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Dynamic voltage scaling techniques for power efficient 
video decoding 
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1. Introduction 

Power efficient design is one of the most impor

tant goals for mobile devices, such as laptops, 
PDAs, handhelds, and mobile phones. As the pop
ularity of multimedia applications for these porta
ble devices increases, reducing their power 
consumption will become increasingly important. 
Among multimedia applications, delivering video 
will become the most challenging and important 
applications of future mobile devices. Video con
ferencing and multimedia broadcasting are already 
becoming more common, especially in conjunction 
with the third generation (3G) wireless network ini
tiative [11]. However, video decoding is a computa

tionally intensive, power ravenous process. In 
addition, due to different frame types and varia
tion between scenes, there is a great degree of var
iance in processing requirements during execution. 
For example, the variance in per-frame MPEG 
decoding time for the movie Terminator 2 can be 
as much as a factor of three [1], and the number 
of inverse discrete cosine transforms (IDCTs) per
formed for each frame varies between 0 and 2000 
[7]. This high variability in video streams can be 
exploited to reduce power consumption of the pro
cessor during video decoding. 

Dynamic voltage scaling (DVS) has been shown 
to take advantage of the high variability in pro
cessing requirements by varying the processor's 
operating voltage and frequency during run-time 
[4,10]. In particular, DVS is suitable for eliminat

ing idle times during low workload periods. Re

cently, researchers have attempted to apply DVS 
to video decoding to reduce power [18,17,21, 
19,24,33]. These studies present approaches that 
predict the decoding times of incoming frames or 
group of pictures (GOPs), and reduce or increase 
the processor setting based on this prediction. As 
a result, idle processing time, which occurs when 
a specific frame decoding completes earlier than 
its playout time, is minimized. In an ideal case, 
the decoding times are estimated perfectly, and 
all the frames (or GOPs) are decoded at the exact 

time span allowed. Thus, there is no power wasted 
by an idle processor waiting for a frame to be 
played. In practice, decoding time estimation leads 
to errors that result in frames being decoded either 
before or after their playout time. When the 
decoding finishes early, the processor will be idle 
while it waits for the frame to be played, and some 
power will be wasted. When decoding finishes late, 
the frame will miss its playout time, and the per
ceptual quality of the video could be reduced. 

Even if decoding time prediction is very accu
rate, the maximum DVS performance can be 
achieved only if the processor can scale to very 
precise processor settings. Unfortunately, such a 
processor design is impractical since there is cost 
associated with having different processor supply 
voltages. Moreover, the granularity of voltage/fre
quency settings induces a tradeoff between power 
savings and deadline misses. For example, fine-
grain processor settings may even increase the 
number of deadline misses when it is used with 
an inaccurate decoding time predictor. Coarse-
grain processor settings, on the other hand, lead 
to overestimation by having voltage and frequency 
set a bit higher than required. This reduces dead
line misses in spite of prediction errors, but at 
the cost of reduced power savings. Therefore, the 
impact of processor settings on video decoding 
with DVS needs to be further investigated. 

Based on the aforementioned discussion, this 
paper provides a comparative study of the existing 
DVS techniques developed for low-power video 
decoding, such as Dynamic [33], GOP [21], and  
Direct [18,24], with respect to prediction accuracy 
and the corresponding impact on performance. 
These approaches are designed to perform well 
even with a high-motion video by either using static 
prediction model or dynamically adapting its pre
diction model based on the decoding experience 
of the particular video clip being played. However, 
they also require video streams to be preprocessed 
to obtain the necessary parameters for the 
DVS algorithm, such as frame sizes, frame-size/ 
decoding-time relationship, or both. To overcome 



this limitation, this paper also proposes an alterna
tive method called frame-data computation aware 
(FDCA) method. FDCA dynamically extracts useful 
frame characteristics while a frame is being decoded 
and uses this information to estimate the decoding 
time. Extensive simulation study based on Simpl

eScalar processor model [5], Wattch power tool 
[3] and Berkeley MPEG Player [2] has been con
ducted to compare these DVS approaches. 

Our focus is to investigate two important trade
offs: The impact of decoding time predictions and 
granularity of processor settings on DVS perfor
mance in terms of power savings, playout accu
racy, and characteristics of deadline misses. To 
the best of our knowledge, a comprehensive study 
that provides such a comparison has not been per
formed, yet such information is critical to better 
understand the notion of applying DVS for low-
power video decoding. For example, existing 
methods only use a specific number of processor 
settings and thus do not provide any guidelines 
on an appropriate granularity of processor settings 
when designing DVS techniques for video decod
ing. Moreover, these studies quantified the DVS 
performance by only looking at power savings 
and the number of deadline misses. In this paper, 
we further expose the impact of deadline misses 
by measuring the extent to which the deadline 
misses exceed the desired playout time. 

The rest of the paper is organized as follows. 
Section 2 presents a background on DVS. Section 
3 introduces the existing and proposed DVS tech
niques on low-power video decoding and discusses 
their decoding time predictors. Section 4 discusses 
the simulation environment and characteristics of 
video streams used in this study. It also presents 
the simulation results on how the accuracy of 
decoding time predictor and the granularity of 
processor settings affect DVS performance. Final
ly, Section 5 provides a conclusion and elaborates 
on future work. 

2. Background on dynamic voltage scaling (DVS) 

DVS has been proposed as a mean for a proces
sor to deliver high performance when required, 
while significantly reduce power consumption dur

ing low workload periods [4,9,10,12–24,33]. The 
advantage of DVS can be observed from the 
power consumption characteristics of digital static 
CMOS circuits [21] and the clock frequency equa

/ s /
fCLK ðV DD - V TÞ2 

tion [24]: 

P / Ceff V 2 fCLKDD ð1Þ 

1 V DD ð2Þ 

where Ceff is the effective switching capacitance, 
VDD is the supply voltage, fCLK is the clock fre
quency, s is the circuit delay that bounds the upper 
limit of the clock frequency, and VT is the threshold 
voltage. Decreasing the power supply voltage would 
reduce power consumption significantly (Eq. (1)). 
However, it would lead to higher propagation de
lay, and thus force a reduction in clock frequency 
(Eq. (2)). While it is generally desirable to have 
the frequency as high as possible for faster instruc
tion execution, for some tasks where maximum 
execution speed is not required, the clock fre
quency and supply voltage can be reduced to save 
power. 

DVS takes advantage of this tradeoff between 
energy and speed. Since processor activity is vari
able, there are idle periods when no useful work 
is being performed, yet power is still consumed. 
DVS can be used to eliminate these power-wasting 
idle times by lowering the processor's voltage and 
frequency during low workload periods so that 
the processor will have meaningful work at all 
times, which leads to reduction in the overall 
power consumption. 

However, the difficulty in applying DVS lies in 
the estimation of future workload. For example, 
Pering et al. took into account the global state of 
the system to determine the most appropriate scal
ing for the future [23], but the performance benefit 
is limited because the estimation at the system level 
is not generally accurate. Another work by Pering 
and Brodersen considers the characteristics of indi
vidual threads without differentiating their behav
ior [22]. Flautner et al. classifies each thread by 
their communication characteristics to well known 
system tasks, such as X server or the sound dae
mon [9]. Lorch and Smith assign pre-deadline and 
post-deadline periods for each task and gradually 



accelerate the speed in between these periods 
[15]. While these approaches apply DVS at the 
Operating System level, for some applications that 
inhibit high variability in their execution, such as vi
deo decoders, greater power savings can be 
achieved if DVS is incorporated into the applica
tion itself. The next section overviews existing 
DVS approaches for low-power video decoding. 

3. Prediction-based DVS approaches for 
low-power video decoding 

This section introduces various DVS ap

proaches for low-power video decoding. They uti
lize some form of a decoding time prediction 
algorithm to dynamically perform voltage scaling 
[18,17,21,24,32,33]. In Section 3.1, we show how 
the low-power video decoding benefits from DVS 
and how the accuracy of decoding time predictor 
affects the performance of DVS. Section 3.2 de
scribes three existing DVS approaches and the 
proposed FDCA approach with a focus on predic
tion algorithms. In Section 3.3, the impact of the 
granularity of the processor settings on DVS per
formance is discussed. 

3.1. Prediction accuracy on DVS performance 

Fig. 1 illustrates the advantage of DVS in video 
decoding as well as the design tradeoff between 
prediction accuracy, power savings, and deadline 
misses. The processor speed on the y-axis directly 
relates to voltage as discussed earlier, and reducing 
the speed allows the reduction in supply voltage, 
which in turn results in power savings. The shaded 
area corresponds to the work required to decode 
the four frames and it is the same in all three cases. 
However, the corresponding power consumption 
is the largest in Fig. 1a because it uses the highest 
voltage/frequency setting and there is a quadratic 
relationship between the supply voltage and power 
consumption (see Eq. (1) in Section 2). 

Fig. 1a shows the processor activity when DVS 
is not used, which means that the processor runs at 
a constant speed (in this case at 120 MHz). Once a 
frame is decoded, the processor waits until (e.g., 
every 33.3 ms for the frame rate of 30 frames per 
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Fig. 1. Illustration of DVS. (a) Without DVS. (b) With DVS 
(Ideal). (c) Prediction inaccuracies. 

second or fps) when the frame must be played 
out. During this idle period, the processor is still 
running and consuming power. These idle periods 
are the target for exploitation by DVS. Fig. 1b 
shows the ideal case where the processor scales ex
actly to the voltage/frequency setting required for 
the desired time span. Therefore, no idle time ex
ists and power saving is maximized. Achieving this 
goal involves two important steps. First, the 
decoding time must be predicted. Second, the pre
dicted decoding time must be mapped to an appro
priate voltage/frequency setting. 

Inaccurate predictions in decoding time and/or 
use of insufficient number of voltage/frequency set
tings will introduce errors that lead to reduction in 
power saving and/or increase in missed deadlines 



as shown in Fig. 1c. In this figure, the decoding 
times for frames 1 and 4 are overestimated, result
ing in more power consumption than required. On 
the other hand, the decoding time for frame 2 is 
underestimated, which leads to a deadline miss 
that may degrade the video quality. In summary, 
DVS has great potential in applications with high 
varying workload intensities such as video decod
ing, but accurate workload prediction is prerequi
site in realizing the benefit of DVS. 

3.2. Overview of DVS approaches and their 
prediction schemes 

As clearly shown in Fig. 1, an accurate predic
tion algorithm is essential to improve DVS perfor
mance and to maintain video quality. Prediction 
algorithms employed in several DVS approaches 
differ based on the following two criteria: predic
tion interval and prediction mechanism. Prediction 
interval refers to how often predictions are made in 
order to apply DVS. The existing approaches use 
either per-frame or per-GOP scaling. In per-GOP 
approaches, since the same voltage/frequency is 
used while decoding a particular GOP, they do 
not take full advantage of the high variability of 
decoding times among frames within a GOP. 

Prediction mechanism refers to the way the 
decoding time of an incoming frame or GOP is esti
mated. Currently, all the approaches utilize some 
form of frame size vs. decoding time relationship 
[1]. Some methods are based on a fixed relation
ship, while others use a dynamically changing rela
tionship. In the fixed approach, a linear equation 
describing the relationship between frame sizes 
and frame decoding times is provided ahead of 
time. In the dynamic approach, the frame-size/ 
decoding-time relationship is dynamically adjusted 
based on the actual frame-related data and decod
ing times of a video stream being played. The dy
namic approach is better for high-motion videos 
where the workload variability is extremely high. 
In other cases, the fixed approach performs better 
than the dynamic approach but its practical value 
is limited because the relationship is not usually 
available before actually decoding the stream. 

Aside from the two criteria explained above, the 
DVS schemes are classified as either off-line or 

on-line. A DVS scheme is classified as on-line if 
no preprocessing is required to obtain information 
to be used in the DVS algorithm and therefore is 
equally adaptable for stored video and real-time 
video applications. It is classified as off-line if pre
processing is required to obtain information 
needed by the DVS algorithm. 

Four DVS techniques for video decoding and 
the corresponding prediction algorithms are dis
cussed and compared: GOP is a per-GOP, dynamic 
off-line approach, Direct is a per-frame, fixed off
line approach, while Dynamic and FDCA are per-
frame, dynamic approaches with Dynamic being 
an off-line scheme and FDCA being an on-line 
scheme. Intuitively, GOP consumes more energy 
and incurs more deadline misses than Direct and 
Dynamic but would result in the least overhead be
cause the prediction interval is longer. Direct 
would perform the best because it is based on a 
priori information on decoding times and their 
relationship with the corresponding frame sizes. 
It should be noted that the offline methods have 
one striking drawback in that they all require a pri
ori knowledge of encoded frame sizes and there
fore need some sort of preprocessing. There is 
also a method that completely bypasses the decod
ing time prediction at the client to eliminate the 
possibilities of errors due to inaccurate scaling pre
dictions [17]. This is done by preprocessing video 
streams off-line on media servers to add accurate 
video complexity information during the encoding 
process. However, this approach requires knowl
edge of client hardware and is therefore impracti

cal. Moreover, it is not useful in case of existing 
streams that do not include the video complexity 
information. Choi et al. [32] have proposed a 
method in which the frame is divided into a 
frame-dependent and frame-independent part 
and scale voltage accordingly. However, as men

tioned in their work, it is possible for errors to 
propagate across frames due to a single inaccurate 
prediction, thereby degrading video quality. These 
two methods are not included in the study. 

3.2.1. Per-GOP approach with dynamic equation 
(GOP) 

GOP is a per-GOP scaling approach that dynam

ically recalculates the slope of the frame-size/ 



decode-time relationship based on the decoding 
times and sizes of past frames [21]. At the begin
ning of a GOP, the sizes and types of the frames 
of an incoming GOP are observed. This informa

tion is then applied to the frame-size/decode-time 
model, and the time needed to decode the GOP 
is estimated. Based on this estimate, the lowest fre
quency and voltage setting that would satisfy the 
frame rate requirement is selected. The dynamic 
slope adjustment was originally presented in [1], 
where the slope adjustment is implemented by uti
lizing the concept of decoding time per byte 
(DTPB). DTPB essentially represents the slope of 
the frame-size/decode-time equation and this value 
is updated as the video is decoded using the actual 
decoding times of the just-decoded frames. The 
summary of the algorithm for GOP is presented 
in Fig. 2. 

Although the GOP method requires the least 
overhead among the three approaches, the per-
GOP scaling will introduce more prediction errors. 
The reason is that by having the same processor 
setting for a GOP, prediction inaccuracy may 
propagate across all the frames within the GOP. 
Moreover, the fact that each frame type has its 
own decoding time characteristic [1,19,21] is ig
nored while it would be more reasonable to assign 
a processor setting depending on the type of the 
frame. 

3.2.2. Per-frame approach with fixed equation 
(Direct) 

Direct was used by Pouwelse et al. in their 
implementation of StrongARM based system for 
power-aware video decoding [18,24]. In this tech
nique, the scaling decision is made on a per-frame 
basis. Based on a given linear model between 
frame sizes and decoding times, decoding time of 
a new frame is estimated and then it is associated 
to a particular processor setting using a direct 
mapping. 

In order to obtain the size of the new frame, the 
decoder examines the first half of the frame as it is 
being decoded. Then, the size of the second half of 
the frame is predicted by multiplying the size of the 
first half with the complexity ratio between the first 
and second halves of the previous frame. Based on 
this, if the decoding time of the first half of the 
frame is higher than the estimated decoding time, 
it means that the decoding is too slow and the pro
cessor setting is then increased. 

In addition, they also present a case in which 
the frame sizes are known a priori [24]. This is 
achieved by feeding the algorithm with the size 
of each frame gathered offline. Thus, voltage/fre
quency scaling is done at the beginning of each 
frame by looking at the frame size, estimating 
the decoding time, and scaling the processor set
ting accordingly. Our simulation study of Direct 

Fig. 2. Algorithm for the GOP approach. 



Fig. 3. Algorithm for the Direct approach. 

is based on this case. Fig. 3 summarizes the Direct 
approach implemented in our simulator. 

3.2.3. Per-frame approach with dynamic equation 
(Dynamic) 

Dynamic [33] is a per-frame scaling method that 
dynamically updates the frame-size/decoding-time 
model and the weighted average decoding time. 
Fig. 4 provides a description of the Dynamic 
approach. 

The mechanism used to dynamically adjust the 
frame-size/decode-time relationship is similar to 
one presented in [1]. In  Dynamic, the adjustment 
is made focusing on the differences of the decoding 
times and frame sizes. The average decoding time 
of previous frames of the same type is used as 
the initial value for predicting the next frame. 
The possible deviation from this average value is 

then predicted by looking at the weighted differ
ence of frame sizes and decoding times of previous 
frames. This predicted fluctuation time is then 
added to the average decoding time to obtain the 
predicted decoding time of the incoming frame. 

3.2.4. Per-frame, frame-data computation aware 
dynamic (FDCA) approach 

The principal idea behind the FDCA scheme is 
to use information available within the video 
stream while decoding the stream. In this way, 
there is no need to rely on external or offline pre
processing and data generating mechanisms to 
provide input parameters to the DVS algorithm. 

The main steps involved during the video 
decoding process [30] are variable length decoding 
(VLD), reconstruction of motion vectors (MC), 
and pixel reconstruction, which comprises of 

Fig. 4. Algorithm of the Dynamic approach. 



inverse quantization (IQ), inverse discrete cosine 
transform (IDCT), and incorporating the error 
terms in the blocks (Recon). Ordinarily, an MPEG 
decoder carries out decoding on a per-macroblock 
basis and the above mentioned steps are repeated 
for each macroblock until all macroblocks in a 
frame are exhausted. 

In order to gather and store valuable frame-re

lated information during the decoding process, the 
decoder was modified to carry out VLD for all 
macroblocks in a frame ahead of the rest of the 
steps. The information collected during the VLD 
stage constitutes such parameters as (1) total num
ber of motion vectors in a frame (nbrMV), (2) total 
number of block coefficients in a frame (nbrCoeff), 
(3) total number of blocks on which to carry out 
IDCT (nbrIDCT), and (3) the number of blocks 
to perform error term correction on (nbrRecon). 
The rest of the decoding steps are then carried 
out for the entire frame. The FDCA approach is 
similar to the one proposed in [31] in that, VLD 
is carried out for the entire frame ahead of the 
other decoding steps. However, there are some 
key differences between the two methods: First, 
the method in [31] takes into consideration the 
worst case execution time of frames and tries to 
lower the overestimation as much as possible by 
using various frame parameters. Therefore, this 
not only causes an overhead due to decoder 
restructuring, but also results in overestimation 
of decoding time. On the other hand, FDCA takes 
a ‘‘best effort’’ estimation approach by using mov

ing averages in the estimation. Second, the ulti
mate goal of FDCA is to use the decoding time 
estimation for applying DVS. Therefore, unlike 
the method in [31], FDCA does not buffer the entire 
frame (which may possibly lead to some delay and 
therefore more power consumption) to find out the 
frame size in order to estimate the decoding time 
for the VLD step. Instead, VLD is initiated right 
away, thus bypassing the preprocessing step that 
is required in their method. 

In order to estimate the number of cycles that 
will be required for frame decoding, each of MC, 
IQ, IDCT, and Recon steps is considered as a unit 
operation. That is, for each unit operation, same 
blocks of code will be executed and will require 
similar number of cycles every time a unit opera

tion is carried out. Therefore, a moving average 
can be maintained, at frame level, of the cycles re
quired for all the unit operations after the VLD 
step. These parameters consist of the number of 
cycles required for (1) reconstructing one motion 
vector (AvgTimeMC), (2) carrying out IQ on one 
coefficient in a block (AvgTimeIQ), performing 
IDCT on one block of pixels (AvgTimeIDCT), 
and incorporating error terms on one block of pix
els (AvgTimeRecon). 

Using the information explained above, it is 
now possible to estimate the number of cycles that 
will be required for frame decoding after the VLD 
step by simply multiplying the corresponding 
parameters. A moving average of the prediction 
error (PredError) is also maintained and used as 
an adjustment to the final estimated decoding time 
for a frame. The cycles for the unit operations are 
not grouped according to the frame type because, 
as previously stated, the same block of code will be 
executed regardless of the type of the frame. The 
error terms however, are grouped depending on 
the frame type. The estimated number of cycles 
for a frame is then used to apply DVS by selecting 
the lowest frequency/voltage setting that would 
meet the frame deadline. The VLD step is per
formed at the highest voltage/frequency available 
to leave as much time as possible to perform 
DVS during the more computationally intensive 
tasks after VLD. Fig. 5 gives an algorithmic 
description of the FDCA scheme. 

3.3. Granularity of processor settings on DVS 
performance 

In this subsection, the impact of granularity of 
processor settings on DVS performance is dis
cussed. Fig. 6a is the same ideal DVS approach 
as in Fig. 1b. It is ideal not only because the decod
ing time prediction is prefect but also because the 
processor can be set precisely to any voltage/fre
quency value. However, since there is some cost in
volved in having different processor supply 
voltages [25,27], a processor design with a large 
number of voltage/frequency scales is unfeasible 
[6,13]. For this reason, DVS capable commercial 
processors typically employ a fixed number of 
voltage and frequency settings. For example, 



Fig. 5. Algorithm of the FDCA approach. 

Transmeta TM5400 or ‘‘Crusoe’’ processor has 6 
voltage scales ranging from 1.1 V to 1.65 V with 
frequency settings of 200–700 MHz [24], while In
tel StrongARM SA-100 has up to 13 voltage scales 
from 0.79 V to 1.65 V with the frequency settings 
of 59–251 MHz [10]. 

Consider a processor that has a fixed scale of 
frequencies, e.g., 5 settings ranging from 40 MHz 
to 120 MHz with steps of 20 MHz as in Fig. 6b. 
The closest available frequency that can still satisfy 
the deadline requirement is selected by DVS algo
rithm. In Fig. 6c, the scales used in the previous 
case are halved, which results in 9 frequency scales 
with steps of 10 MHz. This result in less idle times 
than the previous case and more power saving is 
achieved. If finer granularity scales than Fig. 6c 
are used, power savings would improve until at 
some point when it reaches the maximum as in 
the ideal case. Nevertheless, more frame deadline 
misses will also start to occur as finer granularity 
scales are used with inaccuracies in predicting 
decoding times. That is, prediction errors together 
with use of fine-grain settings would introduce 
more deadline misses. On the other hand, use of 
coarse-grain settings induces overestimation that 
could avoid deadline misses in spite of prediction 
errors. Thus, it is important to understand which 
level of voltage scaling granularity in a DVS algo

rithm is fine enough to give significant power sav
ings and minimize deadline misses, while still 
reasonably coarse to be implemented. 

4. Performance evaluation and discussions 

This section presents the simulation results 
comparing different DVS schemes introduced in 
Section 3.2, and also show the quantitative results 
on the effect of the granularity of processor set
tings on DVS performance discussed in Section 
3.3. Performance measures are average power con
sumption per frame, error rate, and deadline 
misses. Before proceeding, the simulation environ
ment and the workload video streams are first de
scribed in Sections 4.1 and 4.2, respectively. 

4.1. Simulation environment 

Fig. 7 shows our simulation environment, which 
consists of modified SimpleScalar [5], Wattch [3], 
and Berkeley mpeg_play MPEG-1 Decoder [2]. 
SimpleScalar [5] is used as the basis of our simula
tion framework. The simulator is configured to 
resemble the characteristics of a five-stage pipeline 
architecture, which is typical of processors used in 
current portable multimedia devices. The proxy 
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Fig. 6. Granularity of scales. (a) With DVS (Ideal). (b) Coarse-
grain scales. (c) Fine-grain scales. 

system call handler in SimpleScalar was modified 
and a system call for handling voltage and 
frequency scaling was added. Thus, the MPEG 

CC 
BenchmarkBenchmark Source 

MPEG decoderMPEG decoder 

CompilerCompiler SimpleScalaSimpleScalar r 

decoder makes a DVS system call to the simulator 
to adjust the processor setting. 

Wattch [3] is an extension to the SimpleScalar 
framework for analyzing power consumption of 
the processor. It takes into account the simulator's 
states and computes the power consumption of 
each of the processor structures as the simulation 
progresses. The power parameters in Wattch con
tain the values of the power consumption for each 
hardware structure at a given cycle time. Thus, by 
constantly observing these parameters, our simula

tor is capable of obtaining the power used by the 
processor during decoding of each frame. 

The Berkeley mpeg_play MPEG-1 decoder [2] 
was used as the video decoder in our simulation 
environment. For the FDCA scheme, the original 
decoder was restructured to carry out VLD ahead 
of the other steps in video decoding. All the meth

ods required modifications to the decoder to make 
DVS system calls to the simulator. A DVS system 
call modifies the voltage and frequency values 
presently used by SimpleScalar. These system calls 
are also used to determine the number of cycles re
quired for decoding a frame and updating data 
used in an algorithm during the decoding process. 
In the GOP, Direct, and Dynamic methods, there 
are two system calls made: One at the start of a 
frame and one at the end of a frame. In the FDCA 
method, there are also other system calls made to 
update data related to cycles for unit operations. 

For the simulation study, the overhead of pro
cessor scaling was assumed to be negligible. In 
practice, there is a little overhead related to scal
ing. Previously implemented DVS systems have 
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Fig. 7. Simulation environment. 



shown that processor scaling takes about 70– 
140 ls [4,18,24]. Since this overhead is significantly 
smaller than the granularity at which the DVS sys
tem calls are made, they would have negligible af
fect on the overall results. 

4.2. Workload video streams 

Three MPEG clips were used in our simula

tions. These clips were chosen as representatives 
of three types of videos—low-motion, animation, 
and high-motion. A clip showing a public message 
on childcare is selected for a low-motion video 
(Children) and a clip named Red's Nightmare is se
lected as an animation video. Lastly, a clip from 
the action movie Under Siege is selected to repre
sent a high-motion video. Table 1 shows the char
acteristics of the clips. The table also includes 
frame-size/decode-time equations, which were gen
erated after preprocessing each clip. The R2 coeffi

cient represents the accuracy of the linear 
equations, i.e., the closer R2 is to unity, the more 
likely the data points will lie on the predicted line. 

Fig. 8 shows the decoding time characteristics 
for each of the clips. As expected, frame decoding 
times for Under Siege fluctuate greatly, while the 
fluctuations in decoding times for Children are 
very subtle and the separation of the decoding 
times for the three types of frames can be clearly 
seen. For Red's Nightmare, decoding times for I-
frames are relatively unvarying, but P-frames show 
large variations and B-frames are distinguished by 
peaks. 

Table 1 
The characteristics of the clips used in the simulation 

4.3. Effect of prediction accuracy on DVS 
performance 

Figs. 9 and 10 summarize power savings and er
ror results for the four DVS approaches simulated 
(GOP, Dynamic, Direct, and  FDCA). These simula

tions were carried out using 13-voltage/frequency 
settings as used in the Intel StrongARM processor 
[18]. The ideal case (Ideal) was also included as a 
reference. The ideal case represents perfect predic
tion with voltage/frequency set to any accuracy re
quired, and thus represents optimum DVS 
performance. This was done by using previously 
gathered actual frame decoding times to make 
scaling decisions instead of the estimated decoding 
times. 

Fig. 9 shows the power savings in terms of aver
age power consumption per frame relative to using 
no DVS for all frames as well as for each frame 
type. All four approaches achieve comparable 
power savings to the ideal case, except GOP with 
Children (i.e., only 35% improvement). It can be 
observed that the FDCA method consumes more 
power than the other three methods. This is be
cause the restructured MPEG decoder used in 
FDCA takes longer than the original MPEG deco
der. Our simulations on the sample streams show 
that FDCA has on average 12% more overhead 
than the original unmodified decoder in terms of 
the number of cycles required. Therefore, this 
overhead represents loss opportunity to save 
power using DVS. In addition, FDCA stores 
frame-related data in the VLD step and loads it 

Characteristics Children Red's Nightmare Under Siege 

Type Slow (low-motion) Animation Action (high-motion) 
Frame rate (fps) 29.97 25 30 
Number of I frames 62 41 123 
Number of P frames 238 81 122 
Number of B frames 599 1089 486 
Total number of frames 899 1211 731 
Screen size (W · H) 320 · 240 pixels 320 · 240 pixels 352 · 240 pixels 
Linear equation for Decoding time = Decoding time = Decoding time = 
prediction 88.8 · frame size + 106 53.9 · frame size + 2 · 106 69.6 · frame size + 2 · 106 

R2 coefficient 0.94 0.89 0.94 
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Fig. 8. Frame decoding times for each clip. 
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Fig. 9. Relative average power consumption per frame for various DVS approaches. 
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Fig. 10. Errors for various DVS approaches. 

back again during the rest of the steps and thus re
sults in 9–14% higher data cache miss rate com

pared to the original decoder. However, the 
FDCA method is still able to provide an average 
of 68% of power saving which is quite substantial. 

Among the off-line DVS methods, GOP per
forms the worst because it applies the same proces
sor setting over multiple types of frames in a GOP. 
This consequently wastes the potential power sav
ings that can be made for P- and B-frames, which 
typically have shorter decoding times than I-

frames. On the average, Dynamic provides the 
most power saving (80% improvement) but it is 
only slightly better than Direct (77%). 

Fig. 10 shows the accuracy of the four DVS 
approaches in terms of error, defined as the ratio 
of standard deviation of inter-frame playout times 
[28] to playout interval. This parameter basically 
defines how well a DVS method was able to meet 
frame deadlines, as also how smooth a video clip 
played with the given method. GOP has the high
est overall average error (38.9%) for the three 
clips. The FDCA approach was the most accurate 
with average error of 9.4%, closely followed by 
Direct at 10.5%, and Dynamic with 10.8%. 
Neglecting the error results of GOP, the amount 
of error for each frame type depends heavily on 
the variability of decoding times for Direct, Dy
namic, and FDCA. For example, for Red 's Night

mare, both P- and B-frames resulted in significant 
errors (14% and 11% for FDCA, 17% and 10% for 
Direct, and 29% and 13% for Dynamic), and this is 

reflected by the variability of decoding times 
shown in Fig. 8. This was also the case for P-
frames in Under Siege. 

4.4. Impact of processor settings granularity 

The results of power consumption and accuracy 
presented in the previous subsection were based on 
13 frequency/voltage settings. Thus, even if very 
accurate decoding time predictions are made, the 
granularity of voltage/frequency settings will invari
ably affect the performance of DVS. It seems that 
having fine-grain voltage scales would lead to better 
performance than having coarse-grain scales. Nev

ertheless, a clearer understanding is needed about 
the impact that various processor voltage/fre

quency scaling granularities have on video decod
ing in terms of power consumption and accuracy. 

To show the aforementioned tradeoff, we exper
imented with various scaling schemes consisting of 
4, 7, 13, 25, and 49 scales. Table 2 presents the 
voltage/frequency scaling schemes simulated. Each 
of these schemes was simulated using the Dynamic 
as well as the FDCA approach. These approaches 
were chosen as representatives among others due 
to their promising performance and high potential 
for realistic implementation. 

The results are shown in Fig. 11–14. Fig. 11 
shows the relative average power consumption 
per frame compared to using no DVS for various 
voltage/frequency processor settings for the Dy
namic method. As can be seen, power consumption 



Table 2 
Processor settings simulated 

Number of settings Voltages (V) Frequencies (MHz) 

Range Steps Range Steps 

4 scales 0.79–1.65 0.286668 59–251 64 
7 scales 0.79–1.65 0.143334 59–251 32 
13 scales 0.79–1.65 0.071667 59–251 16 
25 scales 0.79–1.65 0.035834 59–251 8 
49 scales 0.79–1.65 0.017917 59–251 4 

Ideal Scale to any requested value by the ideal prediction algorithm 

decreases as the number of processor settings in
creases. However, power saving only increases 
slightly beyond 13 scales. Thus, using 13 available 
settings are sufficient to achieve relative average 
power per frame comparable to the ideal case 
(e.g., 18% vs. 16% for Children, 19% vs. 17% for 
Red's Nightmare, and 23% vs. 20% for Under 

Siege, respectively). The results for the FDCA 
method are shown in Fig. 13 and show a similar 
trend of only a marginal increase in power savings 
beyond 13 scales. 

Figs. 12 and 14 show the accuracy of the DVS 
approaches for the various settings for Dynamic 
and FDCA techniques respectively. In general, 
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Fig. 11. Relative average power per frame for various processor settings for Dynamic method. 

0.35 

0.30 

0.25 

Er
ro

r (
%

)

0.20 

0.15 

0.10 

0.05 

0.00 
I  P  B  All  I  P  B  All  I  P  B All  

Children Red’s Nightmare Under Siege 

4 scales 7 scales 13 scales 25 scales 49 scales 

Fig. 12. Errors for various processor settings for Dynamic method. 



R
el

at
iv

e 
A

ve
ra

ge
 P

ow
er

 p
er

 F
ra

m
e 0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 
I P B All I P B All I P B All 

Children Red Under Siege 

4 scales 7 scales 13 scales 25 scales 49 scales Ideal 
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the error decreases with the availability of more 
processor settings. This is true for Children and 
Under Siege, where changing the available number 
of processor settings from 4 to 49 significantly re
duces the error. However, this is not the case for 
Red's Nightmare, where the error decreases for 
the processor settings of 4–13, but for the number 
of settings more than 13, the ratio increases 
slightly due to large errors for P- and B-frames. 
Therefore, with the finer granularity, more of the 
inaccuracies are getting scaled more precisely 
(e.g., propagated). 

4.5. Characteristics of deadline misses 

Fig. 15 shows the deadline misses for the four 
DVS approaches. As can be seen, the Direct ap
proach resulted in the smallest percentage of dead

line misses. This is because we are using a frame-

size/decoding-time equation that is based on the 
specific characteristic of each clip. Thus, the 
frame-size/decoding-time model is well suited for 
the particular clip being run. For Direct, the Under 
Siege clip resulted in the most number of misses 
(7.8%). The reason is that the clip is a high-motion 
video, which deviates most from the calculated lin
ear model. 

However, the Dynamic and FDCA approaches 
handle the Under Siege clip comparatively well 
(8.4% and 9.7% deadline misses respectively) be
cause of their adaptive capability in predicting 
decoding times. The Children clip resulted in the 
most number of misses (23.92%) for Dynamic, 
where the FDCA method gave good results with 
16.2% deadline misses. Even though P-frames for 
Children for FDCA cause about 35% deadline 
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Fig. 15. Percentage of deadline misses for various DVS approaches. 

misses, it is found that the deadline is missed only 
by an average of about 5% and is therefore negligi
ble. The highest number of deadline misses in Dy
namic occurred for the clip with the least amount 
of scene variations. This is because the dynamic 
decoding time estimation used performs too 
aggressively for the clip that has smooth move
ment. GOP also uses an adaptive mechanism simi

lar to the Dynamic approach. However, the 
deadline misses are minimized by having longer 
scaling intervals (i.e., per-GOP instead of per-
frame). Moreover, its scaling decision includes all 
types of frames. Thus, P- and B-frames, which typ
ically have shorter decoding times than I-frames, 
would likely be overestimated since the setting used 
has to also satisfy the playout times for I-frames. 

Figs. 16 and 17 show the deadline misses for var
ious voltage/frequency scales using Dynamic and 
FDCA respectively. The number of deadline misses 

40 

35 

increases linearly as the granularity of the processor 
settings becomes finer, except for the Children clip 
in case of Dynamic. This is because the scaling deci
sions rely more on the estimation of the decoding 
times as more settings are used. Thus, an estimation 
error would easily propagate to cause a deadline 
miss. Essentially, the main factor that affects the 
relationship between the granularity of the proces
sor scale and DVS performance is the distribution 
of the frame decoding times. The power savings 
and deadline misses would depend on whether the 
processor settings available and used in the algo
rithm could satisfy the expansion of the decoding 
times to the frame playout intervals. 

Fig. 18 show the characteristics of deadline 
misses in terms of how much the desired playout 
times were exceeded for various DVS approaches. 
The x-axis shows the extent of the deadlines misses 
relative to the playout interval, categorized as 
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Fig. 16. Percentage of the deadlines misses for different processor settings for Dynamic. 
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Fig. 17. Percentage of the deadlines misses for different processor settings for FDCA. 
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Fig. 18. The degree of deadline misses for various DVS approaches. 

10%, 20%, 30%, 40%, and greater than 40%. The 
y-axis represents the percentage of deadline misses 
over an entire clip. For example, a 5% value on the 
y-axis with the 10% category on x-axis means that 
5% of the frames in the clip that miss the deadline 
missed it by 10% of the desired playout interval 
(e.g., for 25 fps, or 40 ms playout interval, these 
frames are played out between 40 and 44 ms after 
the preceding frames). For the Direct, Dynamic, 
and FDCA approaches, most of the misses are 
within 10% of the playout interval. In addition, 
virtually all of the misses for the above three ap
proaches lie within the 20% range. In contrast, 
the deadline misses for GOP are more erratic, 
and thus, have a higher potential of disrupting 
the quality of video playback. Conversely, dead
line misses in Direct, Dynamic, and FDCA are less 
likely to affect the video quality. 

Based on these results, we can clearly see that 
the number of deadline misses by itself is not an 
accurate measure of video quality. Instead, how 
much the desired playout times were exceeded 
should also be measured and analyzed in order 
to provide a better understanding on how the 
misses may affect the video quality. The simulation 
results indicate that deadline misses imposed by 
DVS for most part have negligible effect on per
ceptual quality since they are mostly within 10% 
of the desired playout time [8]. 

5. Conclusion 

This paper compared DVS techniques for low-
power video decoding. Out of the four approaches 
studied, Dynamic and Direct provided the most 



power savings, but are limited in usefulness with re
spect to real-time video applications. The FDCA 
method can be effectively applied to both stored 
video and real-time video applications. Due to 
the extra overhead required for restructuring the 
decoding process, FDCA does not provide as much 
power savings as compared to the Dynamic and Di
rect methods. Nevertheless, the power savings ob
tained is quite substantial providing up to an 
average of 68% savings and an average of less than 
14% (13.4%) frames missing the deadline. Thus, 
this approach is very suitable for portable multime

dia devices that require low-power consumption. 
Our study also further quantified the deadline 

misses by analyzing the degree to which the play-
out times are exceeded. The results indicate that, 
for the Dynamic, Direct, and FDCA approaches, 
most of the deadline misses are within 20% of the 
playback interval. Therefore, use of these power 
saving methods is less likely to degrade the quality 
of the video. In addition, in designing a DVS capa
ble processor for video decoding, higher number of 
processor settings is preferable since more power 
saving can be achieved without any additional risk 
of sacrificing quality of the video. The number of 
deadline misses may increase, but they are still 
within a tolerable range [8]. 

As future work, it would be interesting to inves
tigate the usage of DVS system on streaming video 
where packet jitters from the network need to be 
considered [26,29]. In addition, finding more accu
rate prediction mechanisms for unit operations in 
video decoding, in particular for IDCT, and new 
ways to exploit DVS for low power video decoding 
are critical and would assist in reaching near-max

imum performance. Finally, it would be beneficial 
to find ways to use DVS on other parts of a sys
tem, such as applying DVS to memory or network 
interface. 
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