
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

5-2003

Isomorphic Strategy for Processor Allocation in k-
Ary n-Cube Systems
Moonsoo Kang
Information and Communications University, kkamo@icu.ac.kr

Chansu Yu
Cleveland State University, c.yu91@csuohio.edu

Hee Yong Youn
Sung Kyun Kwan University, youn@ece.skku.ac.kr

Ben Lee
Oregon State University, benl@eecs.oregonstate.edu

Myungchul Kim
Information and Communications University, mckim@icu.ac.krFollow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

Part of the Computer and Systems Architecture Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Repository Citation
Kang, Moonsoo; Yu, Chansu; Youn, Hee Yong; Lee, Ben; and Kim, Myungchul, "Isomorphic Strategy for Processor Allocation in k-Ary n-Cube
Systems" (2003). Electrical Engineering & Computer Science Faculty Publications. 98.
https://engagedscholarship.csuohio.edu/enece_facpub/98

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Original Citation
Moonsoo, K., Chansu, Y., Hee, Y. Y., Ben, L., & Myungchul, K. (May 01, 2003). Isomorphic strategy for processor allocation in k-ary n-
cube systems. IEEE Transactions on Computers, 52, 5, 645-657.

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/98?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Isomorphic Strategy for Processor Allocation
in k-Ary n-Cube Systems

Moonsoo Kang, Chansu Yu, Member, IEEE, Hee Yong Youn, Senior Member, IEEE,
Ben Lee, Member, IEEE Computer Society, and Myungchul Kim

Abstract—Due to its topological generality and flexibility, the k-ary n-cube architecture has been actively researched for various
applications. However, the processor allocation problem has not been adequately addressed for the k-ary n-cube architecture, even
though it has been studied extensively for hypercubes and meshes. The earlier k-ary n-cube allocation schemes based on conventional
slice partitioning suffer from internal fragmentation of processors. In contrast, algorithms based on job-based partitioning alleviate the
fragmentation problem but require higher time complexity. This paper proposes a new allocation scheme based on isomorphic
partitioning, where the processor space is partitioned into higher dimensional isomorphic subcubes. The proposed scheme minimizes
the fragmentation problem and is general in the sense that any size request can be supported and the host architecture need not be
isomorphic. Extensive simulation study reveals that the proposed scheme significantly outperforms earlier schemes in terms of mean
response time for practical size k-ary and n-cube architectures. The simulation results also show that reduction of external
fragmentation is more substantial than internal fragmentation with the proposed scheme.

Index Terms—k-ary n-cube, processor allocation, job scheduling, partitioning, performance evaluation.

1 INTRODUCTION

EXECUTING an incoming task on a parallel computer hypercubes) and the number of processors in each dimen
system requires decomposing the task into subtasks and sion (as in meshes). However, existing processor allocation

allocating a set of processors with appropriate connectivity strategies for the k-ary n-cube system either recognize only
to the subtasks. The processor allocation problem deals with the dimensionality of the subcubes or allow arbitrary
finding a particular set of processors (or subcube) with the partition sizes at the cost of complex search operations.
required topology and size. The goal is to maximize the For example, schemes based on slice partitioning [16], [17],
system utilization by improving the recognizability of [18], which are basically simple extensions of the processor
subcubes, thereby minimizing fragmentation of processors allocation schemes for hypercubes, partition a higher

dimensional cube into lower dimensional subcube “slices” within the system. The processor allocation problem has
with each lower dimension still containing k nodes, i.e., been extensively studied for multicomputer systems with
only k-ary m-cube subcubes (where m � n) are recognized. hypercube [1], [2], [3], [4], [5] and mesh [6], [7], [8], [9]
Therefore, allocation of processors to a job request is limited interconnection topologies. However, the problem has not
to one or more partitions of base-k and the remaining nodes been adequately addressed for the general k-ary n-cube
are wasted resulting in internal fragmentation. On the other network, even though it has been extensively studied [10],
hand, processor allocation schemes based on job-based [11], [12], [13], [14], [15] for parallel computing due to its
partitioning [16], [19], [20] alleviate the internal fragmentatopological generality and flexibility.
tion problem by relaxing the base-k restriction and allowing The processor allocation problem is much more challen
arbitrary partition sizes. However, these schemes require

ging for k-ary n-cube networks than hypercubes or meshes
time-consuming exhaustive search operations to combine

because reducing fragmentation within the system involves
external fragmentation of processors caused by dynamic

recognizing both the dimension of the network (as in
allocation and deallocation of jobs.

This paper proposes isomorphic allocation strategy for
.	 M. Kang and M. Kim are with the School of Engineering, Information and k-ary n-cube systems that significantly improves the

Communications University 58-4 Hwa-am, Yu-sung, Taejon, 305-348 subcube recognition capability, fragmentation, and com-
Korea. E-mail: {kkamo, mckim}@icu.ac.kr. plexity compared to existing methods. The proposed

.	 C. Yu is with the Department of Electrical and Computer Engineering,
Cleveland State University, Stilwell Hall 340, Cleveland, OH 44115. scheme is based on isomorphic partitioning, which recur-

kE-mail: c.yu91@csuohio.edu. sively partitions a k-ary n-cube into 2n number of 2i -ary
. H.Y. Youn is with the School of Information and Communication n-cubes, where i represents the ith partition step. The

Engineering, SungKyunKwan University, 300 Janganggu, Chunchun
resulting partitioned subcubes are said to be “isomorphic” dong, Suwon, 440-746 Korea. E-mail: youn@ece.skku.ac.kr.

. B. Lee is with the Department of Electrical and Computer Engineering, in the sense that they are also n-cubes and, for this reason,
Oregon State University, Owen Hall 302, Corvallis, OR 97331. they retain many attractive properties of k-ary n-cube
E-mail: benl@ece.orst.edu.

networks, including symmetry, low node degree (

ing
extended to recognize
low diameter (

2n), and
kn) [13]. Moreover, the proposed strategy is

semi-isomorphic subcubes by combin
a number of smaller isomorphic subcubes to handle

mailto:benl@ece.orst.edu
mailto:youn@ece.skku.ac.kr
mailto:c.yu91@csuohio.edu
mailto:mckim}@icu.ac.kr

Fig. 1. Slice and job-based allocation strategies on an 8-ary 3-cube system. (a) With slice partitioning. (b) With job-based partitioning.

incoming job requests of arbitrary topologies. Finally, the
proposed strategy is also applied to systems that are not
k-ary n-cube. This is important in practice since, for
example, Cray T3D/T3E uses a three-dimensional torus
network but the sizes of the three dimensions are different.

The main contributions of this paper are two-fold: First,
the Isomorphic allocation strategy is specifically targeted
for the k-ary n-cube topology. That is, unlike existing
strategies that are basically hypercube allocation algorithms
extended to larger sizes or mesh allocation algorithms
extended to higher dimensions, the proposed method
exploits the unique topological characteristics of k-ary
n-cube. It is also general in the sense that any size requests
can be supported and the host system need not be k-ary
n-cube. Second, a new way of representing the k-ary n-cube
network within a graph theory framework is formalized.
We believe the new formalism can be used in other research
areas, such as routing, for k-ary n-cube systems.

We evaluate and compare the performance of the
proposed isomorphic allocation strategy with four existing
allocation schemes using CSIM simulation package [21]. In
terms of mean response time, the proposed strategy sig
nificantly outperforms the allocation schemes based on slice
partitioning. Comparison with the schemes employing the
job-based partitioning approach shows that the Isomorphic
allocation strategy improves the response time by 7% �
49% depending on system size and workload distribution.

More importantly, it is shown to be scalable, i.e., it exhibits
consistent performance irrespective of the system size.

The rest of the paper is organized as follows: Section 2
presents the earlier allocation algorithms for k-ary n-cube
systems. In Section 3, a formal framework for describing a
k-ary n-cube and its partitioning mechanisms is introduced.
Section 4 presents the isomorphic allocation strategy and its
extensions. Section 5 evaluates the performance of the
proposed scheme using simulation and compares it with
earlier schemes. Finally, conclusions and future work are
discussed in Section 6.

2 BACKGROUND AND RELATED WORK

This section overviews allocation algorithms proposed for
k-ary n-cube systems. As discussed previously, there are
two types of allocation algorithms. Extended Buddy (EB),
Extended Gray Code (EGC) [16], [17], k-ary Partner [18], and
Multiple Gray Code (Multiple GC) [17] algorithms are based
on slice partitioning. Job-based partitioning is employed in
Sniffing [16], Extended Free List (EFL) [19], and Extended Tree
Collapsing (ETC) [20].

EB and EGC algorithms are extended versions of the
hypercube algorithms, Buddy and Gray Code [1], respec
tively. Fig. 1a illustrates an example of allocating a 4-ary
2-cube job request in an 8-ary 3-cube system. With the slice
partitioning, one 8-ary 2-cube partition of 64 processors is

� �

allocated since only 8-ary subcubes are recognized and,
thus, the remaining 48 processors are wasted. This partition
size limitation is an inherent problem with the underlying
slice partitioning. More importantly, links as well as
processors are underutilized. Unless the whole 8 x 8 x 8
cube is used for one large job, communication cannot occur
between the partitioned 8 x 8 slices. All the links along one
dimension would be wasted, which accounts for one third
of the total number of links. Another major drawback with
the slice partitioning is it does not exploit the topological
advantages of higher order architecture. For example, the
nodes in an 8 x 1 slice (eight nodes) have longer internode
distance compared to the nodes in a 2-ary 3-cube
(eight nodes). The time complexity of the allocation
procedure is OðknÞ for a k-ary n-cube system since the
availability of the processors in all possible directions is
checked. Deallocation procedure takes OðkmÞ for releasing a
k-ary m-cube job.

k-ary Partner and Multiple GC algorithms enhance the
subcube recognition ability over EB and EGC. They utilize
the fragmented nodes to form a slice along the other
dimensions, as shown on the right side of Fig. 1a. k-ary
Partner and Multiple GC algorithms require the same time
complexity as EB and EGC algorithms, i.e., OðknÞ for
allocation and OðkmÞ for deallocation of a k-ary m-cube job.

In contrast, job-based partitioning addresses the internal
fragmentation problem by allowing arbitrary partition sizes
rather than restricting them to base-k. Fig. 1b shows an
example of allocating a 4-ary 2-cube job request in an 8-ary
3-cube system using job-based partitioning. The allocation
algorithms based on this approach search the processor
space to find an available subcube for the job by sliding a
4 x 4 window frame. For example, the Sniffing algorithm

2checks 16 (ð8 - 4Þ) window positions per 8-ary 2-cube
plane, totaling 128 (16 x 8) positions for all eight planes, as
shown on the left side of Fig. 1b. In general, for an l-ary
m-cube job request in a k-ary n-cube system, the number of

mpositions per k-ary m-cube plane is ðk- lÞ . The total
number of window positions to check amounts to ðk-
m n-m n-m nlÞ k for all k planes and is bounded by k (when

k » l). Thus, the allocation complexity of the Sniffing
mstrategy is OðknlmÞ [16], where the last term l accounts

for the availability check of the lm processors. Deallocation
mof an l-ary m-cube job frees l processors and, thus, the

deallocation complexity of the Sniffing strategy is OðlmÞ
because the corresponding lm bits must be reset.

EFL and ETC algorithms improve the subcube recogni
tion ability of the Sniffing strategy by including the cases
where a 4-ary 2-cube job is assigned along the other
dimensions as shown on the right side of Fig. 1b. Here,
the total number of window positions is n (i.e., three) times
of the Sniffing strategy. In general, the allocation complexity
of the ETC algorithm is

n nlmO k
m

for an l-ary m-cube job, where the combination term
accounts for the selection of m dimensions out of n since
the m-cube job can be allocated to any m-dimensional plane.
This high time complexity is not surprising because all

possible positions are exhaustively checked. In addition to
the large amount of allocation time, job response time may
increase due to external fragmentation of processors. The
deallocation complexity of the ETC strategy for an l-ary
m-cube job is also OðlmÞ because the corresponding lm bits
must be reset as in the Sniffing strategy. Section 4.4
summarizes and compares the complexitites of the above-
mentioned algorithms as well as the proposed Isomorphic
algorithm

3 PRELIMINARIES

This section presents the formal description of the slice and
isomorphic partitioning for k-ary n-cube networks.

A k-ary n-cube, which is denoted as Qk , has kn nodes, each n

of which can be identified by an n-tuple ðan-1; · · · ; a1; a0Þ of
radix k, where ai represents the node’s position in the ith
direction. Let �k be the alphabet f0; 1; 2; · · · ; k- 1g and �k ben
the set of all sequences of the elements in �k of length n.
Then, ai 2 �k and the set of the nodes of Qk can be n
represented by �k . Here, nodes ða 1; · · · ; a1; a0Þ and n n-

0 ða 1; · · · ; a0 1; a0 Þ are connected if and only if there exists i,n- 0
0 0 0 i n- 1, such that ai ¼ ai ± 1 and aj ¼ aj for j 6¼ i if

wrap-around links are not considered.
Given two graphs A ¼ ðV1; E1Þ and B ¼ ðV2; E2Þ, the cross

product A0B ¼ ðV ;EÞ is defined by [13]

V ¼ fða; bÞ j a 2 V1; b 2 V2g and
0E ¼ fða; bÞ; ða 0; b0Þ j ða ¼ a and ðb; b0Þ 2 E2Þ

or ðb ¼ b0 and ða; a0Þ 2 E1Þg:

A cross product of an n-dimensional graph A and an
m-dimensional graph B produces an ðnþmÞ-dimensional
graph. With a ¼ ðan-1; · · · ; a1; a0Þ 2 �n and

b ¼ ðbm-1; · · · ; b1; b0Þ 2 �m;

a node ða; bÞ in A0B can be represented by an ðnþ
mÞ-tuple ðan-1; · · · ; a1; a0; bm-1; · · · ; b1; b0Þ 2 �ðnþmÞ. In short,
the cross product A0B stretches the graph A along the
dimnensions of graph B.

In order to define a Qk using the cross product, consider n
a graph Lk that has k nodes and ðk- 1Þ edges, where the
k nodes form a linear array and each node is connected to
two nearby nodes without a wraparound edge. Thus, Lk is a
one-dimensional (1D) array, Lk 0 Lk is a 2D mesh, and Lk 0
Lk 0 Lk is a 3D mesh. Similarly, Qk can be defined by a n
cross product of n Lks [13].1 That is

Qk ¼ Lk 0 Lk 0 · · · 0 Lk : n |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

Instead of assuming k is a power of 2, a 2k-ary n-cube is
considered. It is represented as

Q2k ¼ L2k 0 L2k 0 · · · 0 L2k : n |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

1. Here, we do not include wraparound edges and the resulting Qk is a n
mesh. In [13], Lk is a cycle which has wraparound edges, and the
corresponding Qk is a torus. n

� �

� �
�

�

�

�

Fig. 2. Partitioning mechanisms of an 8-ary 3-cube system. (a) Slice partitioning of an 8-ary 3-cube (8 x 8 x 8). (b) Isomorphic partitioning of an 8-ary
3-cube (8 x 8 x 8).

The slice partitioning corresponds to the above-mentioned
Q2k

construction process of an n-dimensional from one-n
dimensional L2k but in the reverse direction (this is depicted
in Fig. 2a). In other words, a higher order cube is recursively
partitioned into a number of lower dimensional subcubes. In
the figure, Q8 ¼ Q8 0 L8, Q8 ¼ Q8 0 L8, and Q8 ¼ Q8 0 L8.3 2 2 1 1 0

Now, an alternative way of defining a Q2k
is based on the n

dot product, where two graphs are multiplied to produce a
larger graph but with the same order of dimension as that of
its two subgraphs. Given two n-dimensional graphs, A ¼
ðV1; E1Þ and B ¼ ðV2; E2Þ, the dot product A 8B ¼ ðV ;EÞ is
defined by

V ¼ fða; bÞ j a 2 V1; b 2 V2g
and E ¼ fða; bÞ; ða 0; b0Þ j 9i; 0 i n - 1;

0 0such that aibi ¼ a b0 ± 1 and ajbj ¼ a b0 for j 6¼ ig:i i j j

Notice that a node ða; bÞ in the dot product is also represented
by an n-tuple ðan-1bn-1; · · · ; a1b1; a0b0Þ, where each compo
nent aibi is a concatenation of two subcomponents ai and bi. If
we assume the two n-dimensional graphs A and B are 2k-ary
and 2l-ary, then ai and bi are k-bit and l-bit binary numbers,
respectively. Thus, aibi is a ðk þ lÞ-bit binary number and
A 8B is a ðk þ lÞ-ary n-dimensional graph. The sets of the

k lnodes in A and B are and , respectively, and that of n n
ðkþlÞA 8B is . Informally, a dot product A 8B can be drawn n

by replacing each node of A with graph B.
In order to define a Q2k

using the dot product, consider n
an n-dimensional binary hypercube Hn. A node in Hn is
represented by a binary n-tuple, ðan-1; · · · ; a1; a0Þ, where

2ai 2 . A node in Hn 8Hn can be denoted by a 4-ary
0 0 0 2n-tuple, ðan-1a 1; · · · ; a1a1; a0a Þ, where ai; a0 2 and n- 0 i

0 4aia 2 . Thus, Hn 8Hn is a 4-ary hypercube and Hn 8i
Hn 8Hn is an 8-ary hypercube. Similarly,

Q2k ¼ Hn 8Hn 8 · · · 8Hn : n |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

Equivalently, Q2k
can also be represented by Q2k-1 8Hn,n n

recursively. In other words, Q2k
can be partitioned into 2n

n
number of Q2k-1

’s because Hn has 2n nodes. We call this n
isomorphic partitioning because each partition Q2k-1

or n

2k-1 1 x · · · x 2k-|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

keeps the same order of dimension (n) and, therefore,
retains the topological advantages of a higher dimensional
cube. Graphical representation of the Isomorphic partition
ing is shown in Fig. 2b. In the figure, Q8 ¼ Q8 8H3,3 2
Q8 ¼ Q8 8H3, and Q8 ¼ Q8 8H3.2 1 1 0

4 ISOMORPHIC ALLOCATION STRATEGY

Based on the above-mentioned discussion, we now intro
Q2k

duce the isomorphic allocation strategy for . The basicn
allocation strategy in Section 4.1 produces isomorphic
subcube partitions only and thus restricts the job requests
to be isomorphic (Q2a

). Section 4.2 relaxes the job sizen
restriction to allocate cubic job requests in the form of

12an- x · · · x 2a1 x 2a0 . (An isomorphic job is considered a

�

�

�

Fig. 3. Representation of the isomorphic partitioning of Q8. (a) Subcubes in Q8. (b) 4-ary tree representation of Q8
2.2 2

cubic job, where ai ¼ a for all i.) It is further extended to
allocate noncubic jobs in the form of ln-1 x · · · x l1 x l0, where
li is not necessarily a power of two. Processor allocation in

1cubic systems in the form of 2kn- x · · · x 2k1 x 2k0 is also
considered in Section 4.3. This is important in practice since
a system may not always be k-ary n-cube. For example, a
Cray T3D/T3E uses a three-dimensional torus as the
internal interconnection, but the sizes of the three dimen
sions are usually different mainly due to the packaging
problem. Finally, Section 4.4 presents the algorithm com
plexity of the isomorphic allocation strategy and compares
with that of previous allocation algorithms.

Throughout the paper, the basic as well as the extended
algorithms are collectively referred to as isomorphic
allocation strategy. When the types of job requests are all
isomorphic, the basic algorithm in Section 4.1 is used. But, if
some jobs require nonisomorphic cubic partitions, the
extended algorithm in Section 4.2 is employed.

4.1	 Isomorphic Allocation Strategy for
Isomorphic Jobs

This subsection presents the basic isomorphic allocation
strategy for isomorphic jobs. It assigns a subcube partition
to a job requesting a 2a-ary n-cube in a 2k-ary n-cube system,
where a k. First, we consider how addresses are assigned
to a subcube partition generated by the Isomorphic
allocation strategy. Fig. 3a shows the subcubes in an 8-ary
2-cube system (8 x 8 mesh). They can also be described by a
2n-ary tree (4-ary tree in this example) with k partition steps
(three steps in this case), as in Fig. 3b.

Consider a subcube A consisting of one node whose
address is ð3; 5Þ in Fig. 3. (Note that the digits are ordered
from right to left, i.e., ða1; a0Þ.) A binary representation of
the node is ð011; 101Þ. Since Q8

2 ¼ H2 8H2 8H2, the node
can alternatively be represented by ðð0; 1Þ; ð1; 0Þ; ð1; 1ÞÞ,
where ð0; 1Þ is the address of the node in the first subgraph
H2, ð1; 0Þ is the one in the second H2, and ð1; 1Þ is the one in
the third H2. In other words, the subcube A can be
addressed by selecting ð0; 1Þ Q4 subcube after the first2
partition step, ð1; 0Þ Q2 subcube after the second partition 2
step, and, finally, ð1; 1Þ Q1 subcube after the third partition 2
step. Similarly, subcube B in Fig. 3 can be identified by
ðð1; 0Þ; ð1; 1ÞÞ ¼ ð11; 01Þ ¼ ð11*; 01*Þ.

In general, a node in a 2k-ary n-cube, Q2k
, is denoted by n

an n-tuple ðan-1; · · · ; a1; a0Þ, where ai 2 2k
. We can also

denote the node in a full binary representation as
ð1Þ ð2Þ ðkÞ ð1Þ ð2Þ ðkÞ ð1Þ ð2Þ ðkÞ

a 1a 1 · · · a 1; · · · ; a a · · · a ; a a · · · a ;n- n- n- 1 1 1 0 0 0

ðjÞ 2where a 2 . The superscript j in each binary number i
denotes the partition step in which the binary number plays
its role. As discussed in Section 3, each of k dot products
contributes one binary digit in all dimensions by concate
nating the subgraphs. We can, therefore, alternatively
represent it as

ð1Þ ð1Þ ð1Þ ð2Þ ð2Þ ð2Þ
a 1; · · · ; a ; a ; a 1; · · · ; a ; a ;n- 1 0 n- 1 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st n-tuple 2nd n-tuple
ðkÞ ðkÞ ðkÞ · · · ;	 a · · · ; a ; a : n-1; 1 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k-th n-tuple

Similarly, a subcube Q2a
can be represented by an n-tuple,n

ð1Þ ð2Þ ðk-aÞ ð1Þ ð2Þ ðk-aÞ
a 1a 1 · · · an- * · · · *; · · · ; a1 a · · · a1 * · · · *;n- n- 1 |fflffl{zfflffl} 1 |fflffl{zfflffl}

a times	 a times
ð1Þ ð2Þ ðk-aÞ

a a · · · a * · · · * ;0 0 0 |fflffl{zfflffl}
a times

or, equivalently,
ð1Þ ð1Þ ð1Þ ð2Þ ð2Þ ð2Þ

a 1; · · · ; a ; a0 ; a · · · ; a ; a0 ;n- 1 n-1; 1 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st n-tuple 2nd n-tuple 	
ðk-aÞ ðk-aÞ ðkÞ · · · ;	 an- ; · · · ; a1 ; a0 :1 |ffl{zffl}

ðk-aÞth n-tuple

Q2k-1
It is noted that the first n-tuple identifies one of 2n s n
which are generated by the first step of the Isomorphic
partitioning.

We now consider how to implement the isomorphic
allocation strategy with the addressing scheme discussed
above. The Isomorphic allocation strategy maintains a set of
linked status bitmaps and free lists, as shown in Fig. 4. Each
status bitmap is 2n-bit wide (4-bit in this case) and it

Fig. 4. Implementation of isomorphic allocation strategy with free lists and status bitmaps.

indicates the availability of its children subcubes or nodes.
The tree structure in Fig. 3b is maintained by links between
the bitmaps. The figure also shows another important data
structure managing free and busy subcubes. A free list Fa·n
is a linked list of free subcubes of Q2a

n

ð2a x 2a x · · · x 2aÞ:|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

In this example, they are F3·2, F2·2, F1·2, and F0·2 which
maintains available isomorphic subcubes of Q2

2

3
, Q2

2

2
, Q2

2

1
,

and Q20
, respectively. 2

The isomorphic allocation strategy is summarized in
Algorithm 1 (Fig. 5), which allocates isomorphic requests
(Q2a

), having the same cubic lengths in all n dimensions. n
The Release algorithm is used when a job finishes its
execution. Since the released subcube has ð2n - 1Þ siblings
or buddies, it is necessary to check if they are all free and
can be merged.

The Isomorphic allocation strategy is statically optimal,
which means that any sequence of isomorphic requests can
be accommodated if the sum of the request sizes is not

larger than the system size and a static environment is
assumed (i.e., the assigned nodes are not deallocated).
Therefore, it is able to allocate resources as compact as
possible so that a large future request can possibly be
accommodated. We omit the proof here because the proof
steps are almost the same as those of the free list-based
allocation algorithm developed for hypercubes [2].

4.2	 Isomorphic Allocation Strategy for Cubic and
Noncubic Jobs

The basic Isomorphic allocation strategy presented in the
previous subsection restricts the job request to be iso
morphic (Q2a

). This subsection extends the basic allocation n
strategy to handle cubic jobs by introducing subpartitions
between any two subsequent levels of partitions. For
example, if an incoming job requests 2 x 2 x 4 in an 8-ary
3-cube, the basic allocation strategy tries to allocate a 4 x
4 x 4 partition consisting of eight 2 x 2 x 2 subpartitions
and, thus, a large number of nodes are wasted. The purpose
of the extended strategy is to assign two 2 x 2 x 2 subparti
tions instead of all eight, making it more space efficient. In

Fig. 5. Algorithm 1: Isomorphic allocation strategy for isomorphic jobs.

� �

Fig. 6. Isomorphic allocation strategy for cubic jobs in an 8-ary 3-cube system. (a) First partition step. (b) Second partition step.

order to manage the subpartitions efficiently, the subparti
tions are considered as nodes of a three-dimensional
hypercube. A hypercube allocation algorithm (e.g., Buddy
scheme [1], Gray Code [1], or Free List [2]) can be used to
manage the subpartitions. Fig. 6 shows subpartitioning of an
isomorphic subcube using the Buddy scheme.

In Fig. 6, notice that subpartition steps produce semi
1isomorphic subcubes in the form of 2an- x · · · x 2a1 x 2a0 ,

where j ai - aj j� 1 for all i and j, meaning the lengths of
the dimensions need not be the same but different by at

1most one. For a cubic job requesting a 2an- x · · · x 2a1 x 2a0

subcube partition, the extended allocation strategy first
adjusts the spatial pattern of the subcube to yield an
equivalent semi-isomorphic subcube. For example, if an
incoming job requests a 2 x 2 x 8 partition, it is adjusted
and allocated a 2 x 4 x 4 partition.2

1In general, the 2an- x · · · x 2a1 x 2a0 subcube partition is
translated into

2a x · · · x 2a x 2aþ1 x · · · x 2aþ1 ;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn-lÞ times l times

n-1 n-1where a ¼ ð i¼0 aiÞ div n and l ¼ ð i¼0 aiÞ mod n. The job
requires a partition larger than Q2a

but smaller than Q2aþ1

n n
nþl Q2a

and includes 2a· nodes. Thus, 2l number of n
2n Q2aþ1

subcubes among subcubes in a need to ben
merged, e.g., using the Buddy scheme, to accommodate
the job. (It is equivalent to allocate an l-cube in an n-cube
hypercube using the Buddy scheme.) In other words, the
Isomorphic allocation strategy searches the free list Fa·n to
find 2l available subcubes according to the hypercube
allocation strategy employed (Hypercube_Request and

2. The adjustment is, in essence, to “fold” a partition along the longest
dimension. The folding process is simple and straightforward if we use the
logical node numbers. Moreover, it improves performance by reducing the
internode distance.

Hypercube_Release
3 procedures). Algorithm 2 (Fig. 7)

shows the necessary steps for the Isomorphic allocation
strategy for cubic jobs.

The isomorphic allocation strategy described above is
further extended to allocate noncubic jobs, where the size of
each dimension of a job request is not necessarily a power of
two. Suppose that a job requests a 3 x 5 mesh, the
isomorphic allocation strategy for noncubic jobs tries to

x 2dlog25eallocate a subcube of size 2dlog23e or 4 x 8. Fifteen
processors are allocated, but the remaining 17 processors
are released for future jobs. In general, for an ln-1 x · · · x

1el1 x l0 job, the allocation strategy allocates a 2dlog2ln- x · · · x
2dlog2l1e x 2dlog2l0e subcube (in fact, an equivalent semi-

isomorphic subcube) and deallocates the rest of the
processors for later use.

One major drawback of this algorithm is that it may
search for an overly larger subcube than requested while
many subpartitions of the subcube will be deallocated
immediately. For a 3 x 5 request, it searches for a 4 x 8
subcube, the size of which is more than double the
requested size. The problem can be addressed by dividing
the request into a set of cubic requests and trying to allocate
a set of connected subcubes instead of a larger subcube. For
example, a 3 x 5 request is considered as a combination of
four cubic requests, 2 x 4, 2 x 1, 1 x 4, and 1 x 1. More
enhancements are possible if the set of cubic requests is
translated into a set of semi-isomorphic requests. The third
subcube 1 x 4 becomes 2 x 2 and, thus, the combined
request can be fit into a 4 x 4 subcube resulting in reduced
fragmentation. We do not discuss the details of this
extension but leave it as a future work.

3. In this paper, we will refer to partition (allocation) and combine
(deallocation) procedure for the hypercube algorithms as Hypercube_Re
quest and Hypercube_Release, respectively. The Buddy scheme is the
simplest but it does not always recognize a subcube even though one exists,
mainly due to fragmentation. Gray code algorithm provides better subcube
recognition ability [5].

� � �

�

�

�

Fig. 7. Algorithm 2: isomorphic allocation strategy for cubic jobs.

4.3	 Isomorphic Allocation Strategy for
Cubic Systems

The isomorphic allocation strategy for cubic jobs (Algo
rithm 2) can also be applicable to cubic systems in the

n-1form of 2k x · · · x 2k1 x 2k0 (kn-1 · · · k1 k0). In
such a system, each node is denoted by an n-tuple
ðan-1; · · · ; a1; a0Þ. Here, ai, the node’s position in the ith
direction, is base 2ki , which can be represented by a ki-digit
binary number. We can also denote a node’s full binary
representation as

ðk0 -kn-1þ1Þ ðk0Þ ðk0 -k1þ1Þ ðk0Þ ð1Þ ðk0Þ a · · · a ; · · · ; a · · · a ; a · · · a ;n-1 n-1 1 1 0 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
kn-1 times k1 times k0 times

where a ðjÞ 2 2. For example, a node in 22 x 22 x 24 systemi
can be represented by ða2; a1; a0Þ, where a2; a1 2 22

and

a0 2 24
, as shown in Fig. 8. The binary representation is

given by

ð3Þ ð4Þ ð3Þ ð4Þ ð1Þ ð2Þ ð3Þ ð4Þ
a a ; a a ; a a a a :2 2 1 1 0 0 0 0

Rearranging the representation in the order of partition
step, it is equivalent to

ð1Þ ð2Þ ð3Þ ð3Þ ð3Þ ð4Þ ð4Þ ð4Þ
a0 ; a ; a2 ; a ; a0 ; a ; a1 ; a :0 1 2 0

The system is partitioned along the longest dimension first
so that each subcube becomes more isomorphic. As shown
in Fig. 8, the first partition step is based on the binary

ð1Þ
number a and, thus, the system is simply partitioned into 0
two subsystems. This is the same for the second partition

ð3Þ
step. For the third partition step, three binary numbers a ,2

Fig. 8. Isomorphic allocation strategy on a cubic system.

TABLE 1
Algorithm Complexities for Allocating a Q2l Job on a Q2k

System (2a·nþl-Ary m-Cube Job in Case of Algorithm 2)m n

ð3Þ ð3Þ
a1 , and a along the three different dimensions play their 0
roles and, thus, the system is partitioned into eight
subsystems. This is also the same for the fourth partition
step. In the first and second partition steps, one-bit bitmaps
for managing an 1-cube hypercube are used. For the third
and fourth step, 8-bit bitmaps are used for managing 3-cube
hypercubes.

4.4	 Complexity Analysis of the
Isomorphic Allocation Algorithms

This subsection analyzes the time and space complexity of
the isomorphic allocation algorithms when allocating and
deallocating an Q2l job on a Q2k

system.m n
The Request Step 1 in Algorithm 1 (isomorphic

allocation algorithm for isomorphic jobs) takes Oð1Þ and
Step 2 takes OðkÞ because the allocator searches at most
k free lists. Subcube decomposition process in Step 3 takes
at most OðkÞ since, in the worst case, the largest possible
subcube (Q2k

) is recursively decomposed until a Q2a
subcube n	 n

is obtained. Therefore, the time complexity of allocation is
OðkÞ. Deallocation also requires OðkÞ time assuming that the
number of free subcubes is maintained for each free list Fa·n.
The Release Steps 1 and 2 take Oð1Þ, but Step 3 is repeated
at most k times.

The time complexity of Algorithm 2 (isomorphic
allocation algorithm for cubic jobs) depends on the
hypercube allocation algorithm employed (Hypercube
_Request and Hypercube_Release). Here, the simple
Buddy scheme is assumed as it is used in the performance
evaluation study in Section 5. In the Buddy scheme, 2n

allocation bits are used to keep track of the availability of
nodes for an n-cube hypercube. The time complexities of the
allocation (Hypercube_Request) and deallocation (Hy
percube_Release) of an l-cube job are Oð2nÞ and Oð2lÞ,
respectively. In Algorithm 2, for each free list Fa·n, 2n

allocation bits are used to keep track of the free subcubes
(Q2a

).n
The Request Step 1 in Algorithm 2 takes Oð1Þ and

Step 2 takes Oð2nÞ because it calls Hypercube_Request.
When Fa·n is empty or Step 2 fails, the allocator needs to
find a higher dimensional subcube, as in Step 3 (OðkÞ),
decompose it until an ðða þ 1Þ · nÞ-cube is obtained, as in
Step 4 (OðkÞ), and, finally, calls Hypercube_Request in
Step 4 (Oð2nÞ). Therefore, the time complexity of allocation
is Oð2nÞ. Deallocation takes Oðk þ 2lÞ. The Release Step 1
takes Oð2lÞ due to Hypercube_Release. Step 2 takes Oð1Þ

because only one subcube (Q2aþ1
) is released, but it can be n

repeated k times, as in Step 3.
The space complexity of the Isomorphic allocation

algorithm is mainly contributed by the status bitmaps,
as shown in Fig. 4 in Section 4.1. Status bitmaps of size 2n

each are used in each partition step to facilitate the
merging process. In the first partition pass, a single status

Q2k-1
bitmap is needed for managing 2n s. In the second n
pass, there can be 2n bitmaps in the worst case when all of

Q2k-the 2n 1
’s are subdivided. Since there are a total of n

-1k passes, the number of status bitmaps amounts to 2kn2n-1
(¼ 1 þ 2n þ 22n þ · · · þ 2ðk-1Þn) in the worst case. Since each
status bitmap is 2n wide, the space complexity of the
Isomorphic algorithm is Oð2knÞ. The worst case can
happen when all the jobs require only one processor
and the system is almost completely utilized. In the
normal situation, however, the number will be much
smaller and it depends on the load intensity as well as the
job size distribution.

Table 1 summarizes complexity analysis of the iso
morphic allocation strategy as well as the slice and job-
based allocation algorithms. Note that the expressions in
Table 1 appear different from those introduced in Section 2
because a Q2l job on a Q2k

system is considered instead of a m n
Ql job on a Qk system. For example, OðknÞ in Section 2 is m n
equivalent to Oð2knÞ in Table 1. The space complexity of the
slice and job-based allocation algorithms is Oð2knÞ because
the processor bitmap of 2kn wide is used in order to keep
track of the availability of processors.

5 PERFORMANCE EVALUATION AND COMPARISON

We evaluated and compared the performance of the
Isomorphic allocation strategy with other allocation policies
in the literature using the CSIM simulation package [21].
Three simulated schemes based on the slice partitioning are
EB, EGC [16], [17] and k-ary Partner [18] algorithms, and
one based on job-based partitioning is ETC [20]. The Buddy
scheme is employed in the Hypercube_Request and
Hypercube_Release procedures for the isomorphic
allocation strategy. In Section 5.1, workload model and
performance measures are discussed. Simulation results
with cubic requests are presented in Section 5.2 and those
with noncubic requests are discussed in Section 5.3.

5.1 Workload Model and Performance Parameters
The workload model consists of distribution of job inter-
arrival time, job size (subcube size), and job service
demand. Job interarrival time and job service demand are
usually assumed to follow the exponential distribution, but
different distributions such as bimodal hyper-exponential
[22], [23], three-stage hyper-exponential [24], and uniform-
log [25] distributions have also been suggested. In this
paper, we employ a simple but traditional workload model
since it covers the general operational conditions of parallel
computer systems, thereby fairly assesses and compares the
performances of the schemes. In fact, we expect more
favorable results for the isomorphic allocation strategy
when the parameters of the workload model vary widely. It
is because, as will be shown later in Section 5.3 (Figs. 12 and
13), the main strength of the proposed scheme stems from
its superior capability in packing subcubes with less
external fragmentation, which will be more significant in
the operation environment with a widely varying workload.
Moreover, the time complexity of the proposed scheme is
much smaller than others, as discussed in Section 4.4, which
will allow consistently better performance regardless of
workload conditions.

The job arrival pattern in our workload model is assumed
to follow the Poisson distribution with a rate A. The arrival
rate (A) is based on the system capacity. This is done to avoid
saturation by ensuring that the arrival rate to the system
does not exceed the service rate. Total service demand
follows an exponential distribution and the mean service
time is assumed to be one time unit. Job size is cubic and its
distribution is assumed to be uniform in each dimension. In
a 24 x 24 x 24 (212 nodes) system, for example, the requested
partitions take the form of 2a x 2b x 2c. The probability that a
(b or c) is equal to 0, 1, 2, 3, or 4 is 1 each. Since there is a total 5

1of 125 cases, the probability of each case is set to . One 125
thousand jobs per each random number seed were
generated. With 20 seeds, we observed 20,000 jobs, which
is sufficient to obtain steady state results. The job size and
service demand are assumed to be independent, where a
large job (large subcube) has the same distribution of the
service demand as that of a small job.

We measured the mean response time, which is a good
metric for determining how fast a processor allocation
strategy responds to incoming job requests. In order to
understand the performance in more detail, the three
components of response time were analyzed: service time,
numerical delay, and topological delay [26]. When a job at the
head of the job queue fails to be allocated, it is due to one of
the following three reasons: The number of processors
needed by the job is not sufficient, there is no empty
subcube of the requested size in spite of having a sufficient
number of processors, or the algorithm has no ability to
recognize the candidate even though one exists. The job will
be allocated later when all of the busy processors in one of
the appropriate subcubes are freed. Based on this observa
tion, we define the numerical delay as the queuing delay
incurred when the system does not have sufficient number
of available processors needed by a job, while the
topological delay is the additional delay experienced when

Fig. 9. Comparison of mean response time in a Q4 system.3

there is no available subcube in spite of having a sufficient
number of processors. After numerical delay, there will be
enough free processors. However, scattered placement of
the free processors across several subcubes causes topolo
gical delay. While the numerical delay depends on the job
arrival rate and job service time, the topological delay
depends on how efficiently the allocation algorithm
manages the processor space. Thus, the topological delay
can be considered as a measure of the efficiency of an
allocation algorithm.

5.2 Simulation Results with Cubic Requests
Fig. 9 shows the variations in mean response time with
respect to system utilization for a 4-ary 3-cube (Q4 or3
22 x 22 x 22). The proposed isomorphic allocation strategy
outperforms other policies by a considerable margin except
ETC. EB and EGC show similar performance and their
performance degrades significantly when the system
utilization reaches beyond 0.3. The k-ary Partner scheme
shows better performance than EB and EGC due to its
superior subcube recognition ability. However, the k-ary
Partner also exhibits limited performance benefit. This is
because internal fragmentation is unavoidable with the
conventional slice partitioning. ETC based on the job-based
partitioning performs comparably with the proposed
scheme, as shown in Fig. 9. However, there is an extremely
high cost to perform an exhaustive search during allocation.
In addition, the performance improvement for the ETC
algorithm is observed only for small systems, as we will see
shortly.

Next, we analyze in detail the two best performing
strategies, ETC and the proposed isomorphic allocation
strategy, for various system sizes. System sizes simulated
were 4-ary 3-cube (Q4), 8-ary 3-cube (Q8), and 16-ary 3-cube 3 3

(Q16). The response time of ETC allocation algorithm 3
quickly saturates for larger systems, as shown in Fig. 10b
and 10c. On a 16-ary 3-cube system, the saturation point
with ETC is about 50 percent utilization of the maximum
system capacity. The main cause of the saturation is
external fragmentation and it becomes more critical as the
system size grows. In contrast, the isomorphic allocation
strategy is shown to be scalable, i.e., it exhibits consistent
performance irrespective of the system size. The use of

�

Fig. 10. Mean response time on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube.

systematic partitioning in the isomorphic allocation strategy
results in reduced external fragmentation and thus im
proves the response time. At 50 percent utilization of the
maximum system capacity, the isomorphic allocation
strategy improves the response time as much as 49 percent
compared to the ETC algorithm.

5.3 Simulation Results with Noncubic Requests
This subsection compares the response times of ETC and
the isomorphic allocation strategy for noncubic job requests.
We assume that the job size follows the uniform distribu
tion across all dimensions. For example, in an 8 x 8 x 8
(29 nodes) system, a job requests a partition of the form of
l2 x l1 x l0. Since 0 < li 8, the probability that li is equal to

11; 2; · · · ; 8 is 8 each. For a noncubic job request, the
isomorphic allocation strategy allocates a semi-isomorphic
partition and the rest of the processors are deallocated
immediately. Fig. 11 shows that, for both ETC and the
isomorphic allocation strategy, the results are far worse
than those with cubic requests. This is mainly due to
internal fragmentation. However, the proposed scheme
shows better performance than ETC. At 40 percent utiliza
tion of the maximum system capacity, the isomorphic
allocation strategy improves the response time as much as
45 percent compared to the ETC algorithm.

Figs. 12 and 13 show the numerical and topological
delay, respectively, for ETC and the isomorphic allocation
strategy. As shown in Fig. 12, the isomorphic allocation
strategy incurs less numerical delay than ETC. However,
the difference in the topological delay is much more
pronounced, as depicted in Fig. 13. This observation leads
to the conclusion that the isomorphic allocation strategy
partitions the system architecture more efficiently with less
external fragmentation and, thus, reduces the topological
delay. With ETC, the scattered placement of free processors
increases the topological delay even when a sufficient
number of processors are available.

6 CONCLUSION AND FUTURE WORK

This paper addresses the processor allocation problem for
k-ary n-cube systems. Most of the prior research has been
based on slice partitioning, which divides a system
topology into a number of lower dimensional slices.
However, they suffer from internal fragmentation due to
the partitioned cube size limitation. More recently, several
allocation algorithms have been proposed based on job-
based partitioning. These algorithms greatly improve the
system performance compared to those based on slice
partitioning, but resort to time-consuming exhaustive

Fig. 11. Mean response time with noncubic job requests on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube.

Fig. 12. Numerical delay with noncubic job requests on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube.

Fig. 13. Topological delay with noncubic job requests on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube.

search. In contrast, our proposed isomorphic partitioning
efficiently divides a system into the same dimensional
subcubes so that the external as well as internal fragmenta

tion are minimized. Simulation study shows the isomorphic
allocation strategy outperforms all existing methods. More

over, the resulting partitions are characterized by the same
order of dimension as the whole system and, thus, retain
the advantages of a high order architecture. We also
extended the isomorphic allocation strategy to handle cubic
and noncubic jobs and showed that it can also be applied to
cubic architectures.

The isomorphic partitioning mechanism is a novel
method for partitioning a k-ary n-cube topology. Allocation
on other interconnection networks, such as meshes, can also
be improved with the proposed isomorphic partitioning. In-
depth study of numerical and topological delay will be
interesting and may allow for a better understanding of the
behavior of the processor allocation algorithms. As a future
work, we plan to study an adaptive solution which uses a
time efficient and space efficient adaptive algorithm
depending on load intensity and workload distribution.
Since the status bitmaps are created and relinquished
dynamically as needed, they can be managed indepen
dently via separate Hypercube_Request and Hypercube
_Release procedure. For example, one bitmap can be
managed by a Buddy scheme while the other bitmap by a

space efficient scheme. When there are many large jobs and
few small jobs, the higher dimensional subcubes need to be
managed by a space efficient scheme while the lower
dimensional subcubes are better managed by a time efficient
Buddy scheme.

ACKNOWLEDGMENTS

This research was supported in part by the Korean
Ministry of Information and Communication under Grant
No. 2000-S-057. The valuable comments made by the
referees are gratefully acknowledged.

REFERENCES
[1]	 M.S. Chen and K.G. Shin, “Processor Allocation in an N-Cube

Multiprocessor Using Gray Codes,” IEEE Trans. Computers, vol. 36,
no. 12, pp. 1396-1407, Dec. 1987.

[2]	 J. Kim, C.R. Das, and W. Lin, “A Top-Down Processor Allocation
Scheme for Hypercube Computers,” IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 1, pp. 20-30, Jan. 1991.

[3]	 S. Dutt and J.P. Hayes, “Subcube Allocation in Hypercube
Computers,” IEEE Trans. Computers, vol. 40, no. 3, pp. 341-352,
Mar. 1991.

[4]	 P.J. Chuang and N.F. Tzeng, “A Fast Recognition-Complete
Processor Allocation Strategy for Hypercube Computers,” IEEE
Trans. Computers, vol. 41, no. 4, pp. 467-479, Apr. 1992.

[5]	 C. Yu and C.R. Das, “Limit Allocation: An Efficient Processor
Management Scheme for Hypercubes,” Proc. Int’l Conf. Parallel
Processing, pp. 143-150, 1994.

[6]	 C. Chang and P. Mohapatra, “Improving Performance of Mesh
Connected Multicomputers by Reducing Fragmentation,”
J. Parallel and Distributed Computing, July 1998.

[7]	 S-M. Yoo, H.Y. Yoon, and B. Shiraz, “An Efficient Task Allocation
Strategies for 2D Mesh Architectures,” IEEE Trans. Parallel and
Distributed Systems, vol. 8, no. 9, pp. 934-942, Sept. 1997.

[8]	 D.D. Sharma and D.K. Pradhan, “Job Scheduling in Mesh
Multicomputers,” IEEE Trans. Parallel and Distributed Systems,
vol. 9, no. 1, pp. 57-70, Jan. 1998.

[9]	 G. Kim and H.Y. Yoon, “On Submesh Allocation for Mesh
Multicomputers: A Best-Fit Allocation and a Virtual Submesh
Allocation for Faulty Meshes,” IEEE Trans. Parallel and Distributed
Systems, vol. 9, no. 2, pp. 175-185, Feb. 1998.

[10]	 W.J. Dally, “Performance Analysis of k-Ary n-Cube Interconnec
tion Networks,” IEEE Trans. Computers, vol. 39, no. 6, pp. 775-785,
June 1990.

[11]	 A. Agarwal, “Limits on Interconnection Network Performance,”
IEEE Trans. Parallel and Distributed Systems, vol. 2, pp. 398-412, Oct.
1991.

[12]	 P. Ramanathan and S. Chalasani, “Resource Placement with
Multiple Adjacency Constrains in k-Ary n-Cubes,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 5, pp. 511-519, May 1995.

[13]	 B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, “Lee Distance and
Topological Properties of k-Ary n-Cubes,” IEEE Trans. Computers,
vol. 44, no. 8, pp. 1021-1030, Aug. 1995.

[14]	 K. Day and A.E. Al-Ayyoub, “Fault Diameter of k-Ary n-Cube
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no.
9, pp. 903-907, Sept. 1997.

[15]	 D.K. Panda, S. Singal, and R. Kesavan, “Multidestination Message
Passing in Wormhole k-Ary n-Cube Networks with Base Routing
Conformed Paths,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 1, pp. 76-96, Jan. 1999.

[16]	 V. Gautam and V. Chaudhary, “Subcube Allocation Strategies in a
K-Ary N-Cube,” Proc. Int’l Conf. Parallel and Distributed Computing
and Systems, pp. 141-146, 1993.

[17]	 G. Dommety, V. Chaudhary, and B. Sabata, “Strategies for
Processor Allocation in k-Ary n-Cubes,” Proc. Int’l Conf. Parallel
and Distributed Computing and Systems, pp. 216-221, 1995.

[18]	 K. Windisch, V. Lo, and B. Bose, “Contiguous and Non-
Contiguous Processor Allocation Algorithms for k-Ary n-Cubes,”
Proc. Int’l Conf. Parallel Processing, 1995.

[19]	 H.L. Chen and C.T. King, “Efficient Dynamic Processor Allocation
for k-Ary n-Cube Massive Parallel Processors,” Computers Math.
Applications, pp. 59-73, 1997.

[20]	 P.J. Chuang and C.M. Wu, “An Efficient Recognition-Complete
Processor Allocation Strategy for k-Ary n-Cube Multiprocessors,”
IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 5, pp. 485
490, May 2000.

[21]	 Mesquite Software, Inc., User’s Guide: CSIM18 Simulation Engine
(C++ Version), 1998.

[22]	 S. Majumdar, D.L. Eager, and R.B. Bunt, “Scheduling in Multi-
programmed Parallel Systems,” Proc. ACM SIGMETRICS Conf.
Measuring and Modeling of Computer Systems, pp. 104-113, 1988.

[23]	 J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan,
“Modeling of Workload in MPPs,” Job Scheduling Strategies for
Parallel Processing, pp. 95-116, 1997.

[24]	 D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P.
Wong, “Theory and Practice in Parallel Job Scheduling,” Job
Scheduling Strategies for Parallel Processing, pp. 1-34, 1997.

[25]	 M. H-Balter and A. Downey, “Exploiting Process Lifetime
Distributions for Dynamic Load Balancing,” Proc. 15th ACM
Symp. Operating Systems Principles, 1995.

[26] M. Kang and C. Yu, “Job-Based Queue Delay Modeling in a Space-
Shared Hypercube,” Proc. ICPP Workshop Parallel Computing,
pp. 313-318, 1999.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

	Cleveland State University
	EngagedScholarship@CSU
	5-2003

	Isomorphic Strategy for Processor Allocation in k-Ary n-Cube Systems
	Moonsoo Kang
	Chansu Yu
	Hee Yong Youn
	Ben Lee
	Myungchul Kim
	Publisher's Statement
	Original Citation
	Repository Citation

	Isomorphic strategy for processor allocation in k-ary n-cube systems - Computers, IEEE Transactions on

