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Isomorphic Strategy for Processor Allocation 
in k-Ary n-Cube Systems 

Moonsoo Kang, Chansu Yu, Member, IEEE, Hee Yong Youn, Senior Member, IEEE,  
Ben Lee, Member, IEEE Computer Society, and Myungchul Kim  

Abstract—Due to its topological generality and flexibility, the k-ary n-cube architecture has been actively researched for various 
applications. However, the processor allocation problem has not been adequately addressed for the k-ary n-cube architecture, even 
though it has been studied extensively for hypercubes and meshes. The earlier k-ary n-cube allocation schemes based on conventional 
slice partitioning suffer from internal fragmentation of processors. In contrast, algorithms based on job-based partitioning alleviate the 
fragmentation problem but require higher time complexity. This paper proposes a new allocation scheme based on isomorphic 
partitioning, where the processor space is partitioned into higher dimensional isomorphic subcubes. The proposed scheme minimizes 
the fragmentation problem and is general in the sense that any size request can be supported and the host architecture need not be 
isomorphic. Extensive simulation study reveals that the proposed scheme significantly outperforms earlier schemes in terms of mean 
response time for practical size k-ary and n-cube architectures. The simulation results also show that reduction of external 
fragmentation is more substantial than internal fragmentation with the proposed scheme. 

Index Terms—k-ary n-cube, processor allocation, job scheduling, partitioning, performance evaluation.

 

1 INTRODUCTION 

EXECUTING an incoming task on a parallel computer hypercubes) and the number of processors in each dimen­
system requires decomposing the task into subtasks and sion (as in meshes). However, existing processor allocation 

allocating a set of processors with appropriate connectivity strategies for the k-ary n-cube system either recognize only 
to the subtasks. The processor allocation problem deals with the dimensionality of the subcubes or allow arbitrary 
finding a particular set of processors (or subcube) with the partition sizes at the cost of complex search operations. 
required topology and size. The goal is to maximize the For example, schemes based on slice partitioning [16], [17], 
system utilization by improving the recognizability of [18], which are basically simple extensions of the processor 
subcubes, thereby minimizing fragmentation of processors allocation schemes for hypercubes, partition a higher 

dimensional cube into lower dimensional subcube “slices” within the system. The processor allocation problem has 
with each lower dimension still containing k nodes, i.e., been extensively studied for multicomputer systems with 
only k-ary m-cube subcubes (where m � n) are recognized. hypercube [1], [2], [3], [4], [5] and mesh [6], [7], [8], [9] 
Therefore, allocation of processors to a job request is limited interconnection topologies. However, the problem has not 
to one or more partitions of base-k and the remaining nodes been adequately addressed for the general k-ary n-cube 
are wasted resulting in internal fragmentation. On the other network, even though it has been extensively studied [10], 
hand, processor allocation schemes based on job-based [11], [12], [13], [14], [15] for parallel computing due to its 
partitioning [16], [19], [20] alleviate the internal fragmenta­topological generality and flexibility. 
tion problem by relaxing the base-k restriction and allowing The processor allocation problem is much more challen­
arbitrary partition sizes. However, these schemes require 

ging for k-ary n-cube networks than hypercubes or meshes 
time-consuming exhaustive search operations to combine 

because reducing fragmentation within the system involves 
external fragmentation of processors caused by dynamic 

recognizing both the dimension of the network (as in 
allocation and deallocation of jobs. 

This paper proposes isomorphic allocation strategy for 
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networks, including symmetry, low node degree (

ing 
extended to recognize 
low diameter (

2n), and 
kn) [13]. Moreover, the proposed strategy is 

semi-isomorphic subcubes by combin­
a number of smaller isomorphic subcubes to handle 
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Fig. 1. Slice and job-based allocation strategies on an 8-ary 3-cube system. (a) With slice partitioning. (b) With job-based partitioning. 

incoming job requests of arbitrary topologies. Finally, the 
proposed strategy is also applied to systems that are not 
k-ary n-cube. This is important in practice since, for 
example, Cray T3D/T3E uses a three-dimensional torus 
network but the sizes of the three dimensions are different. 

The main contributions of this paper are two-fold: First, 
the Isomorphic allocation strategy is specifically targeted 
for the k-ary n-cube topology. That is, unlike existing 
strategies that are basically hypercube allocation algorithms 
extended to larger sizes or mesh allocation algorithms 
extended to higher dimensions, the proposed method 
exploits the unique topological characteristics of k-ary 
n-cube. It is also general in the sense that any size requests 
can be supported and the host system need not be k-ary 
n-cube. Second, a new way of representing the k-ary n-cube 
network within a graph theory framework is formalized. 
We believe the new formalism can be used in other research 
areas, such as routing, for k-ary n-cube systems. 

We evaluate and compare the performance of the 
proposed isomorphic allocation strategy with four existing 
allocation schemes using CSIM simulation package [21]. In 
terms of mean response time, the proposed strategy sig­
nificantly outperforms the allocation schemes based on slice 
partitioning. Comparison with the schemes employing the 
job-based partitioning approach shows that the Isomorphic 
allocation strategy improves the response time by 7% � 
49% depending on system size and workload distribution. 

More importantly, it is shown to be scalable, i.e., it exhibits 
consistent performance irrespective of the system size. 

The rest of the paper is organized as follows: Section 2 
presents the earlier allocation algorithms for k-ary n-cube 
systems. In Section 3, a formal framework for describing a 
k-ary n-cube and its partitioning mechanisms is introduced. 
Section 4 presents the isomorphic allocation strategy and its 
extensions. Section 5 evaluates the performance of the 
proposed scheme using simulation and compares it with 
earlier schemes. Finally, conclusions and future work are 
discussed in Section 6. 

2 BACKGROUND AND RELATED WORK 

This section overviews allocation algorithms proposed for 
k-ary n-cube systems. As discussed previously, there are 
two types of allocation algorithms. Extended Buddy (EB), 
Extended Gray Code (EGC) [16], [17], k-ary Partner [18], and 
Multiple Gray Code (Multiple GC) [17] algorithms are based 
on slice partitioning. Job-based partitioning is employed in 
Sniffing [16], Extended Free List (EFL) [19], and Extended Tree 
Collapsing (ETC) [20]. 

EB and EGC algorithms are extended versions of the 
hypercube algorithms, Buddy and Gray Code [1], respec­
tively. Fig. 1a illustrates an example of allocating a 4-ary 
2-cube job request in an 8-ary 3-cube system. With the slice 
partitioning, one 8-ary 2-cube partition of 64 processors is 
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allocated since only 8-ary subcubes are recognized and, 
thus, the remaining 48 processors are wasted. This partition 
size limitation is an inherent problem with the underlying 
slice partitioning. More importantly, links as well as 
processors are underutilized. Unless the whole 8 x 8 x 8 
cube is used for one large job, communication cannot occur 
between the partitioned 8 x 8 slices. All the links along one 
dimension would be wasted, which accounts for one third 
of the total number of links. Another major drawback with 
the slice partitioning is it does not exploit the topological 
advantages of higher order architecture. For example, the 
nodes in an 8 x 1 slice (eight nodes) have longer internode 
distance compared to the nodes in a 2-ary 3-cube 
(eight nodes). The time complexity of the allocation 
procedure is OðknÞ for a k-ary n-cube system since the 
availability of the processors in all possible directions is 
checked. Deallocation procedure takes OðkmÞ for releasing a 
k-ary m-cube job. 

k-ary Partner and Multiple GC algorithms enhance the 
subcube recognition ability over EB and EGC. They utilize 
the fragmented nodes to form a slice along the other 
dimensions, as shown on the right side of Fig. 1a. k-ary 
Partner and Multiple GC algorithms require the same time 
complexity as EB and EGC algorithms, i.e., OðknÞ for 
allocation and OðkmÞ for deallocation of a k-ary m-cube job. 

In contrast, job-based partitioning addresses the internal 
fragmentation problem by allowing arbitrary partition sizes 
rather than restricting them to base-k. Fig. 1b shows an 
example of allocating a 4-ary 2-cube job request in an 8-ary 
3-cube system using job-based partitioning. The allocation 
algorithms based on this approach search the processor 
space to find an available subcube for the job by sliding a 
4 x 4 window frame. For example, the Sniffing algorithm 

2checks 16 (ð8 - 4Þ ) window positions per 8-ary 2-cube 
plane, totaling 128 (16 x 8) positions for all eight planes, as 
shown on the left side of Fig. 1b. In general, for an l-ary 
m-cube job request in a k-ary n-cube system, the number of 

mpositions per k-ary m-cube plane is ðk- lÞ . The total 
number of window positions to check amounts to ðk-
m n-m n-m nlÞ k for all k planes and is bounded by k (when 

k » l). Thus, the allocation complexity of the Sniffing 
mstrategy is OðknlmÞ [16], where the last term l accounts 

for the availability check of the lm processors. Deallocation 
mof an l-ary m-cube job frees l processors and, thus, the 

deallocation complexity of the Sniffing strategy is OðlmÞ 
because the corresponding lm bits must be reset. 

EFL and ETC algorithms improve the subcube recogni­
tion ability of the Sniffing strategy by including the cases 
where a 4-ary 2-cube job is assigned along the other 
dimensions as shown on the right side of Fig. 1b. Here, 
the total number of window positions is n (i.e., three) times 
of the Sniffing strategy. In general, the allocation complexity 
of the ETC algorithm is    

n nlmO k
m

for an l-ary m-cube job, where the combination term 
accounts for the selection of m dimensions out of n since 
the m-cube job can be allocated to any m-dimensional plane. 
This high time complexity is not surprising because all 

possible positions are exhaustively checked. In addition to 
the large amount of allocation time, job response time may 
increase due to external fragmentation of processors. The 
deallocation complexity of the ETC strategy for an l-ary 
m-cube job is also OðlmÞ because the corresponding lm bits 
must be reset as in the Sniffing strategy. Section 4.4 
summarizes and compares the complexitites of the above-
mentioned algorithms as well as the proposed Isomorphic 
algorithm 

3 PRELIMINARIES 

This section presents the formal description of the slice and 
isomorphic partitioning for k-ary n-cube networks. 

A k-ary n-cube, which is denoted as Qk , has kn nodes, each n

of which can be identified by an n-tuple ðan-1; · · · ; a1; a0Þ of 
radix k, where ai represents the node’s position in the ith 
direction. Let �k be the alphabet f0; 1; 2; · · · ; k- 1g and �k ben 
the set of all sequences of the elements in �k of length n. 
Then, ai 2 �k and the set of the nodes of Qk can be n 
represented by �k . Here, nodes ða 1; · · · ; a1; a0Þ and n n-

0 ða 1; · · · ; a0 1; a0 Þ are connected if and only if there exists i,n- 0 
0 0 0 i n- 1, such that ai ¼ ai ± 1 and aj ¼ aj for j 6¼ i if 

wrap-around links are not considered. 
Given two graphs A ¼ ðV1; E1Þ and B ¼ ðV2; E2Þ, the cross 

product A0B ¼ ðV ;EÞ is defined by [13] 

V ¼ fða; bÞ j a 2 V1; b 2 V2g and 
0E ¼ fða; bÞ; ða 0; b0Þ j ða ¼ a and ðb; b0Þ 2 E2Þ 

or ðb ¼ b0 and ða; a0Þ 2 E1Þg: 

A cross product of an n-dimensional graph A and an 
m-dimensional graph B produces an ðnþmÞ-dimensional 
graph. With a ¼ ðan-1; · · · ; a1; a0Þ 2 �n and 

b ¼ ðbm-1; · · · ; b1; b0Þ 2 �m; 

a node ða; bÞ in A0B can be represented by an ðnþ
mÞ-tuple ðan-1; · · · ; a1; a0; bm-1; · · · ; b1; b0Þ 2 �ðnþmÞ. In short, 
the cross product A0B stretches the graph A along the 
dimnensions of graph B. 

In order to define a Qk using the cross product, consider n 
a graph Lk that has k nodes and ðk- 1Þ edges, where the 
k nodes form a linear array and each node is connected to 
two nearby nodes without a wraparound edge. Thus, Lk is a 
one-dimensional (1D) array, Lk 0 Lk is a 2D mesh, and Lk 0 
Lk 0 Lk is a 3D mesh. Similarly, Qk can be defined by a n 
cross product of n Lks [13].1 That is 

Qk ¼ Lk 0 Lk 0 · · · 0 Lk : n |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times 

Instead of assuming k is a power of 2, a 2k-ary n-cube is 
considered. It is represented as 

Q2k ¼ L2k 0 L2k 0 · · · 0 L2k : n |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times 

1. Here, we do not include wraparound edges and the resulting Qk is a n 
mesh. In [13], Lk is a cycle which has wraparound edges, and the 
corresponding Qk is a torus. n 



� �

� �
�

�

�

�

Fig. 2. Partitioning mechanisms of an 8-ary 3-cube system. (a) Slice partitioning of an 8-ary 3-cube (8 x 8 x 8). (b) Isomorphic partitioning of an 8-ary 
3-cube (8 x 8 x 8). 

The slice partitioning corresponds to the above-mentioned 
Q2k 

construction process of an n-dimensional from one-n 
dimensional L2k but in the reverse direction (this is depicted 
in Fig. 2a). In other words, a higher order cube is recursively 
partitioned into a number of lower dimensional subcubes. In 
the figure, Q8 ¼ Q8 0 L8, Q8 ¼ Q8 0 L8, and Q8 ¼ Q8 0 L8.3 2 2 1 1 0 

Now, an alternative way of defining a Q2k 
is based on the n 

dot product, where two graphs are multiplied to produce a 
larger graph but with the same order of dimension as that of 
its two subgraphs. Given two n-dimensional graphs, A ¼ 
ðV1; E1Þ and B ¼ ðV2; E2Þ, the dot product A 8B ¼ ðV ;EÞ is 
defined by 

V ¼ fða; bÞ j  a 2 V1; b  2 V2g 
and E ¼ fða; bÞ; ða 0; b0Þ j 9i; 0 i n - 1; 

0 0such that aibi ¼ a b0 ± 1 and ajbj ¼ a b0 for  j  6¼ ig:i i j j 

Notice that a node ða; bÞ in the dot product is also represented 
by an n-tuple ðan-1bn-1; · · · ; a1b1; a0b0Þ, where each compo­
nent aibi is a concatenation of two subcomponents ai and bi. If  
we assume the two n-dimensional graphs A and B are 2k-ary 
and 2l-ary, then ai and bi are k-bit and l-bit binary numbers, 
respectively. Thus, aibi is a ðk þ lÞ-bit binary number and 
A 8B is a ðk þ lÞ-ary n-dimensional graph. The sets of the 

k lnodes in A and B are and , respectively, and that of n n
ðkþlÞA 8B is . Informally, a dot product A 8B can be drawn n 

by replacing each node of A with graph B. 
In order to define a Q2k 

using the dot product, consider n 
an n-dimensional binary hypercube Hn. A node in Hn is 
represented by a binary n-tuple, ðan-1; · · · ; a1; a0Þ, where 

2ai 2 . A node in Hn 8Hn can be denoted by a 4-ary 
0 0 0 2n-tuple, ðan-1a 1; · · · ; a1a1; a0a Þ, where  ai; a0 2 and n- 0 i 

0 4aia 2 . Thus, Hn 8Hn is a 4-ary hypercube and Hn 8i 
Hn 8Hn is an 8-ary hypercube. Similarly, 

Q2k ¼ Hn 8Hn 8 · · · 8Hn : n |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times 

Equivalently, Q2k 
can also be represented by Q2k-1 8Hn,n n 

recursively. In other words, Q2k 
can be partitioned into 2n 

n 
number of Q2k-1 

’s because Hn has 2n nodes. We call this n 
isomorphic partitioning because each partition Q2k-1 

or n 

2k-1 1 x · · · x 2k-|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times 

keeps the same order of dimension (n) and, therefore, 
retains the topological advantages of a higher dimensional 
cube. Graphical representation of the Isomorphic partition­
ing is shown in Fig. 2b. In the figure, Q8 ¼ Q8 8H3,3 2 
Q8 ¼ Q8 8H3, and Q8 ¼ Q8 8H3.2 1 1 0 

4 ISOMORPHIC ALLOCATION STRATEGY 

Based on the above-mentioned discussion, we now intro­
Q2k 

duce the isomorphic allocation strategy for . The basicn 
allocation strategy in Section 4.1 produces isomorphic 
subcube partitions only and thus restricts the job requests 
to be isomorphic (Q2a 

). Section 4.2 relaxes the job sizen 
restriction to allocate cubic job requests in the form of 

12an- x · · · x 2a1 x 2a0 . (An isomorphic job is considered a 
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Fig. 3. Representation of the isomorphic partitioning of Q8. (a) Subcubes in Q8. (b) 4-ary tree representation of Q8
2.2 2

cubic job, where ai ¼ a for all i.) It is further extended to 
allocate noncubic jobs in the form of ln-1 x · · · x l1 x l0, where 
li is not necessarily a power of two. Processor allocation in 

1cubic systems in the form of 2kn- x · · · x 2k1 x 2k0 is also 
considered in Section 4.3. This is important in practice since 
a system may not always be k-ary n-cube. For example, a 
Cray T3D/T3E uses a three-dimensional torus as the 
internal interconnection, but the sizes of the three dimen­
sions are usually different mainly due to the packaging 
problem. Finally, Section 4.4 presents the algorithm com­
plexity of the isomorphic allocation strategy and compares 
with that of previous allocation algorithms. 

Throughout the paper, the basic as well as the extended 
algorithms are collectively referred to as isomorphic 
allocation strategy. When the types of job requests are all 
isomorphic, the basic algorithm in Section 4.1 is used. But, if 
some jobs require nonisomorphic cubic partitions, the 
extended algorithm in Section 4.2 is employed. 

4.1	 Isomorphic Allocation Strategy for 
Isomorphic Jobs 

This subsection presents the basic isomorphic allocation 
strategy for isomorphic jobs. It assigns a subcube partition 
to a job requesting a 2a-ary n-cube in a 2k-ary n-cube system, 
where a k. First, we consider how addresses are assigned 
to a subcube partition generated by the Isomorphic 
allocation strategy. Fig. 3a shows the subcubes in an 8-ary 
2-cube system (8 x 8 mesh). They can also be described by a 
2n-ary tree (4-ary tree in this example) with k partition steps 
(three steps in this case), as in Fig. 3b. 

Consider a subcube A consisting of one node whose 
address is ð3; 5Þ in Fig. 3. (Note that the digits are ordered 
from right to left, i.e., ða1; a0Þ.) A binary representation of 
the node is ð011; 101Þ. Since Q8

2 ¼ H2 8H2 8H2, the node 
can alternatively be represented by ðð0; 1Þ; ð1; 0Þ; ð1; 1ÞÞ, 
where ð0; 1Þ is the address of the node in the first subgraph 
H2, ð1; 0Þ is the one in the second H2, and ð1; 1Þ is the one in 
the third H2. In other words, the subcube A can be 
addressed by selecting ð0; 1Þ Q4 subcube after the first2 
partition step, ð1; 0Þ Q2 subcube after the second partition 2 
step, and, finally, ð1; 1Þ Q1 subcube after the third partition 2 
step. Similarly, subcube B in Fig. 3 can be identified by 
ðð1; 0Þ; ð1; 1ÞÞ ¼ ð11; 01Þ ¼ ð11*; 01*Þ. 

In general, a node in a 2k-ary n-cube, Q2k 
, is denoted by n 

an n-tuple ðan-1; · · · ; a1; a0Þ, where ai 2 2k 
. We can also 

denote the node in a full binary representation as   
ð1Þ ð2Þ ðkÞ ð1Þ ð2Þ ðkÞ ð1Þ ð2Þ ðkÞ 

a 1a 1 · · · a 1; · · · ; a  a · · · a ; a  a · · · a ;n- n- n- 1 1 1 0 0 0

ðjÞ 2where a 2 . The superscript j in each binary number i 
denotes the partition step in which the binary number plays 
its role. As discussed in Section 3, each of k dot products 
contributes one binary digit in all dimensions by concate­
nating the subgraphs. We can, therefore, alternatively 
represent it as     

ð1Þ ð1Þ ð1Þ ð2Þ ð2Þ ð2Þ 
a 1; · · · ; a ; a  ; a 1; · · · ; a ; a  ;n- 1 0 n- 1 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st n-tuple 2nd n-tuple   
ðkÞ ðkÞ ðkÞ · · · ;	 a · · · ; a ; a  : n-1; 1 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k-th n-tuple

Similarly, a subcube Q2a 
can be represented by an n-tuple,n  

ð1Þ ð2Þ ðk-aÞ ð1Þ ð2Þ ðk-aÞ 
a 1a 1 · · · an- * · · · *; · · · ; a1 a · · · a1 * · · · *;n- n- 1 |fflffl{zfflffl} 1 |fflffl{zfflffl}

a times	 a times 
ð1Þ ð2Þ ðk-aÞ 

a a · · · a * · · · * ;0 0 0 |fflffl{zfflffl}
a times

or, equivalently,     
ð1Þ ð1Þ ð1Þ ð2Þ ð2Þ ð2Þ 

a 1; · · · ; a  ; a0 ; a · · · ; a  ; a0 ;n- 1 n-1; 1 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st n-tuple 2nd n-tuple 	   
ðk-aÞ ðk-aÞ ðkÞ · · · ;	 an- ; · · · ; a1 ; a0 :1 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðk-aÞth n-tuple

Q2k-1 
It is noted that the first n-tuple identifies one of 2n s n 
which are generated by the first step of the Isomorphic 
partitioning. 

We now consider how to implement the isomorphic 
allocation strategy with the addressing scheme discussed 
above. The Isomorphic allocation strategy maintains a set of 
linked status bitmaps and free lists, as shown in Fig. 4. Each 
status bitmap is 2n-bit wide (4-bit in this case) and it 



Fig. 4. Implementation of isomorphic allocation strategy with free lists and status bitmaps. 

indicates the availability of its children subcubes or nodes. 
The tree structure in Fig. 3b is maintained by links between 
the bitmaps. The figure also shows another important data 
structure managing free and busy subcubes. A free list Fa·n 
is a linked list of free subcubes of Q2a 

n 

ð2a x 2a x · · · x 2aÞ:|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times 

In this example, they are F3·2, F2·2, F1·2, and F0·2 which 
maintains available isomorphic subcubes of Q2

2

3 
, Q2

2

2 
, Q2

2

1 
, 

and Q20 
, respectively. 2 

The isomorphic allocation strategy is summarized in 
Algorithm 1 (Fig. 5), which allocates isomorphic requests 
(Q2a 

), having the same cubic lengths in all n dimensions. n 
The Release algorithm is used when a job finishes its 
execution. Since the released subcube has ð2n - 1Þ siblings 
or buddies, it is necessary to check if they are all free and 
can be merged. 

The Isomorphic allocation strategy is statically optimal, 
which means that any sequence of isomorphic requests can 
be accommodated if the sum of the request sizes is not 

larger than the system size and a static environment is 
assumed (i.e., the assigned nodes are not deallocated). 
Therefore, it is able to allocate resources as compact as 
possible so that a large future request can possibly be 
accommodated. We omit the proof here because the proof 
steps are almost the same as those of the free list-based 
allocation algorithm developed for hypercubes [2]. 

4.2	 Isomorphic Allocation Strategy for Cubic and 
Noncubic Jobs 

The basic Isomorphic allocation strategy presented in the 
previous subsection restricts the job request to be iso­
morphic (Q2a 

). This subsection extends the basic allocation n 
strategy to handle cubic jobs by introducing subpartitions 
between any two subsequent levels of partitions. For 
example, if an incoming job requests 2 x 2 x 4 in an 8-ary 
3-cube, the basic allocation strategy tries to allocate a 4 x 
4 x 4 partition consisting of eight 2 x 2 x 2 subpartitions 
and, thus, a large number of nodes are wasted. The purpose 
of the extended strategy is to assign two 2 x 2 x 2 subparti­
tions instead of all eight, making it more space efficient. In 

Fig. 5. Algorithm 1: Isomorphic allocation strategy for isomorphic jobs. 
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Fig. 6. Isomorphic allocation strategy for cubic jobs in an 8-ary 3-cube system. (a) First partition step. (b) Second partition step. 

order to manage the subpartitions efficiently, the subparti­
tions are considered as nodes of a three-dimensional 
hypercube. A hypercube allocation algorithm (e.g., Buddy 
scheme [1], Gray Code [1], or Free List [2]) can be used to 
manage the subpartitions. Fig. 6 shows subpartitioning of an 
isomorphic subcube using the Buddy scheme. 

In Fig. 6, notice that subpartition steps produce semi­
1isomorphic subcubes in the form of 2an- x · · · x 2a1 x 2a0 , 

where j ai - aj j� 1 for all i and j, meaning the lengths of 
the dimensions need not be the same but different by at 

1most one. For a cubic job requesting a 2an- x · · · x 2a1 x 2a0 

subcube partition, the extended allocation strategy first 
adjusts the spatial pattern of the subcube to yield an 
equivalent semi-isomorphic subcube. For example, if an 
incoming job requests a 2 x 2 x 8 partition, it is adjusted 
and allocated a 2 x 4 x 4 partition.2 

1In general, the 2an- x · · · x 2a1 x 2a0 subcube partition is 
translated into 

2a x · · · x 2a x 2aþ1 x · · · x 2aþ1 ;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn-lÞ times l times 

n-1 n-1where a ¼ ð  i¼0 aiÞ div n and l ¼ ð  i¼0 aiÞ mod n. The job 
requires a partition larger than Q2a 

but smaller than Q2aþ1 

n n 
nþl Q2a 

and includes 2a· nodes. Thus, 2l number of n 
2n Q2aþ1 

subcubes among subcubes in a need to ben 
merged, e.g., using the Buddy scheme, to accommodate 
the job. (It is equivalent to allocate an l-cube in an n-cube 
hypercube using the Buddy scheme.) In other words, the 
Isomorphic allocation strategy searches the free list Fa·n to 
find 2l available subcubes according to the hypercube 
allocation strategy employed (Hypercube_Request and 

2. The adjustment is, in essence, to “fold” a partition along the longest 
dimension. The folding process is simple and straightforward if we use the 
logical node numbers. Moreover, it improves performance by reducing the 
internode distance. 

Hypercube_Release
3 procedures). Algorithm 2 (Fig. 7) 

shows the necessary steps for the Isomorphic allocation 
strategy for cubic jobs. 

The isomorphic allocation strategy described above is 
further extended to allocate noncubic jobs, where the size of 
each dimension of a job request is not necessarily a power of 
two. Suppose that a job requests a 3 x 5 mesh, the 
isomorphic allocation strategy for noncubic jobs tries to 

x 2dlog25eallocate a subcube of size 2dlog23e or 4 x 8. Fifteen 
processors are allocated, but the remaining 17 processors 
are released for future jobs. In general, for an ln-1 x · · · x  

1el1 x l0 job, the allocation strategy allocates a 2dlog2ln- x · · · x  
2dlog2l1e x 2dlog2l0e subcube (in fact, an equivalent semi-

isomorphic subcube) and deallocates the rest of the 
processors for later use. 

One major drawback of this algorithm is that it may 
search for an overly larger subcube than requested while 
many subpartitions of the subcube will be deallocated 
immediately. For a 3 x 5 request, it searches for a 4 x 8 
subcube, the size of which is more than double the 
requested size. The problem can be addressed by dividing 
the request into a set of cubic requests and trying to allocate 
a set of connected subcubes instead of a larger subcube. For 
example, a 3 x 5 request is considered as a combination of 
four cubic requests, 2 x 4, 2 x 1, 1 x 4, and 1 x 1. More 
enhancements are possible if the set of cubic requests is 
translated into a set of semi-isomorphic requests. The third 
subcube 1 x 4 becomes 2 x 2 and, thus, the combined 
request can be fit into a 4 x 4 subcube resulting in reduced 
fragmentation. We do not discuss the details of this 
extension but leave it as a future work. 

3. In this paper, we will refer to partition (allocation) and combine 
(deallocation) procedure for the hypercube algorithms as Hypercube_Re­
quest and Hypercube_Release, respectively. The Buddy scheme is the 
simplest but it does not always recognize a subcube even though one exists, 
mainly due to fragmentation. Gray code algorithm provides better subcube 
recognition ability [5]. 
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Fig. 7. Algorithm 2: isomorphic allocation strategy for cubic jobs. 

4.3	 Isomorphic Allocation Strategy for 
Cubic Systems 

The isomorphic allocation strategy for cubic jobs (Algo­
rithm 2) can also be applicable to cubic systems in the 

n-1form of 2k x · · · x 2k1 x 2k0 (kn-1 · · ·  k1 k0). In 
such a system, each node is denoted by an n-tuple 
ðan-1; · · · ; a1; a0Þ. Here, ai, the node’s position in the ith 
direction, is base 2ki , which can be represented by a ki-digit 
binary number. We can also denote a node’s full binary 
representation as 

ðk0 -kn-1þ1Þ ðk0Þ ðk0 -k1þ1Þ ðk0Þ ð1Þ ðk0Þ a · · · a ; · · · ; a  · · · a ; a  · · · a ;n-1 n-1 1 1 0 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
kn-1 times k1 times k0 times 

where a ðjÞ 2 2. For example, a node in 22 x 22 x 24 systemi 
can be represented by ða2; a1; a0Þ, where a2; a1 2 22 

and 

a0 2 24 
, as shown in Fig. 8. The binary representation is 

given by 

ð3Þ ð4Þ ð3Þ ð4Þ ð1Þ ð2Þ ð3Þ ð4Þ 
a a ; a a ; a a a a :2 2 1 1 0 0 0 0 

Rearranging the representation in the order of partition 
step, it is equivalent to 

ð1Þ ð2Þ ð3Þ ð3Þ ð3Þ ð4Þ ð4Þ ð4Þ 
a0 ; a  ; a2 ; a  ; a0 ; a  ; a1 ; a  :0 1 2 0 

The system is partitioned along the longest dimension first 
so that each subcube becomes more isomorphic. As shown 
in Fig. 8, the first partition step is based on the binary 

ð1Þ
number a and, thus, the system is simply partitioned into 0 
two subsystems. This is the same for the second partition 

ð3Þ
step. For the third partition step, three binary numbers a ,2 

Fig. 8. Isomorphic allocation strategy on a cubic system. 



TABLE 1 
Algorithm Complexities for Allocating a Q2l Job on a Q2k 

System (2a·nþl-Ary m-Cube Job in Case of Algorithm 2)m n 

ð3Þ ð3Þ 
a1 , and a along the three different dimensions play their 0 
roles and, thus, the system is partitioned into eight 
subsystems. This is also the same for the fourth partition 
step. In the first and second partition steps, one-bit bitmaps 
for managing an 1-cube hypercube are used. For the third 
and fourth step, 8-bit bitmaps are used for managing 3-cube 
hypercubes. 

4.4	 Complexity Analysis of the 
Isomorphic Allocation Algorithms 

This subsection analyzes the time and space complexity of 
the isomorphic allocation algorithms when allocating and 
deallocating an Q2l job on a Q2k 

system.m n 
The Request Step 1 in Algorithm 1 (isomorphic 

allocation algorithm for isomorphic jobs) takes Oð1Þ and 
Step 2 takes OðkÞ because the allocator searches at most 
k free lists. Subcube decomposition process in Step 3 takes 
at most OðkÞ since, in the worst case, the largest possible 
subcube (Q2k 

) is recursively decomposed until a Q2a 
subcube n	 n 

is obtained. Therefore, the time complexity of allocation is 
OðkÞ. Deallocation also requires OðkÞ time assuming that the 
number of free subcubes is maintained for each free list Fa·n. 
The Release Steps 1 and 2 take Oð1Þ, but Step 3 is repeated 
at most k times. 

The time complexity of Algorithm 2 (isomorphic 
allocation algorithm for cubic jobs) depends on the 
hypercube allocation algorithm employed (Hypercube 
_Request and Hypercube_Release). Here, the simple 
Buddy scheme is assumed as it is used in the performance 
evaluation study in Section 5. In the Buddy scheme, 2n 

allocation bits are used to keep track of the availability of 
nodes for an n-cube hypercube. The time complexities of the 
allocation (Hypercube_Request) and deallocation (Hy­
percube_Release) of an  l-cube job are Oð2nÞ and Oð2lÞ, 
respectively. In Algorithm 2, for each free list Fa·n, 2n 

allocation bits are used to keep track of the free subcubes 
(Q2a 

).n 
The Request Step 1 in Algorithm 2 takes Oð1Þ and 

Step 2 takes Oð2nÞ because it calls Hypercube_Request. 
When Fa·n is empty or Step 2 fails, the allocator needs to 
find a higher dimensional subcube, as in Step 3 (OðkÞ), 
decompose it until an ðða þ 1Þ · nÞ-cube is obtained, as in 
Step 4 (OðkÞ), and, finally, calls Hypercube_Request in 
Step 4 (Oð2nÞ). Therefore, the time complexity of allocation 
is Oð2nÞ. Deallocation takes Oðk þ 2lÞ. The Release Step 1 
takes Oð2lÞ due to Hypercube_Release. Step 2 takes Oð1Þ 

because only one subcube (Q2aþ1 
) is released, but it can be n 

repeated k times, as in Step 3. 
The space complexity of the Isomorphic allocation 

algorithm is mainly contributed by the status bitmaps, 
as shown in Fig. 4 in Section 4.1. Status bitmaps of size 2n 

each are used in each partition step to facilitate the 
merging process. In the first partition pass, a single status 

Q2k-1 
bitmap is needed for managing 2n s. In the second n 
pass, there can be 2n bitmaps in the worst case when all of 

Q2k-the 2n 1 
’s are subdivided. Since there are a total of n 

-1k passes, the number of status bitmaps amounts to 2kn2n-1 
(¼ 1 þ 2n þ 22n þ · · · þ 2ðk-1Þn) in the worst case. Since each 
status bitmap is 2n wide, the space complexity of the 
Isomorphic algorithm is Oð2knÞ. The  worst case can  
happen when all the jobs require only one processor 
and the system is almost completely utilized. In the 
normal situation, however, the number will be much 
smaller and it depends on the load intensity as well as the 
job size distribution. 

Table 1 summarizes complexity analysis of the iso­
morphic allocation strategy as well as the slice and job-
based allocation algorithms. Note that the expressions in 
Table 1 appear different from those introduced in Section 2 
because a Q2l job on a Q2k 

system is considered instead of a m n 
Ql job on a Qk system. For example, OðknÞ in Section 2 is m n 
equivalent to Oð2knÞ in Table 1. The space complexity of the 
slice and job-based allocation algorithms is Oð2knÞ because 
the processor bitmap of 2kn wide is used in order to keep 
track of the availability of processors. 

5 PERFORMANCE EVALUATION AND COMPARISON 

We evaluated and compared the performance of the 
Isomorphic allocation strategy with other allocation policies 
in the literature using the CSIM simulation package [21]. 
Three simulated schemes based on the slice partitioning are 
EB, EGC [16], [17] and k-ary Partner [18] algorithms, and 
one based on job-based partitioning is ETC [20]. The Buddy 
scheme is employed in the Hypercube_Request and 
Hypercube_Release procedures for the isomorphic 
allocation strategy. In Section 5.1, workload model and 
performance measures are discussed. Simulation results 
with cubic requests are presented in Section 5.2 and those 
with noncubic requests are discussed in Section 5.3. 



5.1 Workload Model and Performance Parameters 
The workload model consists of distribution of job inter-
arrival time, job size (subcube size), and job service 
demand. Job interarrival time and job service demand are 
usually assumed to follow the exponential distribution, but 
different distributions such as bimodal hyper-exponential 
[22], [23], three-stage hyper-exponential [24], and uniform-
log [25] distributions have also been suggested. In this 
paper, we employ a simple but traditional workload model 
since it covers the general operational conditions of parallel 
computer systems, thereby fairly assesses and compares the 
performances of the schemes. In fact, we expect more 
favorable results for the isomorphic allocation strategy 
when the parameters of the workload model vary widely. It 
is because, as will be shown later in Section 5.3 (Figs. 12 and 
13), the main strength of the proposed scheme stems from 
its superior capability in packing subcubes with less 
external fragmentation, which will be more significant in 
the operation environment with a widely varying workload. 
Moreover, the time complexity of the proposed scheme is 
much smaller than others, as discussed in Section 4.4, which 
will allow consistently better performance regardless of 
workload conditions. 

The job arrival pattern in our workload model is assumed 
to follow the Poisson distribution with a rate A. The arrival 
rate (A) is based on the system capacity. This is done to avoid 
saturation by ensuring that the arrival rate to the system 
does not exceed the service rate. Total service demand 
follows an exponential distribution and the mean service 
time is assumed to be one time unit. Job size is cubic and its 
distribution is assumed to be uniform in each dimension. In 
a 24 x 24 x 24 (212 nodes) system, for example, the requested 
partitions take the form of 2a x 2b x 2c. The probability that a 
(b or c) is equal to 0, 1, 2, 3, or 4 is 1 each. Since there is a total 5 

1of 125 cases, the probability of each case is set to . One 125 
thousand jobs per each random number seed were 
generated. With 20 seeds, we observed 20,000 jobs, which 
is sufficient to obtain steady state results. The job size and 
service demand are assumed to be independent, where a 
large job (large subcube) has the same distribution of the 
service demand as that of a small job. 

We measured the mean response time, which is a good 
metric for determining how fast a processor allocation 
strategy responds to incoming job requests. In order to 
understand the performance in more detail, the three 
components of response time were analyzed: service time, 
numerical delay, and topological delay [26]. When a job at the 
head of the job queue fails to be allocated, it is due to one of 
the following three reasons: The number of processors 
needed by the job is not sufficient, there is no empty 
subcube of the requested size in spite of having a sufficient 
number of processors, or the algorithm has no ability to 
recognize the candidate even though one exists. The job will 
be allocated later when all of the busy processors in one of 
the appropriate subcubes are freed. Based on this observa­
tion, we define the numerical delay as the queuing delay 
incurred when the system does not have sufficient number 
of available processors needed by a job, while the 
topological delay is the additional delay experienced when 

Fig. 9. Comparison of mean response time in a Q4 system.3 

there is no available subcube in spite of having a sufficient 
number of processors. After numerical delay, there will be 
enough free processors. However, scattered placement of 
the free processors across several subcubes causes topolo­
gical delay. While the numerical delay depends on the job 
arrival rate and job service time, the topological delay 
depends on how efficiently the allocation algorithm 
manages the processor space. Thus, the topological delay 
can be considered as a measure of the efficiency of an 
allocation algorithm. 

5.2 Simulation Results with Cubic Requests 
Fig. 9 shows the variations in mean response time with 
respect to system utilization for a 4-ary 3-cube (Q4 or3 
22 x 22 x 22). The proposed isomorphic allocation strategy 
outperforms other policies by a considerable margin except 
ETC. EB and EGC show similar performance and their 
performance degrades significantly when the system 
utilization reaches beyond 0.3. The k-ary Partner scheme 
shows better performance than EB and EGC due to its 
superior subcube recognition ability. However, the k-ary 
Partner also exhibits limited performance benefit. This is 
because internal fragmentation is unavoidable with the 
conventional slice partitioning. ETC based on the job-based 
partitioning performs comparably with the proposed 
scheme, as shown in Fig. 9. However, there is an extremely 
high cost to perform an exhaustive search during allocation. 
In addition, the performance improvement for the ETC 
algorithm is observed only for small systems, as we will see 
shortly. 

Next, we analyze in detail the two best performing 
strategies, ETC and the proposed isomorphic allocation 
strategy, for various system sizes. System sizes simulated 
were 4-ary 3-cube (Q4), 8-ary 3-cube (Q8), and 16-ary 3-cube 3 3

(Q16). The response time of ETC allocation algorithm 3 
quickly saturates for larger systems, as shown in Fig. 10b 
and 10c. On a 16-ary 3-cube system, the saturation point 
with ETC is about 50 percent utilization of the maximum 
system capacity. The main cause of the saturation is 
external fragmentation and it becomes more critical as the 
system size grows. In contrast, the isomorphic allocation 
strategy is shown to be scalable, i.e., it exhibits consistent 
performance irrespective of the system size. The use of 
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Fig. 10. Mean response time on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube. 

systematic partitioning in the isomorphic allocation strategy 
results in reduced external fragmentation and thus im­
proves the response time. At 50 percent utilization of the 
maximum system capacity, the isomorphic allocation 
strategy improves the response time as much as 49 percent 
compared to the ETC algorithm. 

5.3 Simulation Results with Noncubic Requests 
This subsection compares the response times of ETC and 
the isomorphic allocation strategy for noncubic job requests. 
We assume that the job size follows the uniform distribu­
tion across all dimensions. For example, in an 8 x 8 x 8 
(29 nodes) system, a job requests a partition of the form of 
l2 x l1 x l0. Since 0 < li 8, the probability that li is equal to 

11; 2; · · · ; 8 is 8 each. For a noncubic job request, the 
isomorphic allocation strategy allocates a semi-isomorphic 
partition and the rest of the processors are deallocated 
immediately. Fig. 11 shows that, for both ETC and the 
isomorphic allocation strategy, the results are far worse 
than those with cubic requests. This is mainly due to 
internal fragmentation. However, the proposed scheme 
shows better performance than ETC. At 40 percent utiliza­
tion of the maximum system capacity, the isomorphic 
allocation strategy improves the response time as much as 
45 percent compared to the ETC algorithm. 

Figs. 12 and 13 show the numerical and topological 
delay, respectively, for ETC and the isomorphic allocation 
strategy. As shown in Fig. 12, the isomorphic allocation 
strategy incurs less numerical delay than ETC. However, 
the difference in the topological delay is much more 
pronounced, as depicted in Fig. 13. This observation leads 
to the conclusion that the isomorphic allocation strategy 
partitions the system architecture more efficiently with less 
external fragmentation and, thus, reduces the topological 
delay. With ETC, the scattered placement of free processors 
increases the topological delay even when a sufficient 
number of processors are available. 

6 CONCLUSION AND FUTURE WORK 

This paper addresses the processor allocation problem for 
k-ary n-cube systems. Most of the prior research has been 
based on slice partitioning, which divides a system 
topology into a number of lower dimensional slices. 
However, they suffer from internal fragmentation due to 
the partitioned cube size limitation. More recently, several 
allocation algorithms have been proposed based on job-
based partitioning. These algorithms greatly improve the 
system performance compared to those based on slice 
partitioning, but resort to time-consuming exhaustive 

Fig. 11. Mean response time with noncubic job requests on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube. 



Fig. 12. Numerical delay with noncubic job requests on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube. 

Fig. 13. Topological delay with noncubic job requests on various system sizes. (a) 4-ary 3-cube. (b) 8-ary 3-cube. (c) 16-ary 3-cube. 

search. In contrast, our proposed isomorphic partitioning 
efficiently divides a system into the same dimensional 
subcubes so that the external as well as internal fragmenta­

tion are minimized. Simulation study shows the isomorphic 
allocation strategy outperforms all existing methods. More­

over, the resulting partitions are characterized by the same 
order of dimension as the whole system and, thus, retain 
the advantages of a high order architecture. We also 
extended the isomorphic allocation strategy to handle cubic 
and noncubic jobs and showed that it can also be applied to 
cubic architectures. 

The isomorphic partitioning mechanism is a novel 
method for partitioning a k-ary n-cube topology. Allocation 
on other interconnection networks, such as meshes, can also 
be improved with the proposed isomorphic partitioning. In-
depth study of numerical and topological delay will be 
interesting and may allow for a better understanding of the 
behavior of the processor allocation algorithms. As a future 
work, we plan to study an adaptive solution which uses a 
time efficient and space efficient adaptive algorithm 
depending on load intensity and workload distribution. 
Since the status bitmaps are created and relinquished 
dynamically as needed, they can be managed indepen­
dently via separate Hypercube_Request and Hypercube 
_Release procedure. For example, one bitmap can be 
managed by a Buddy scheme while the other bitmap by a 

space efficient scheme. When there are many large jobs and 
few small jobs, the higher dimensional subcubes need to be 
managed by a space efficient scheme while the lower 
dimensional subcubes are better managed by a time efficient 
Buddy scheme. 
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