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From linear to nonlinear control means: A practical progress ion 
Zhiqiang Gao* 

DeP.1l'lll Ie/!/ of EJoclI"icai ami Computer Eng ineering. Clel'f~/a/l(1 Slate UlliI'ersily. Cle l'claml, Ohio 44115, USA 

1. Introduction 

The proportiona l-integral-derivative (P ID) based 
existing control technology has been in existence 
for close to 80 years. N. Minorsky first invented it 
in 1922 [I). Ziegler and Nichols provided a set of 
tuning tables that has been used to this day [2]. 
Various control fonns and tuning methods related 
\0 PID have continued \0 appear in literature, see, 
for example [3 - 7]. Nevertheless, the PID is still 
the tool of choice in over 90% of current industrial 
control applications [8]. 

C lassical control theory, particularly the fre-
quency response method, helps control engineers 
10 get helpful insight on how and why feedback 
control system works, as well as how to improve 
il. Modem control theory, from Kalman filters to 
H", control, represents the tremendous progress 

·Tel.: + 1-216-681-3528; fax: +1-216-681-5405. E-mail 
address: z.gao@csuohio.cdu 

made in the last 40 years in mathematical control 
theory. But the level of mathematics required 10 
understand it, the assumptions of linearity and 
time invariance, and its dependency on the math-
ematical model of the physica l plant have limited 
its appeal for most control practitioners . 

Judging from the state of control technology, it 
seems that the development in control theory has 
not been translated to a breakthrough technology. 
In the meanwhile, the control industry has com-
pleted the transition from analog to digital and is 
capable of implementing much more sophisticated 
algorithms than PID. But where is our next gen-
eration control technique that can tap into the 
power of the new digital control hardware? 

This paper proposes a new vision on control 
technology progression. Keep in mind that the 
new technology 

should not be overly dependent on the math-
ematical model since they are often unavail -
able in practice 

mailto:z.gao@csuohio.cdu


•	 needs to provide much better performance at 
low cost 

•	 must be intuitive and simple to implement 

It is in this background that several novel design 
methods are presented here. Some of these ideas, 
such as the use of nonlinear gains, have been uti-
lized, in one form or the other, by practicing engi-
neers as ad hoc solutions but were not systemati-
cally studied. The pioneering work of Professor 
Jingqing Han’s in nonlinear control [9–15] pro-
vided a much needed framework for the study of 
such techniques. 

In the following sections, several novel and 
practical design techniques, including nonlinear 
PID mechanisms and an innovative active distur-
bance rejection scheme, are presented. Practical 
applications are used to demonstrate their applica-
bility and effectiveness. Note that this research is 
by no means complete. Instead, it points to a 
promising new direction of control technology de-
velopment: break out from the constraints of the 
existing control practice and theory, and actively 
explore new control design strategies that are not 
overly dependent on mathematical models. Com-
puter aided design tools, such Matlab/Simulink, 
provide an ideal environment for such endeavors 
where new ideas can be quickly tested. In fact, this 
is how the proposed techniques presented here 
were first developed. 

2. Nonlinear PID control mechanisms 

Engineers have long used various modifications 
of PID, from gain scheduling to fuzzy logic, in 
practice. The nonlinear variations usually provide 
much needed improvements of performance and 
flexibility of the controller. However, the design 
process tends to be tedious and solutions problem 
dependent. In this section, a systematic nonlinear 
PID design approach is proposed. It leads to 
simple, effective, and practical control solutions 
that apply to a wide range of industrial control 
problems. 

2.1. Nonlinear proportional-integral control 

Consider a single integrator plant 

ẏ =w+u ,	 (1) 

with y and u as the output and input, respectively, 
and w as input disturbance. For convenience, the 

equation is written in terms of the error, e=r 
-y , where r is the desired output (constant) 

ė =-w-u . (2) 

The objective is to design a control law such that 
the closed-loop system satisfies e(t)-0, as t 
-0 . In practice, in the presence of the distur-
bance w , a proportional-integral (PI) control is 
usually employed: 

u=Kpe+KI f edt . (3) 

It is well known that the integrator control helps 
to eliminate steady-state error. Unfortunately, it of-
ten causes saturation problems (known as integra-
tor windup) and its 90° phase lag may adversely 
affect system stability. For these reasons, it is not 
uncommon to see that the integral control is gain-
scheduled in practice. For example, a common 
practice is to zero the integral gain during the tran-
sient to prevent overshoot, saturation, and instabil-
ity. This and other variations of PID are the results 
of ingenuities of practicing engineers. But, as con-
trol researchers, can we provide them with a more 
powerful set of tools that are less problematic? Let 
us start the investigation by examining a novel 
building block of a controller: a nonlinear gain. 

2.1.1. Nonlinear proportional control 
Intuitively, the reason integral control helps to 

reduce the steady state error is that it makes the 
controller more sensitive to small errors. This 
compliments the proportional control actions. An 
alternative is to use a nonlinear mechanism in the 
controller that yields higher gain for smaller er-
rors, such as the one below: 

u=K•lela
• sgn(e ), (4) 

which was systematically used by Han [12–14] to 
explore the advantage of nonlinear feedback. The 
sgn(e) function is defined as 

1, e�0 
sgn(e )={ -1, e<0 .  

Note that for a=0 and 1, (4) represents the 
well-known bang-bang control and the linear pro-
portional control, respectively. It is in the case of 
0<a<1 that an interesting phenomenon was ob-
served. The selection of the parameter a is stud-



Fig. 1. Comparison of the linear and nonlinear controllers. 

ied in terms of steady-state error, transient re-
sponse, disturbance rejection, and robustness, as 
shown below. 

2.1.1.1. Steady-state error. For the same gain of 
K=10, when lw0l<1, \t , the steady-state error is 
less than 0.1 for the linear controller with a=1, 
and 0.01 for the nonlinear controller with a 
=1/2. This bound is further reduced to 0.001 with 
a=1/3. In general, as a-0, this bound will ap-
proach zero. 

2.1.1.2. Transient response. With K=10, the tran-
sient responses for a=0, 1/2, 1, are shown in Fig. 
1. Note that the linear control has the slowest re-
sponse because it has a long tail end. This is due to 
its inherent nature of not being sensitive to small 
errors. On the other hand, the bang-bang control 
has the fastest response but the chattering in the 
control signal renders it impractical. The nonlinear 
control with 0<a<1 seems to offer a good bal-
ance. 

2.1.1.3. The choice of gain. Note that from Fig. 1, 
the gain K corresponds to the maximum control 
effort. Since the output never overshoots the tar-
get, the control signal is limited to the range of 
[0,K] , for a>0. That is, the control gain can be 
conveniently chosen from the physical limitation 
of actuator. 

2.1.1.4. Implication in hardware simplifica­
tion. Keeping the control signal always positive is 
quite significant in applications where negative 

Fig. 2. Disturbance rejection comparisons. 

control signal requires a different set of hardware. 
For example, in temperature applications, the posi-
tive control signal means heating and the negative 
one cooling. The above results imply that, with a 
proper control strategy that produces fast response 
without overshoot, the cooling actuator may not 
be needed even for an aggressive control design 
with 0<a<1. In drive applications, it may result 
in a motor drive that never applies the reversed 
torque, which not only helps to save energy, but 
also prolongs the life of motor and other parts in 
the drive train, such as coupling and transmission. 

2.1.1.5. Disturbance rejection. To examine the 
disturbance rejection properties of linear and non-
linear controllers, a disturbance of w(t)=2 
+sin(10t) is introduced. The results are shown in 
Fig. 2 for a=1, 1/2, 1/5. Again, the linear control 
is the least desirable one. 

2.1.1.6. Robustness. Let us examine the robust-
ness of the control law in (4) with respect to the 
dynamic changes in the plant (1). Consider a first 
order system with a time constant T: 

T ẏ =-y+w+u . (5) 

With the same controller (K=10, a=1/2) and the 
disturbance, w0(t)=2+sin(10t), used above, T is 
varied from 0.1 to 1. The results are shown in Fig. 
3. It is demonstrated that the high quality of con-
trol is maintained even though the pole of the sys-
tem shifted significantly. 

2.1.1.7. Remarks. (1) The reason the nonlinear 
controller performs better is that, with 0<a<1, it 



�

Fig. 3. Robustness of the nonlinear controller. 

provides higher gain when error is small and lower 
gain when error is large. It completely agrees with 
the intuition obtained from working with practical 
problems. As a matter of fact, many fuzzy logic 
controllers exhibit this kind of characteristics on 
its error surface. Of course a fuzzy controller is 
much more complicated to implement. (2) The 
above study demonstrates a desirable characteris-
tic of nonlinear control: reducing the steady state 
error in the presence of disturbances does not nec-
essarily require an integral control. This helps to 
enhance the stability margins of the control system 
by eliminating the phase delay associated with in-
tegral control. The control implementation is also 
simplified by removing the anti-windup mecha-
nisms that is used to prevent the integrator from 
saturation. (3) In some applications, the physical 
plant exhibits high gain in certain operating con-
ditions. In this case, the NPID concept should be 
applied so that the combined gain of the controller 
and the process has the shape of Fig. 4. This may 
require that the controller gain be actually small 

Fig. 4. Comparison of linear and nonlinear gains with a 
<1. 

when the error is small, which is evident in the pH 
level regulation problems in process control. 

2.1.2. Stability 
Many industrial control problems, such as the 

drive systems and thermo processes, are approxi-
mately described by first order linear differential 
equation as 

ẏ =-{y+w+bu , (6) 

with {>0 and b>0, and w is the disturbance. 
But, considering many different nonlinear behav-
iors exhibited by physical devices, such as the 
dead zone, the hysteresis, and backlash, and the 
different forms of frictions, a better representation 
is 

ẏ =- f ( y ,w )+bu , (7) 

where f (y ,w) accounts for the nonlinear dynam-
ics and disturbances in the system. 

For the sake of simplicity, the disturbance w is 
ignored in the stability analysis. Note that al-
though f (y) is often unknown in practice, it usu-
ally shares the same sign of y , i.e., y f  (y) 0. Fur-
thermore, the constant b generally has explicit 
physical meanings and is within a certain range. It 
represents an important relationship of how an ac-
tuator affects the system dynamically. For ex-
ample, b corresponds to the torque constant of the 
motor in a drive system. 

It was demonstrated above that the nonlinear 
feedback control law, such as 

u=-Kly lasgn( y ) (8) 

is a very effective one. The question addressed 
here is if the stability of the closed-loop system 
can be assured with a limited knowledge of the 
plant. 

Theorem 1. The proposed control law in (8) 
guarantees the asymptotic stability of the closed-
loop system if K is chosen such that 

l f (y )l 
bK>sup . (9) 

y 
( ly la )

Proof: Select the Lyapunov function V(y)=y2/2, 

V̇ ( y )=y ẏ =-y f  ( y )-bKy ly lasgn(y ) 

=-y f  ( y )-bKly la+1. 



�(a) If y f  (y) 0, and bK>0, then 

V̇ (y )<0 for yO0. 

(b) If y f  (y)<0, and bK>0 then for V̇ (y)<0 one 
needs 

bKly la+1>ly f  (y )l, 

or, equivalently 

l f (y )l 
bK>sup( ) .ly la 

y 

Q.E.D. 

2.1.3. The design trade-offs 
The control law in (4) provides a relatively-high 

gain when error is small, which leads to small 
steady-state error, good disturbance rejection, and 
robustness. However, this high gain is sustained 
across the frequency spectrum and pushes the 
bandwidth of the controller upwards, which may 
make the controller too sensitive to noises. Since 
the gain of the controller in (4) increases as the 
error gets smaller, one possible trade-off is to limit 
the gain to a particular value. For example, chang-
ing (4) to 

u=K fal(e ). (10) 

where the function fal(e), shown in Fig. 4, is de-
fined as 

lela sgn(e ), lel>d , 
fal(e )={ d>0,-ae/d1 , lel�d , 

(11) 
-awhich limits the gain to K/d1 in the neighbor-

hood of origin. This proves to be a very effective 
method in making a compromise between the ef-
fectiveness of the nonlinear control and the band-
width and noise sensitivities of the control algo-
rithm. 

Another trade-off that can further lower the gain 
is adding an integral control in the neighborhood 
of steady-state. In particular, the integral control 
helps to eliminate the steady-state error without 
using high gain proportion control. Furthermore, 
the saturation and phase lag problems can be 
avoided, or at least lessened, by applying the inte-
gral control only in the region where the error is 
small. The new PI controller takes the form of 

u=Kpfal(e )+KI f gi(e )dt , (12) 

where fal(•) is defined in (11) and gi(e) is defined 
as 

0, lel>di , 
gi(e )={ di>0. (13)

e , lel�di , 

2.2. The insight and design of derivative control 

The derivative control is used to overcome the 
overshoot of an underdamped second, or higher, 
order plant. The use of derivative control has al-
ways been a tricky part in practice. For example, it 
is often heard in motion control industry that the 
derivative control helps to reduce overshoot be-
cause it adds ‘‘damping’’ to the system. But it was 
not clear exactly why and how it happens. In ad-
dition, the differential signal is usually not mea-
surable and is obtained by taking an approximate 
differentiation of a measurable signal. This makes 
the controller vulnerable to high frequency noises. 
These issues are addressed in this section. 

2.2.1. The damping factor 
Consider a standard motion equation of 

Jÿ =-a ẏ +ktu , (14) 

where y is the position of the motor shaft, u is the 
current in the motor armature, J is the inertia, a is 
the friction coefficient, and kt is the motor torque 
constant. If a is very small, the plant will be 
highly underdamped, making it harder to control. 
This can be changed, however, with a derivative 
control. For example, the control law 

u=-{ ẏ +u0 . (15) 

will result in a dynamically compensated plant 

Jÿ =-(a+{) ẏ +ktu0 , (16) 

which is less underdamped and easier to control. 
Here u0 is the new control input which can be 
designed, for example, using (12). 

For the above reasons, one can now understand 
why derivative control adds ‘‘damping’’ to the sys-
tem. This notion can also be generalized to other 
linear and nonlinear systems. For example, with 
the standard second order plant of 

ÿ =-2  nẏ + 2y+ 2u , (17)n n 



 

 

 
  

�

  

the control law of 

-2 
u= 1 

ẏ+u0 (18) 
n 

changes the damping ratio of the plant from to 
( + 1). 

Based on these considerations, the following 
nonlinear PID control is proposed: 

u=Kpfal(e )+KI f gi(e )dt+KDgd(- ẏ ), 
(19) 

where the first two terms of PI control are the 
same as in (12), and the gd(x) is defined as 

x-dd , lxl>dd , 
gd(x )={ dd>0, (20)0, lxl dd , 

which is known as the dead zone. It is used be-
cause once the closed-loop system enters the 
steady state, the differentiation signal contains 
mostly noises and should be discarded. That is, the 
derivative control is only used during the transient 
period to prevent overshoot and oscillations. 

2.2.2. Approximate differentiation in noisy 
environment 

Obtaining a good quality ė signal is a key in any 
derivative control. Since the noise in the signal 
usually renders the pure differentiation useless, 
various linear approximations have been used, in-
cluding 

s 
m=1,2, (21)

(Ts+1 )m , 

and 

1 1 1( ) . (22)
T2-T1 T1s+1 - T2s+1 

More recently, a few nonlinear observers were 
proposed to extract the differentiation signal from 
the input, including a nonlinear observer known as 
a tracking differentiator (TD) [10,11], 

ẋ 1=x2 , 

x2lx2l 
ẋ 2=-R sgn( x1-v( t )+ ) , (23)2R 

where v(t) is the input signal, x1(t) and x2(t) are 
the states of the observer, and R is the filter design 

parameter. This observer is based on the time op-
timal control theory where x1(t) tracks the input 
signal v(t) and x2(t) converges to the generalized 
derivative of v(t). Since x2(t) is obtained through 
integration, it is less sensitive to noises. 

A linearized version of (18) was given in [15] of 
the form 

ẋ 1=x2 , 

ẋ 2 =-mR2x1 -2aRx2+2mR2v( t ), (24) 

where m and a are positive numbers. Mathemati-
cally, this is equivalent to the second order ap-
proximation in (22). 

More recently, a sliding mode based differentia-
tor known as a robust exact differentiator (RED) 
was introduced [16] as 

ẋ =y , 

-v( t )l1/2y=y1-klx sgn„x-v( t )…, (25) 

ẏ 1=-a sgn„x-v( t )…, 

where a and k are design parameters. 
The above methods in (21), (23), and (25) are 

compared in simulation. To make the comparison 
fair, the differentiators are first fed with white 
noises and the parameters are adjusted so that they 
yield the same level of noise amplification. Then 
the quality of the differentiation algorithms are 
compared based on the step response of a standard 
linear second order system (with =0.5 and n 

=200) where the exact derivative of the output is 
known and the output measurement is corrupted 
by about 10% white noises. The results are shown 
in Fig. 5. Four different differentiators are com-
pared against the true derivative. The TD has the 
best performance, followed closely by the second 
order linear approximation in (22). The first order 
linear approximation and the RED performed 
poorly. 

2.3. Soft start 

Engineers have long realized that a gradual set-
point change, such as a ramp function, has certain 
advantages over the sudden change, such as a step 
or pulse function. The extensive use of the motion 
profiles, such as the trapezoidal and the S curve, 
are prime examples. In general, a ‘‘profile,’’ in-
stead of a step function, offers the following ad-
vantages: 



Fig. 5. Comparison of differentiators. 

(1) It provides a more reasonable trajectory for 
the plant to follow, resulting in a transient 
process where the error stays relatively 
small. This allows a more aggressive control 
design (such as higher gains). 

(2) It allows the designer to specify the desired 
1st, 2nd, or even 3rd derivatives of the out-
put. This is especially important in motion 
control since the maximum speed, accelera-
tion and its derivative (known as the Jerk) 
are all key design parameters. 

(3) It makes it easier to avoid actuator saturation 
and the problems associated with it. 

From our experience, the TD is an excellent pro-
file generator with both desired output and its de-
rivative. Instead of storing a fixed lookup table in 
the memory, TD is a simple equation that can be 
implemented together with the controller in soft-
ware. The speed of the profile can be easily ad-
justed, even on the fly, with one parameter [R , in 
Eq. (23)]. For example, for R=10, 50, and 100, 
the output of the TD and its derivative are shown 
in Fig. 6. 

2.4. Design example 1 

The proposed nonlinear PID scheme has been 
used in a number of applications, most notably in 
anti-lock brake systems (ABS) design for heavy 
commercial truck trailers [17]. Here, a relatively 
simple application of a digitally controlled dc-dc 
power converter is used to illustrate the design 
concept and process. 

Fig. 6. Profiles generated from the TD. 

The transfer function, obtained through hard-
ware tests [18], and the simulation model of the 
converter are shown in Fig. 7. The DAC and the 
ADC operate at the sampling frequency of 20 
kHz, with an 8-bit resolution. The ranges of the 
input and output are 0–240 (PWM count) and 
0–28 V (output dc voltage), respectively. The 
simulation model is normalized by two scaling 
factors of 240 and 1/28 so that both the input and 
output are in the range of [10]. All of these details 
are reflected in the simulation model, which yields 
a response that closely matches the hardware data. 

The linear PI control gains were first tuned for 
the best results which yielded Kp =0.4 and KI 

=700. The nonlinear PID gains were then simi-
larly obtained in experiment: the proportional gain 
is 2 with a=0.4 and d=0.2; the integral gain is 
5000 with di =0.2 (integral control kicks in when 
error is less than 20% of the final value); the de-
rivative gain is set at -0.0006, with dd =0.1. A 
TD with R=107 is used to obtain the derivative of 
the output. The step response comparison of PI 
and NPID is shown in Fig. 8. A load disturbance 
of 15% is added at t=0.01 sec. The numerical 
data indicate that the output voltage of PI dips 
1.14 V while that of NPID dips only 0.2 V, i.e., the 
disturbance rejection for the NPID is more than 
five times better than that of the PI. 

Fig. 7. Simulink model of the dc/dc converter. 



Fig. 8. PI and NPID comparison for a dc/dc converter. 

3. Active disturbance rejection 

The primary reason for using the feedback con-
trol is to deal with the variations and uncertainties 
of the plant dynamics (internal) and unknown 
forces from the outside that exert influences on the 
behavior of the plant (external). Here, a generic 
design methodology is proposed to deal with the 
combination of both quantities, denoted as distur-
bance. 

Consider a second order plant 

ẋ 1=x2 , 

ẋ 2 = f ( t ,x1 ,x2 ,w )+bu , (26) 

y=x1 , 

where f (t ,x1 ,x2 ,w), primarily unknown, repre-
sents the combination of the dynamics of the plant 
and the external disturbance w . Traditional control 
theory relies on the knowledge of the function 
f (t ,x1 ,x2 ,w), which is usually not available in 
practice. The ensuing modeling and/or identifica-
tion efforts are usually tedious. It also tends to 
make the control design highly dependent on the 
mathematical model of the plant, which creates the 
so-called robustness problem. Here, an alternative 
approach is proposed based on Han’s work [12– 
14]. 

Definition. Active disturbance rejection control 
(ADRC) is defined as the control method where 
the value of f (t ,x1 ,x2 ,w) is estimated in real 
time and compensated by the use of the control 
signal, u . 

The implication of this concept, in the sense of 
digital control, is that one does not have to know 
the analytical function of f (t ,x1 ,x2 ,w) in order to 
control the plant in (26), as long as he or she 
knows its value at each sampling instant, or a(t) 
= f (t ,x1 ,x2 ,w), t=kts , k=1,2,.. . .  With this 
knowledge, for example, a simple control law of 

u=-a( t )/b+u0 (27) 

reduces the plant to a double integrator form: 

ẋ 1=x2 , 

ẋ 2=bu0 , (28) 

y=x1 , 

where u0 is the new control input that can be eas-
ily designed using a PD controller. This control 
law can also be viewed as an integrator-less PID, 
since the dynamically compensated plant provides 
the integral action. 

3.1. A disturbance observer 

A simple estimation of a(t)= f (t ,x1 ,x2 ,w) is 

¨ a( t )= x̂( t )-b0u( t ), (29) 

where ẍ̂ (t) is the estimated double differentiation 
of the output x(t), and b0 is the approximated 
value of b . Obviously, this method can very easily 
run into noise problems because of the double dif-
ferentiation. A more systematic method, proposed 
by Han [12–14], is based on the well known state 
space observer design concept, as shown below. 

We first expand the state space model of (26) to 

ẋ 1 =x2 , 

ẋ 2=x3+bu , x3( t )=a( t )� f ( t ,x1 ,x2 ,w ), 
(30) 

ẋ 3=h( t ), h( t )= ȧ ( t ), 

y=x1 , 

so that the unknown function a(t) is now an ex-
tended state, x3 . Then, a state observer can be 
constructed to estimate all three states. With a(t) 
and h(t) unknown, a linear state space model of 
the plant can be expressed as 



ẋ =Ax+Bu , 

y=Cz , (31) 

where 

0 1 0  0 
A= 0 0 1 , B= b C=[1 0 0] . 

0
[

0 0 0
n [ n , 

Now the state space observer, also known as the 
Luenberger observer, of (31) can be constructed as 

ż=Az+Bu+L(y- ŷ ), 

ŷ =Cz , (32) 

and L is the observer gain vector, which can be 
obtained using various known methods such as 
pole placement, or LQ: 

L=-[{01{02{03] . (33) 

This observer is denoted as the extended state ob-
server (ESO) of (26). 

Intuitively, the closed-loop observer, or the cor-
rection term, L(y- ŷ ) in particular, is used to ac-
commodate the unknown initial states, the uncer-
tainties in parameters, and disturbances. Whether 
such an observer can meet the control require-
ments is largely dependent on the observer design 
and f (t ,x1 ,x2 ,w). 

In order to overcome the unknown function 
f (t ,x1 ,x2 ,w) and make z-x faster, the linear 
gains are now replaced with the nonlinear ones in 
the ESO, which is denoted as the nonlinear ESO 
(NESO) as 

ż 1=z2-{01fal(e ,a1 ,d1), 

ż 2=z3-{02fal(e ,a2 ,d2)+b0u , (34) 

ż 3=-{03fal(e ,a3 ,d3), 

where the function fal(e ,a ,d) is defined in (11) 
and b0 is a rough estimate of b . This ingenious 
nonlinear observer form was originally proposed 
by Han [12,13]. 

3.1.1. Remarks 
(1) Without the knowledge of f (t ,x1 ,x2 ,w), the 

linear observer will be hard pressed in providing 
reasonably accurate estimations in real time. The 
use of nonlinear gains are intended to make the 
observer converge faster, similar to the use of non-

linear feedback gains discussed earlier to make the 
output of the plant converge to the setpoint faster. 
(2) If part or all of f (t ,x1 ,x2 ,w), say 

f 1(t ,x1 ,x2 ,w), is known, then it should be incor-
porated into the observer as 

ż1 =z2 -{01fal(e ,a1 ,d1), 

ż2= f 1( t ,z1 ,z2 ,w )+z3-{02fal(e ,a2 ,d2)+b0u , 
(35) 

ż3=h( t ,z1 ,z2 ,w )-{03fal(e ,a3 ,d3). 

This will make the observer more efficient be-
cause z3 will now track a(t)= f (t ,x1 ,x2 ,w) 
- f 1(t ,x1 ,x2 ,w). Furthermore, if b is unknown, 
then a rough estimate, b0 , should be used in its 
place. 
(3) The invention of the nonlinear extended state 

observer is a truly revolutionary concept that 
could change the landscape of control theory and 
practice. It helps to break down the boundary be-
tween control theory and practice and makes it 
possible to develop a truly model-independent de-
sign approach. This concept was tested and veri-
fied time and again in key industrial control prob-
lems [19–23]. For this reason and from this point 
on, this observer (ESO and NESO) will be re-
ferred to as Han’s observer. 

3.2. The control configuration 

With the observer properly designed and zi 

-xi , i=1,2,3, the control design becomes 
straightforward. In particular, 

u( t )=u0( t )-z3( t )/b0 (36) 

reduces the plant to (28) and a NPD control law 
such as 

u0( t )=-KPfal(e )-KDfal( ė ) (37) 

can then be applied. Because it actively estimates 
and compensates for the disturbance (including the 
internal and the external ones), this control law is 
denoted as active disturbance rejection controller 
(ADRC) [12 13]. 

The closed-loop control configuration is shown 
in Fig. 9. Here, v(t) is the setpoint, r(t) and ṙ(t) 
are the desired trajectories for y(t) and ẏ (t), re-
spectively, which are commonly known as a mo-
tion profile in the motion control industry. 



Fig. 9. ADRC configuration. 

3.2.1. Observations 
How do the new ideas proposed here fit into 

everyday practice? The following observations of-
fer some insight. 
(1) The existing PI control is still the simplest 

controller that can provide adequate performance 
in most applications. 
(2) Currently, when the PI control fails to meet 

the requirements, engineers will try a variety of 
fixes, ranging from gain scheduling, to adaptive 
and fuzzy logic controls. This is where the nonlin-
ear PID concepts shown above come in. 
(3) In the spirit of keeping the control as simple 

as possible, one should start from the nonlinear 
proportional control, and proceed to nonlinear PD 
or ADRC only when necessary. 
(4) Comparing ADRC to other more complex 

control methods, such as adaptive control, one 
notes that ADRC represents a completely different 
thinking on how a control problem is solved sys-
tematically. The basic idea of using nonlinear 
gains and Han’s observer can be very well incor-
porated into other designs for better performance. 
In this sense, it does not compete but rather 
complements the existing techniques. 
(5) Similar to any observer based design, ADRC 

generally requires higher sampling rate, com-

Fig. 11. Nominal reponses. 

pared to PID, to ensure that the observer provides 
reasonable estimates. From the limited simulation 
and experimentation studies, it appears that the 
ADRC requires 100–200 controller and observer 
updates during the transient period in a typical 
step response. That is, the sampling frequency is 
generally 25–50 times faster than that of the 
closed-loop response in a typical application. 
(6) By tuning ADRC parameters carefully, the 

sampling rate can be reduced, but the process can 
be quite time consuming. In one application, it 
was discovered that a sampling rate less than five 
times that of the closed-loop bandwidth works rea-
sonably well [20], although the performance can 
be much improved at a higher rate. Obviously, this 
is an important design trade off in industrial appli-
cations. 

Fig. 10. The motion control test setup. Fig. 12. Reponses to a 100% inertia change. 



Fig. 13. Reponses to a 20% torque disturbance at t 
=2 sec. 

Fig. 15. Frequency response from Td to y . 

(7) Although a mathematical model of the plant 
is not required by the proposed methods, it should 
be incorporated into the design if such a model is 
available. This will help the observer to perform 
better and may help to lower the sampling rate. 

3.3. Design example 2 

An industrial motion control test bed, shown in 
Fig. 10, made by ECP is used to validate the 
ADRC design. The requirements associated with 
motion control dictate that the steady-state error 
be zero, the performance is robust in the face of 
inertia change, friction change, and torque distur-
bance. For simulation purposes, the mathematical 
model of the motion system is derived as 

ÿ =(-1.41ẏ +23.2Td)+23.2u , (38) 

where u is the control signal and Td is the torque 
disturbance. To see if ADRC can deal with a to-
tally unknown system, this model is not used in 
the NESO. To make the test more realistic, the 
parameter b in NESO is chosen about 30% larger 
than the real one (b=30.71). 

3.3.1. Simulation 
The ADRC algorithms shown in (34), (36), and 

(37) were digitized and compared to a PID con-
troller. To make the comparison fair, both PID and 
ADRC are well tuned for the nominal plant, with a 
fixed inertia, minimal friction, and zero torque dis-
turbance, as shown in Fig. 11. The robustness and 

Fig. 14. Convergence of x3(t). Fig. 16. Hardware disturbance rejection tests. 

http:23.2Td)+23.2u


Table 1  
Experimental results with ADRC and PID schemes.  

Steady-state RMS 
Over-shoot Settling time error error 

(%) (s) (rev) (rad) 

ADRC Nominal case 0.00 0.615 6.87�10-4 0.029 
Setpoint change 0.00 2.45 3.80�10-3 0.116 
Total inertia doubed 0.30 0.858 1.25�10-4 0.024 
With extra friction 0.00 0.625 4.13�10-3 0.037 
30% of Tmax (0.129 N/A 0.19 4.13�10-3 0.030 
N.m) disturbance 

PID Nominal case 0.20 0.639 1.87�10-4 0.066 
Setpoint change 0.34 2.43 1.86�10-2 0.216 
Total inertia doubled 0.98 0.872 5.31�10-3 0.089 
With extra friction 0.00 0.669 1.61�10-2 0.128 
30% of Tmax (0.129 N/A 2.11 4.69�10-2 0.196 
N.m) disturbance 

disturbance rejection are compared in Figs. 12 and 
13, respectively. The ADRC shows a much better 
performance. 

3.3.2. Validity of the ESO and ADRC concepts 
The good performance of ADRC is not coinci-

dental. For this example, the uncertainty function 
to be estimated is 

a( t )=-1.41ẏ +23.2Td-7.51u . (39) 

Fig. 14 shows that x3(t) closely tracks it through-
out the simulation. 

The good disturbance property can be traced 
back to the frequency response between the distur-
bance input, Td , and the output y , as shown in 
Fig. 15. The ADRC has a much better disturbance 
attenuation than the PID. 

3.3.3. Hardware test 
The PID and ADRC are programmed in C using 

a simple Euler’s method. The controller ran on a 
133 MHz Pentium computer with a decoder for 
the position signal. The sampling rate is 1 kHz. 
Overall, the hardware test results closely resemble 
that of the simulation. For example, the distur-
bance rejection test shown in Fig. 16 is quite simi-
lar to Fig. 13 except that the hardware disturbance 
has an opposite sign and the signals are noisier. 

To quantify the difference between the PID and 
ADRC, overshoot, settling time (2%), steady-state 
error and the RMS error are used as criteria for 

comparison, as shown in Table 1. Overall, the im-
provements made by ADRC have been quite sig-
nificant. 

4. Concluding remarks 

A practical nonlinear PID control framework 
and design techniques are introduced. An active 
disturbance rejection methodology, based on 
Han’s observer, is presented. The new methods 
can be viewed as a natural progression of the ex-
isting PID technology that can tap into the new 
hardware capabilities and produce much more 
powerful control means. The new methods are still 
simple and intuitive for practicing engineers. They 
were tested successfully in software simulation 
and hardware verification of two practical prob-
lems. 
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