well as the FDCA approach. These approaches
were chosen as representatives among others due
to their promising performance and high potential
for realistic implementation.

The results are shown in Fig. 11–14. Fig. 11
shows the relative average power consumption
per frame compared to using no DVS for various
voltage/frequency processor settings for the Dy­
namic method. As can be seen, power consumption

Table 2
Processor settings simulated

Number of settings Voltages (V) Frequencies (MHz)

Range Steps Range Steps

4 scales 0.79–1.65 0.286668 59–251 64
7 scales 0.79–1.65 0.143334 59–251 32
13 scales 0.79–1.65 0.071667 59–251 16
25 scales 0.79–1.65 0.035834 59–251 8
49 scales 0.79–1.65 0.017917 59–251 4

Ideal Scale to any requested value by the ideal prediction algorithm

decreases as the number of processor settings in­
creases. However, power saving only increases
slightly beyond 13 scales. Thus, using 13 available
settings are sufficient to achieve relative average
power per frame comparable to the ideal case
(e.g., 18% vs. 16% for Children, 19% vs. 17% for
Red's Nightmare, and 23% vs. 20% for Under

Siege, respectively). The results for the FDCA
method are shown in Fig. 13 and show a similar
trend of only a marginal increase in power savings
beyond 13 scales.

Figs. 12 and 14 show the accuracy of the DVS
approaches for the various settings for Dynamic
and FDCA techniques respectively. In general,

R
el

at
iv

e
A

ve
ra

ge
 P

ow
er

 p
er

 F
ra

m
e 0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
I P B All I P B All I P B All

Children Red's Nightmare Under Siege

4 scales 7 scales 13 scales 25 scales 49 scales Ideal

Fig. 11. Relative average power per frame for various processor settings for Dynamic method.

0.35

0.30

0.25

Er
ro

r (
%

)

0.20

0.15

0.10

0.05

0.00
I P B All I P B All I P B All

Children Red’s Nightmare Under Siege

4 scales 7 scales 13 scales 25 scales 49 scales

Fig. 12. Errors for various processor settings for Dynamic method.

R
el

at
iv

e
A

ve
ra

ge
 P

ow
er

 p
er

 F
ra

m
e 0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
I P B All I P B All I P B All

Children Red Under Siege

4 scales 7 scales 13 scales 25 scales 49 scales Ideal

Fig. 13. Relative average power per frame for various processor settings for FDCA method.

Er
ro

r (
%

)

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

I P B All I P B All I P B All

Children Red’s Nightmare Under Siege

4 scales 7 scales 13 scales 25 scales 49 scales

Fig. 14. Errors for various processor settings for FDCA method.

the error decreases with the availability of more
processor settings. This is true for Children and
Under Siege, where changing the available number
of processor settings from 4 to 49 significantly re­
duces the error. However, this is not the case for
Red's Nightmare, where the error decreases for
the processor settings of 4–13, but for the number
of settings more than 13, the ratio increases
slightly due to large errors for P- and B-frames.
Therefore, with the finer granularity, more of the
inaccuracies are getting scaled more precisely
(e.g., propagated).

4.5. Characteristics of deadline misses

Fig. 15 shows the deadline misses for the four
DVS approaches. As can be seen, the Direct ap­
proach resulted in the smallest percentage of dead­

line misses. This is because we are using a frame-

size/decoding-time equation that is based on the
specific characteristic of each clip. Thus, the
frame-size/decoding-time model is well suited for
the particular clip being run. For Direct, the Under
Siege clip resulted in the most number of misses
(7.8%). The reason is that the clip is a high-motion
video, which deviates most from the calculated lin­
ear model.

However, the Dynamic and FDCA approaches
handle the Under Siege clip comparatively well
(8.4% and 9.7% deadline misses respectively) be­
cause of their adaptive capability in predicting
decoding times. The Children clip resulted in the
most number of misses (23.92%) for Dynamic,
where the FDCA method gave good results with
16.2% deadline misses. Even though P-frames for
Children for FDCA cause about 35% deadline

120

100

D
ea

dl
in

e
M

is
se

s
(%

)

80

60

40

20

0
I P B All I P B All I P B All

Children Red's Nightmare Under Siege

GOP Dynamic Direct FDAC

Fig. 15. Percentage of deadline misses for various DVS approaches.

misses, it is found that the deadline is missed only
by an average of about 5% and is therefore negligi­
ble. The highest number of deadline misses in Dy­
namic occurred for the clip with the least amount
of scene variations. This is because the dynamic
decoding time estimation used performs too
aggressively for the clip that has smooth move­
ment. GOP also uses an adaptive mechanism simi­

lar to the Dynamic approach. However, the
deadline misses are minimized by having longer
scaling intervals (i.e., per-GOP instead of per-
frame). Moreover, its scaling decision includes all
types of frames. Thus, P- and B-frames, which typ­
ically have shorter decoding times than I-frames,
would likely be overestimated since the setting used
has to also satisfy the playout times for I-frames.

Figs. 16 and 17 show the deadline misses for var­
ious voltage/frequency scales using Dynamic and
FDCA respectively. The number of deadline misses

40

35

increases linearly as the granularity of the processor
settings becomes finer, except for the Children clip
in case of Dynamic. This is because the scaling deci­
sions rely more on the estimation of the decoding
times as more settings are used. Thus, an estimation
error would easily propagate to cause a deadline
miss. Essentially, the main factor that affects the
relationship between the granularity of the proces­
sor scale and DVS performance is the distribution
of the frame decoding times. The power savings
and deadline misses would depend on whether the
processor settings available and used in the algo­
rithm could satisfy the expansion of the decoding
times to the frame playout intervals.

Fig. 18 show the characteristics of deadline
misses in terms of how much the desired playout
times were exceeded for various DVS approaches.
The x-axis shows the extent of the deadlines misses
relative to the playout interval, categorized as

D
ea

dl
in

e
M

is
se

s
(%

) 30

25

20

15

10

5

0
I P B All I P B All I P All B

Children Red's Nightmare Under Siege

4 scales 7 scales 13 scales 25 scales 49 scales

Fig. 16. Percentage of the deadlines misses for different processor settings for Dynamic.

<10
%

<20
%

<3
0%

<4
0%

>4
0%

<10
%

<20
%

<3
0%

<4
0%

>4
0%

<10
%

<20
%

<30
%

<4
0%

>4
0%

<10
%

<20
%

<30
%

<4
0%

>4
0%

I P B All I P B All I P B All

Children Red's Nightmare Under Siege

0

10

20

30

40

50

60

70

80

D
ea

dl
in

e
M

is
se

s
(%

)

4 scales 7 scales 13 scales 25 scales 49 scales

Fig. 17. Percentage of the deadlines misses for different processor settings for FDCA.

GOP Dynamic Direct FDAC

0

5

10

15

20

25

Children Red’s Nightmare Under Siege

Fig. 18. The degree of deadline misses for various DVS approaches.

10%, 20%, 30%, 40%, and greater than 40%. The
y-axis represents the percentage of deadline misses
over an entire clip. For example, a 5% value on the
y-axis with the 10% category on x-axis means that
5% of the frames in the clip that miss the deadline
missed it by 10% of the desired playout interval
(e.g., for 25 fps, or 40 ms playout interval, these
frames are played out between 40 and 44 ms after
the preceding frames). For the Direct, Dynamic,
and FDCA approaches, most of the misses are
within 10% of the playout interval. In addition,
virtually all of the misses for the above three ap­
proaches lie within the 20% range. In contrast,
the deadline misses for GOP are more erratic,
and thus, have a higher potential of disrupting
the quality of video playback. Conversely, dead­
line misses in Direct, Dynamic, and FDCA are less
likely to affect the video quality.

Based on these results, we can clearly see that
the number of deadline misses by itself is not an
accurate measure of video quality. Instead, how
much the desired playout times were exceeded
should also be measured and analyzed in order
to provide a better understanding on how the
misses may affect the video quality. The simulation
results indicate that deadline misses imposed by
DVS for most part have negligible effect on per­
ceptual quality since they are mostly within 10%
of the desired playout time [8].

5. Conclusion

This paper compared DVS techniques for low-
power video decoding. Out of the four approaches
studied, Dynamic and Direct provided the most

power savings, but are limited in usefulness with re­
spect to real-time video applications. The FDCA
method can be effectively applied to both stored
video and real-time video applications. Due to
the extra overhead required for restructuring the
decoding process, FDCA does not provide as much
power savings as compared to the Dynamic and Di­
rect methods. Nevertheless, the power savings ob­
tained is quite substantial providing up to an
average of 68% savings and an average of less than
14% (13.4%) frames missing the deadline. Thus,
this approach is very suitable for portable multime­

dia devices that require low-power consumption.
Our study also further quantified the deadline

misses by analyzing the degree to which the play-
out times are exceeded. The results indicate that,
for the Dynamic, Direct, and FDCA approaches,
most of the deadline misses are within 20% of the
playback interval. Therefore, use of these power
saving methods is less likely to degrade the quality
of the video. In addition, in designing a DVS capa­
ble processor for video decoding, higher number of
processor settings is preferable since more power
saving can be achieved without any additional risk
of sacrificing quality of the video. The number of
deadline misses may increase, but they are still
within a tolerable range [8].

As future work, it would be interesting to inves­
tigate the usage of DVS system on streaming video
where packet jitters from the network need to be
considered [26,29]. In addition, finding more accu­
rate prediction mechanisms for unit operations in
video decoding, in particular for IDCT, and new
ways to exploit DVS for low power video decoding
are critical and would assist in reaching near-max­

imum performance. Finally, it would be beneficial
to find ways to use DVS on other parts of a sys­
tem, such as applying DVS to memory or network
interface.

References

[1] A.	 Bavier, B. Montz, L. Peterson, Predicting MPEG
execution times, in: International Conference on Measure­

ment and Modeling of Computer Systems, June 1998, pp.
131–140.

[2] Berkeley	 MPEG Tools. Available from: <http://
bmrc.berkeley.edu/frame/research/mpeg/>.

[3] D. Brooks, V. Tiwari, M. Martonosi, Wattch: A frame­

work for architectural-level power analysis and optimiza­

tions, in: Proceedings of the 27th International Symposium
on Computer Architecture, June 2000, pp. 83–94.

[4] T.D. Burd, T.A. Perimg, A.J. Stratakos, R.W. Brodersen,
A dynamic voltage scaled microprocessor system, IEEE
Journal of Solid-State Circuits (November) (2000).

[5] D.	 Burger, T.M. Austin, The SimpleScalar Tool Set,
Version 2.0, CSD Technical Report # 1342, University of
Wisconsin, Madison, June 1997.

[6] A.P. Chandrakasan, R.W. Brodersen, Low Power Digital
CMOS Design, Kluwer Academic Publishers, 1995.

[7] A.	 Chandrakasan, V. Gutnik, T. Xanthopoulos, Data
driven signal processing: An approach for energy efficient
computing, in: Proceedings of IEEE International Sympo­

sium on Low Power Electronics and Design, 1996, pp. 347–
352.

[8] M.	 Claypool, J. Tanner, The effects of jitter on the
perceptual quality of video, in: Proceedings of the ACM
Multimedia Conference, vol. 2, November 1999.

[9] K. Flautner, S. Reinhardt, T. Mudge, Automatic perfor­
mance setting for dynamic voltage scaling, in: Proceedings
of the 17th Conference on Mobile Computing and
Networking, July 2001.

[10] K. Govil, E. Chan, H. Wasserman, Comparing algorithms
for dynamic speed-setting of a low power CPU, in:
Proceedings of 1st International Conference on Mobile
Computing and Networking, November 1995.

[11] L. Harte, R. Levine, R. Kikta, 3G Wireless Demystified,
McGraw-Hill, 2002.

[12] C.	 Im, H. Kim, S. Ha, Dynamic voltage scheduling
techniques for low-power multimedia applications using
buffers, in: International Symposium on Low Power
Electronics and Design (ISLPED'01), California, August
2001.

[13] T. Ishihara, H. Yasuura, Voltage scheduling problem for
dynamically variable voltage processors, in: International
Symposium on Low Power Electronics and Design, August
1998.

[14] S. Lee, T. Sakurai, Run-time power control scheme using
software feedback loop for low-power real-time applica­
tions, in: Asia and South Pacific Design Automation
Conference, January 2000.

[15] J.R. Lorch, A.J. Smith, Improving dynamic voltage scaling
algorithms with PACE, in: Proceedings of the Interna­
tional Conference on Measurement and Modeling of
Computer Systems, June 2001.

[16] D.	 Marculescu, On the use of microarchitecture-driven
dynamic voltage scaling, in: Workshop on Complexity-

Effective Design, held in conjunction with 27th Interna­
tional Symposium on Computer Architecture, June 2000.

[17] M.	 Mesarina, Y. Turner, Reduced energy decoding of
MPEG streams, ACM/SPIE Multimedia Computing and
Networking 2002 (MMCN'02), January 2002.

[18] J.	 Pouwelse, K. Langendoen, R. Lagendijk, H. Sips,
Power-aware video decoding, in: Picture Coding Sympo­

sium (PCS'01), April 2001.

http://bmrc.berkeley.edu/frame/research/mpeg/
http://bmrc.berkeley.edu/frame/research/mpeg/

[19] J. Shin, Real time content based dynamic voltage scaling,
Master thesis, Information and Communication Univer­

sity, Korea, January 2002.
[20] T.	 Simunic, L. Benini, A. Acquaviva, P. Glynn, G.D.

Michelli, Dynamic voltage scaling and power management
for portable systems, in: 38th Design Automation Confer­
ence (DAC 2001), June 2001.

[21] D.	 Son, C. Yu, H. Kim, Dynamic voltage scaling on
MPEG decoding, in: International Conference of Parallel
and Distributed System (ICPADS), June 2001.

[22] T. Pering, R. Brodersen, Energy efficient voltage schedul­
ing for real-time operating systems, in: Proceedings of the
4th IEEE Real-Time Technology and Applications
Symposium RTAS'98, Work in Progress Session, June
1998.

[23] T.	 Pering, T. Burd, R. Brodersen, The simulation and
evaluation of dynamic voltage scaling algorithms, in:
Proceedings of the International Symposium on Low
Power Electronics and Design, 10–12 August 1998.

[24] J. Pouwelse, K. Langendoen, H. Sips, Dynamic voltage
scaling on a low-power microprocessor, in: 7th ACM
International Conference on Mobile Computing and Net­

working (Mobicom), July 2001.
[25] J.M. Rabaey, M. Pedram, Low Power Design Methodol­

ogies, Kluwer Academic Publishers, 1996.
[26] R.	 Steinmetz, Human perception of jitter and media

synchronization, IEEE Journal on Selected Areas in
Communications 14 (1) (1996).

[27] A.J. Stratakos, C.R. Sullivan, S.R. Sanders, R.W. Broder­
sen, High-efficiency low-voltage DC–DC conversion for
portable applications, in: E. Sanchez-Sinencio, A. Andreou
(Eds.), Low-voltage/low-power Integrated Circuits and
Systems: Low Voltage Mixed-signal Circuits, IEEE Press,
1999.

[28] Y. Wang, M. Claypool, Z. Zuo, An empirical study of
realvideo performance across the Internet, in: Proceedings
of the First Internet Measurement Workshop, November
2001, pp. 295–309.

[29] H. Zhang, S. Keshav, Comparison of rate-based service
disciplines, in: Proceedings of ACM SIGCOMM'91, Sep­
tember 1991.

[30] K. Patel, B. Smith, L. Rowe, Performance of a software
MPEG video decoder, in: Proceedings of the First ACM
International Conference on Multimedia, August 1993, pp.
75–82.

[31] L.O. Burchard, P. Altenbernd, Estimating decoding times
of MPEG-2 video streams, in: Proceedings of International
Conference on Image Processing (ICIP 00), 2000.

[32] K. Choi, K. Dantu, W.-C. Chen, M. Pedram, Frame-based
dynamic voltage and frequency scaling for a MPEG
decoder, in: Proceedings of International Conference on
Computer Aided Design (ICCAD), 2002.

[33] E. Nurvitadhi, B. Lee, C. Yu, M. Kim, A comparative
study of dynamic voltage scaling techniques for low-power
video decoding, in: International Conference on Embedded
Systems and Applications, 23–26 June 2003.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

	Cleveland State University
	EngagedScholarship@CSU
	10-2005

	Dynamic Voltage Scaling Techniques for Power Efficient Video Decoding
	Ben Lee
	Eriko Nurvitadhi
	Reshma Dixit
	Chansu Yu
	Myungchul Kim
	Publisher's Statement
	Original Citation
	Repository Citation

	Lee_Dynamic1

