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A robust decentralized load frequency controller for interconnected 
power systems· 

Lili Dong *, Yao Zhang. Zhiqiang Gao 
Deparrment of£/l'Clrirni and Computer fnginel"ring. C/e~eIGnd Stull' University. C/1'Ve/and, OH 441 '5, U9! 

1. Introduction 

A large-scale power system is composed of multiple control ar
eas that are connected with each other through tie lines [1 J. As ac
tive power load changes. the frequencies of the areas and tie-line 
power exchange will deviate from their scheduled values accord
ingly. As a result. the performance of the power system could be 
greatly degraded [21. Alocal governor of the power system can par
tially compensate power load change through adjusting genera
tor's output. However. with this type of governor. when the system 
load increases. the system frequency decreases and vice versa [3[. 
Therefore a supplementary controller is essential for the power 
system to maintain the system frequency at 60 Hz (a scheduled 
frequency in North America) no matter what the load is. This type 
of supplementary controller is called automatic generation control 
(AGC). or more specifically, load frequency control (LFC). For stable 
operation of power systems. both constant frequency and constant 
tile- line power exchange should be provided [4[. Therefore an Area 
Control Error (ACE), which is defined as a linear combination of 
power net-interchange and frequency deviations [1 [. is generally 
taken as the controlled output of lFC. As the ACE is driven to zero 
by the lFC, both frequency and tie-line power errors will be forced 
to zeros as well [1 [. 

In the past six decades. there has been a significant amount 
of research conducted on lFCs. During the early stage of the 
research. lFC was based on centralized control strategy [5.6 [. 
which has "the need to exchange information from control ar
eas spread over distantly connected geographical territories along 
with their increased computational and storage complexities" [31. 
In order to overcome the computational limitation. decentral

ized lFC has recently been developed. through which each area 
executes its control based on locally available state variables [7 I. 
Among various types of decentralized lFCs. the most widely em
ployed in power industry is PID control [8-13 [. The PI con
troller tuned through genetic algorithm linear matrix inequalities 
(GAlMls) [ 11 1 becomes increasingly popular in recent years. PID 
controller is simple to implement but usually gives long settling 
time (about 10 to 30 s) and produces large frequency deviation 
[14]. The PID controller introduced in [ 13[ shows good perfor
mance in reducing frequency deviat ions. However. the robustness 
of the PID controller for mu ltiple-area power system is not inves
tigated in [13 ]. With the recent progress in control technologies. 
advanced controllers have come into adoption for load freque ncy 
controls. Due to the change of power now conditions. parame
ters in a power system model nuctuate almost every minute [15]. 
To solve this problem. both Hoo [16.17] and adaptive controllers 
[18.19] are applied to the power system. The controllers not only 
identify parameter uncertainties but regulate the ACE. In addi
t ion. a /J- -synthesis controller was introduced in [20] to compen
sate modeling uncertainties. Fuzzy logic based l FC is presented in 
[21.22 ]. Such a controller is often combined with PI or PID 
controllers to optimally adjust PID gains. Most of the existing 



Fig. 1. Schematic of one-area power generating unit. 

LFCs apply to the control areas comprising of thermal turbines, 
only a few of them [13,16] treat both thermal and hydraulic 
turbines. 

This paper presents a novel solution in the form of a decentral
ized robust LFC for a three-area interconnected power system. Its 
performance is evaluated in the presence of parameter uncertain
ties and large power load changes. The power system studied here 
contains reheat, non-reheat, and hydraulic turbine units, which are 
distributed in the three areas respectively. This solution is based 
on active disturbance rejection control (ADRC), an emerging con
trol technology that estimate and mitigate uncertainties, internal 
and external, in real time, resulting in a controller that does not re
quire accurate model information and is inherently robust against 
structural uncertainties commonly seen in power systems. Partic
ularly, compared to other complex advanced controllers [15–21], 
the ADRC only has two tuning parameters, making it simple to im
plement in practice. So far the ADRC has been successfully em
ployed in MEMS, power converter, and web tension [22–26]. In 
this paper, it is the first time that the ADRC is modified and ap
plied to the power system with three different turbine units. Some 
preliminary results of the research were published in [27], where 
the performance of the ADRC was compared with a LMI tuned PID 
controller [12] for the power system with only non-reheat turbine 
units. 

This paper is organized as follows. The dynamic modeling of the 
power system is given in Section 2. The ADRC design is introduced 
in Section 3. Simulation results are shown in Section 4. Stability 
analyses are presented in Section 5. The concluding remarks are 
made in Section 6. 

2. Dynamic model 

In this section, the dynamic model of a three-area intercon
nected power system is developed. As shown in Fig. 1, each area 
of the power system consists of one generator, one governor, and 
one turbine unit. The generator, governor, and turbine constitute 
a power generating unit. In addition, each area includes three in
puts, which are the controller input U(s) (also denoted as u), load 
disturbance ∆PL(s), and tie-line power error ∆Ptie(s), one ACE out
put Y (s), and one generator output ∆f . In Fig. 1, ∆Pv denotes valve 
position change, ∆Pe electrical power, and ∆Pm mechanical power. 
The ACE alone is a measurable output. For each area, it is defined 
by (1), where B is area frequency bias setting [1]. 

ACE = ∆Ptie + B∆f . (1) 

We use transfer function (TF) to model the one-area genera
tor unit for the sake of convenience in frequency-domain analyses. 
Let the transfer function from ∆Pe(s) to ∆Pm(s) be GET (s) = 
NumET (s)/DenET (s), where NumET (s) and DenET (s) are the numer
ator and denominator polynomials, respectively, and they vary in 
different generating units. From [1], the TF of non-reheat turbine 
unit (GET (s)) is given by 

NumET (s) 1 
GET (s) = = . (2)

DenET (s) (Tg s + 1)(Tchs + 1) 

From [1], the TF of reheat turbine unit is represented by 

NumET (s) FhpTrhs + 1 
GET (s) = = . (3)

DenET (s) (Tg s + 1)(Tchs + 1)(Trhs + 1) 
From [1], the TF of hydraulic turbine unit is 

NumET (s)GET (s) = 
DenET (s)
 

(TRs + 1)(−Tws + 1)
 
= . (4)

(Tg s + 1)[TR(RT /R)s + 1][(Tw/2) + 1]
According to [1], the TF of the generator is 

1 1 
GGen(s) = = . (5)

DenM (s) Ms + D 

The parameters in (2)–(5) are defined in Table 6 of Appendix. From 
Fig. 1, the output Y (s) for each area can be represented by 

Y (s) = GP (s)U(s) + GD(s)∆PL(s) + Gtie(s)∆Ptie(s), (6) 
where Gp(s), GD(s), and Gtie(s) are the TFs between the three 
inputs (U(s), ∆PL(s), and ∆Ptie(s)) and ACE output (Y (s)). The three 
transfer functions in (6) are expressed as 

RBNumET (s)GP (s) = (7)
NumET (s) + RDenET (s)DenM (s)
 

−RBDenET (s)
GD(s) = (8)
NumET (s) + RDenET (s)DenM (s) 
NumET (s) + RDenET (s)DenM (s) − RBDenET (s)Gtie(s) = , (9)

NumET (s) + RDenET (s)DenM (s) 
where NumET (s) and DenET (s) have different expressions (as shown 
in (2)–(4)) corresponding to different turbine units. 

The proposed ADRC-based control system is shown in Fig. 2. 
Under a decentralized control strategy, the ADRC controller is 
placed in each area acting as local LFC. Three decentralized 
areas are connected to each other through tie lines. Non-reheat, 
reheat and hydraulic turbine units are distributed in the three 
areas orderly. The parameter values of the system are obtained 
from [1,15] and are listed in Table 7 in Appendix. Substituting the 
parameter values into the Gp(s) between the controller input U(s) 
and ACE output, we will have 

1.05 
GPN (s) = (10)

0.015 s3 + 0.2015 s2 + 0.52 s + 1.05 

2.205 s + 1.05 
GPR(s) = (11)

0.21 s4 + 1.801 s3 + 3.928 s2 + 2.975 s + 1.05 

−5.25 s2 
+ 4.2 s + 1.05

GPH (s) = , (12)
1.14 s4 + 8.2 s3 + 7.945 s2 + 6.235 s + 1.05 

where GPN (s) denotes the TF for area 1, GPR(s) the TF for area 2, and 
GPH (s) the TF for area 3. From (12), we can see that the transfer 
function of hydraulic unit has a positive zero, which can bring 
instability to the system. This problem can be solved by fine tuning 
the controller parameters. The system with hydraulic turbine unit 
will be stabilized by the controller as well. The controller design 
and parameter tuning are introduced in the following section. 



Fig. 2. Three-area power system with different turbine units. 

3. The LFC design 

We choose ADRC as decentralized LFC for the interconnected 
power system. The basic idea of the time-domain ADRC is 
introduced in [24]. In this section, the TF representation of the 
ADRC will be developed for a general n-th order plant. 

3.1. Transfer function derivation of n-th order plant 

A plant with disturbance can be represented by 

Y (s) = Gp(s) · U(s) + W (s), (13) 
where U(s) and Y (s) are the input and output respectively, and 
W (s) is the generalized disturbance including unknown internal 
dynamics and external disturbances [24]. In (13), the TF of the 
general physical plant Gp(s) can be described as 

Y (s) 
= GP (s)U(s) 

bmsm 
+ bm−1sm−1 

+ · · · + b1s + b0 
= , n ≥ m, (14)

ansn + an−1sn−1 + · · · + a1s + a0 

where ai and bj(i = 1, . . . , n, j = 1, . . . , m) are the coefficients of 
Gp(s). Making both sides of (13) divided by Gp(s), we will have 

′ (1/Gp(s))Y (s) = U(s) + W (s), (15) 
where W ′ (s) = W (s)/Gp(s). In (15), 1/Gp(s) can be obtained as 

ansn 
+ an−1sn−1 

+ · · · + a1s + a0 
= (n ≥ m)

GP (s) bmsm + bm−1sm−1 + · · · + b1s + b0 

= cn−msn−m 
+ cn−m−1sn−m−1 

+ · · · + c1s 

+ c0 + Gleft (s), (16) 
where ci(i = 0, . . . , n − m) are coefficients of the polynomial 
1/Gp(s), and the remainder Gleft (s) is 

dm−1sm−1 
+ dm−2sm−2 

+ · · · + d1s + d0Gleft (s) = . (17)
bmsm + bm−1sm−1 + · · · + b1s + b0 

In (17), dj (j = 0, . . . , m − 1) are coefficients of the numerator of 
the remainder. Substituting (16) into (15), we have 

[cn−msn−m 
+ cn−m−1sn−m−1 

+ · · · + c1s + c0 + Gleft (s)]Y (s) 
′ 

= U(s) + W (s), (18) 

where 

cn−m = 
an 

. (19)
bm 

Eq. (18) can be rewritten as 

cn−msn−mY (s) = U(s) − [cn−m−1sn−m−1 
+ · · · + c1s 

′ 
+ c0 + Gleft (s)]Y (s) + W (s). (20) 

Making both sides of (20) divided by cn−m, we will have 

sn−mY (s) = bU(s) + D(s), (21) 

where b = 1/cn−m, and a modified generalized disturbance is 

1 
D(s) = − [cn−m−1sn−m−1 

+ · · · + c1s cn−m 

1 
′ 

+ c0 + Gleft (s)]Y (s) + W (s). (22)
cn−m 

We will take (21) as the system model for controller design. 

3.2. Design of extended state observer 

From [24], the effectiveness of the ADRC is dependent 
on accurate estimation of the generalized disturbance D(s). 
Consequently an Extended State Observer (ESO) needs to be 
developed to estimate the D(s) in real time. This can be achieved by 
augmenting the state variables of the system (21) to include D(s). 
Let x1(s) = Y (s). In order to construct the ESO, the system model 
(21) is rewritten as 

sX(s) = AX(s) + BU(s) + EsD(s) (23) 
Y (s) = CX(s), 

1 



where Table 1  x1(s) 
ADRC parameters of the first test system. 

Order of ESO ωC ωO b 

, Area 1 
Area 2 
Area 3 

3 
3 
3 

4 
4 
4 

20 
20 
20 

70.0 
10.5 
460 

x2(s) 

X(s) = . . . 

 

xn−m(s) 
xn−m+1(s)   4. Simulation results 0 1 0 · · · 0 

0 0 1 · · · 0 
. . . .. . . . . . .. . . . 
0 0 0 · · · 1 

 

 

In this section, the effectiveness of the ADRC is tested through 
two kinds of decentralized power systems. The first power system, A = 

as shown in Fig. 2, consists of three different generating units, 
0 0 0 · · · 0 each of which contains different turbine unit such as reheat, 

non-reheat, or hydraulic type. The second power system was 
(n−m+1)×(n−m+1) 

0 0 
proposed in [11]. It includes nine similar non-reheat turbine units 
that are evenly distributed in the three interconnected areas 
respectively. The second power system is mainly used to compare 
the control performance of the ADRC with that of the GALMI tuned 

 

 
E = 

 

. . . 
0 
0 

 

. . . 
0 
b 

B = 

0 1 
(n−m+1)×1 (n−m+1)×1 

C = [1 0 0 · · · 0]1×(n−m+1). 

We assume that D(s) has the local Lipschitz continuity and 
sD(S) is bounded within domain of interests. Then the ESO is 

sZ(s) = AZ(s) + BU(s) + L(Y (s) − Ŷ (s)) (24) 

Ŷ (s) = CZ(s), 

where Z(s) is the estimated state vector and Z(s) = [z1(s) z2(s) . . . 
zn−m(s) zn−m+1(s)]T , and L is the observer gain vector andT 
L = β1 β2 . . . βn−m βn−m+1 . In order to locate all the U(s) = 

PI controller introduced in [11]. 

4.1. On the three-area interconnected power system with different 
generating units 

According to the discussions in Section 3, the ADRC for area 1 
can be designed and represented by the following equations. 

sZ(s) = (A − LC)Z(s) + BU(s) + LY (s) (31) 
U0(s) = k0(R(s) − z1(s)) − k1z2(s) − k2z3(s) (32) 

U0(s) − z4(s) (33)
b 

, 
eigenvalues of the ESO to −ωo, the observer gains are chosen as 

where 
n − m + 1 

, i = 1, . . . , n − m + 1. (25)i 
  
0 1 0 0 0βi = z1(s) 
0 0 1 0 
0 0 0 1 

0 
b 

 
 , A =  

 , B =  
z2(s) 

z3(s)
Z (s) = Therefore we can change the observer gains through tuning the , 

parameter ωo, which is also the bandwidth of the observer. With z4(s) 0 0 0 0 0 
a well tuned ESO, zi(s) will be able to estimate the value of xi(s)  4ωOclosely (i = 1, . . . , n − m + 1). Then we have 

zn−m+1(s) = D̂(s) ≈ D(s), (26) L = 
26ωO 

4ω3 
O 

 

 3 , k0 = ω ,c 

where D̂(s) represents estimated D(s). 4ωO 

3ω2 
c 


3.3. Design of ADRC 1 0 0 0k1 , k2 = 3ωc , and C . The ADRCs for = = 

If the control input is designed as 

U(s) = (U0(s) − zn−m+1(s))/b, (27) 

the original system (21) will be reduced to a pure integral plant. 
This process can be demonstrated by (28), where U0(s) is the 

control law for regulating the ACE output Y (s). 

sn−mY (s) = b · [(U0(s) − zn−m+1(s))/b] + D(s) 

= U0(s) − D̂(s) + D(s) ≈ U0(s). (28) 

The control goal of LFC is to regulate the ACE to zero. A traditional 
PD controller can reach this goal. So the control law U0(s) is 
chosen as 

U0(s) = k0(R(s) − z1(s)) − k1z2(s) − · · · kn−m−1zn−m−1(s), (29) 

where R(s) is a reference input. With the control law in (29), Y (s) 
will be drive to R(s), which is zero for the LFC. To further simplify 
the tuning process, all the closed-loop poles of the PD controller are 
set to −ωc . Then the controller gains in (29) have to be selected as 

the other two areas have the similar structure to the one for area 
1. The controller parameters of the ADRCs in different areas are 
given in Table 1. According to [28], the observer bandwidth (ωo) 
is chosen as five times controller bandwidth (ωc ). The controller 
gain b for area 3 is relatively large compared to the gains for the 
other two areas. This is for compensating the effects of the positive 
zero in area 3. In Table 1, there are only two tuning parameters 
for the ADRC design. They are the controller bandwidth (ωc ) and 
controller gain (b). 

The performance of ADRC is tested for two cases. In these two 
cases, a 0.1 p.u. (per unit) step load change is applied to the three 
different areas at t = 2, 7, and 12 s respectively. In different cases, 
the parameter values of the non-reheat unit in area 1 will have 
variant values. However, the controller parameter values of the 
ADRC, as listed in Table 1, remain unchanged in the following two 
cases. 

In case 1, the parameters of the non-reheat unit in area 1 are 
chosen to have nominal values. The effectiveness of ADRC is tested 
in this case by simulating the closed-loop control system in Fig. 2.  In our simulation results, area 1 is denoted as the area with non-

n − m 
ωn−m−i reheat unit (or non-reheat), area 2 the area with reheat unit (or ki = c , i = 0, 1, . . . , n − m − 1. (30)i reheat), and area 3 the area with hydraulic unit (or hydraulic). The 



Fig. 3. ACEs of the three-area power systems. Fig. 6. ACEs of area 1 with variant parameter values. 

Fig. 4. Frequency errors of the three-area power systems. 
Fig. 7. Frequency errors of area 1 with parameter uncertainties. 

Fig. 5. Tie-line power errors of the three-area power systems. 

system responses for three different areas are shown in Figs. 3– 
5. From these three figures, we can see that the ACEs, frequency 
errors (∆f ), and tie-line power deviations have been successfully 
driven to zeros by ADRC in the presences of power load changes. 
The average settling time (Ts) for the three systems is around 3 s. 
The Ts is much shorter than the one in the PID controlled system 
in [9–13]. The responses of area 3 have relatively large overshoots 
compared to the other two areas. We believe this is because the 
hydraulic unit is inherently unstable. The instability could cause 
the big oscillation during the transient period. 

In case 2, in order to test the robustness of ADRC, the variations 
of all of the parameters (M1, D1, Tch1, Tg1, R1, and T1) of the non-
reheat unit in the first area are assumed to be −20% and 20% 
of their nominal values respectively. However, the controller 
parameters of ADRC are not changed with the changes of system 

Fig. 8. Tie-line power errors of area 1 with variant parameter values. 

parameters. The responses of area 1 are shown in Figs. 6–8 which 
illustrate the ACE outputs, frequency errors, and tie-line power 
errors of area 1 orderly with the variant parameter values for 
the non-reheat unit. From the simulation results, we can see that 
despite such large parameter variations, the system responses 
do not show notable differences from the results in Figs. 3– 
5. Therefore the simulation results demonstrate the robustness 
of ADRC against system parameter variations. When we change 
the system parameters for reheat and hydraulic units, the same 
conclusion is obtained. 

4.2. On the three-area interconnected power system with only non-
reheat generating units 

The second power system also has three areas. Each area has 
three generating units that are owned by different generation 



Fig. 9. Schematic of the three-area non-reheat power system. 
Source: Redrawn from [24]. 

companies (GenCos). Every generating unit consists of a non-
reheat turbine unit, a generator, and a governor. The schematic 
diagram of the system is shown in Fig. 9, where the three areas 
are connected with each other through tie lines. In this figure, 
∆PL1, ∆PL2, and ∆PL3 are the power load changes added to the 
three areas. The dynamic model of area 1 is shown in Fig. 10, which 
is similar to the model in [11], where the GALMI tuned PI controller 
was proposed. In Fig. 10, the parameters Marea1 (inertia constant for 
area 1) and Darea1 (load damping constant for area 1) are equivalent 
to the parameters ‘‘M ’’ and ‘‘D’’ in [11] for the generator model. We 
choose a system model similar to the one in [11] for the comparison 
of the performances between the GALMI tuned PI controller and 
ADRC controller. 

The tie-line synchronizing coefficients between any two 
areas are T12 = 0.2 p.u./rad., T23 = 0.12 p.u./rad. and T13 = 
0.25 p.u./rad. The ramp rate factor that is used to describe the rate 
of change for the power plant output is given as 

Ramprate × 5 min 
α = , (34)

Regulation requirement 

in which the regulation requirement for each area is 100 MW. 
The ramp rate and all the other parameters of the system can be 

found in [11,29]. ADRC based controller is implemented on each 
area of the system in Fig. 10. The controller parameters for both 
ADRC and GALMI tuned PID controller are listed in Tables 2 and 3 
respectively. 

In this section, the performance of ADRC is compared with that 
of the GALMI tuned PI controller in [11] for three cases of load 
changes. 

In case 1, the random load changes (PLi), shown in Fig. 11, are 
added to each area of the power systems. Figs. 12–14 show the ACE 

Table 2 
ADRC parameters of the second test system. 

Order of ESO ωC ωO b 

Area 1 
Area 2 
Area 3 

3 
3 
3 

4 
4 
4 

20 
20 
20 

78.7739 
76.2598 
74.2768 

Table 3 
GALMI tuned PI controller parameters. 

Area 1 Area 2 Area 3 

Kp −3.27 × 10−4 
−6.96 × 10−4 

−1.60×10−4 

Ki −0.3334 −0.3435 −0.3398 

Fig. 11. Random load changes. 

output, load frequency deviation ∆f and the difference between 
control effort and load disturbance, which is ∆Perr(∆Perr = 
∆PC − ∆PL) for both ADRC and PI controlled systems. From the 
simulations, we can see that both ADRC and the GALMI tuned PI 
controller can compensate the load fluctuations reflected by ∆Perr 
rapidly. However, the ACE, ∆f , and ∆Perr for ADRC controller have 
less peak errors (the peak errors of the ACE and ∆f for ADRC are 
no more than 0.05%) than the GALMI tuned PI controller. ADRC 
controlled system shows better transient responses than the PI 
controlled system. 

In case 2, a step load change with large amplitude is added to 
each area. The purpose of this case is to test the robustness of 
the controllers against large disturbances. The amplitudes of the 
load changes for the three areas are ∆PL1 = 100 MW (0.1 p.u.), 

Fig. 10. Dynamic model of one area for the second test system.
 
Source: Redrawn from [11].
 



Fig. 12. System responses of area 1 for case 1. 
Fig. 15. System responses of area 1 for case 2. 

Fig. 13. System responses of area 2 for case 1. 

Fig. 14. System responses of area 3 for case 1. 

∆PL2 = 80 MW (0.08 p.u.) and ∆PL3 = 50 MW (0.05 p.u.) 
respectively. The power loads are added to the systems at t = 2 s. 
The ACE, ∆f and the control effort for both ADRC and PI controlled 
systems are shown in Figs. 15–17. ADRC demonstrates smaller 
oscillations and faster responses in the ACE and ∆f responses than 
that of the GALMI tuned PI controller. However, the control effort 
of ADRC shows an overshoot at the switching edge of the load 
change. This is due to a slight lag of ESO in response to the external 
disturbance. But the overshoot magnitude of ADRC is reasonable. 
So it will not affect the effectiveness of the controller in practice. 

Fig. 16. System responses of area 2 for case 2. 

Fig. 17. System responses of area 3 for case 2. 

The purpose of case 3 is to test the stability and effectiveness 
of ADRC power system under an extreme condition that one 
generating unit fails to operate. In case 3, Generating company 3 
(GenCo3) is cut off at the 20th second while at the 30th second, 
another 100 MW (0.1 p.u.) step change is loaded on area 1. For 
case 3, the same load changes as the ones in case 2 are added to 
the three areas at t = 2 s. The responses of area 1 are shown 
in Fig. 18. From the simulation result, we can see that after 
cutting off the generating company 3 (GenCo3), the GALMI based PI 
controller drives the ACE to zero with an obvious oscillation since 
the system model has changed significantly while ADRC is still able 
to effectively control the system output to track the reference with 
little overshoot and negligible oscillation. 



Fig. 18. System responses of area 1 for case 3. 

5. Stability and robustness analyses 

The transfer function representation of ADRC was initially 
reported in [26], and then applied to MEMS in [23]. In this section, 
the Laplace transform of the ADRC controlled power system 
will be developed. Then the frequency-domain analyses will be 
conducted on the TF representation of the closed-loop system. For 
the simplicity of description, only Area 1 in Fig. 2 will be used 
to develop the TF representation. The transfer functions between 
system inputs (R(s), ∆PL(s) and ∆Ptie(s)) and the ACE output Y (s) 
for a decentralized non-reheat power generating area (area 1) are 
given in (7)–(10) in Section 2. 

5.1. Transfer function derivation of closed-loop system 

We start with developing the TF between the reference signal 
R(s) and the ACE output Y (s) while the other two inputs (∆PL(s) 
and ∆Ptie(s)) are assumed to be zeros. Then (6) becomes 

Y (s) = GP (s)U(s). (35) 

From (10), we can see that area 1 is a third-order system, so we 
have n − m = 3. The ESO in (24) can be rewritten as 

sZ(s) = (A − LC)Z(s) + BU(s) + LY (s), (36) 

where Z(s) = [z1(s), z2(s), z3(s), z4(s)]. The control law obtained 
from (27) and (29) can be given by 

U(s) = (k0R(s) − KZ(s))/b, (37) 

where K = [k0, k1, k2, 1]. Replacing U(s) in (36) with (37) yields 

Z(s) = [T (s)]−1
[Bk0R(s)/b + LY (s)], (38) 

where 

T (s) = sI − A + LC + BK /b. (39) 

Replacing Z(s) in (37) with (38) gives 

U(s) = GPF (s)GEC (s)R(s) − GEC (s)Y (s), (40) 

where GEC (s) is represented by 

GEC (s) = K [T (s)]−1 L/b, (41) 

and the pre-filter GPF (s) is represented by 

GPF (s) = [k0(b − K [T (s)]−1B)]/(bK [T (s)]−1L). (42) 

Replacing the U(s) in (35) with (40), we have 

Y (s) GPF (s)GEC (s)GP (s)Gcl(s) = = . (43)
R(s) 1 + GEC (s)GP (s) 

Fig. 19. Block diagram of closed-loop system. 

Fig. 20. Frequency responses of Go (s) with different parameters for the non-reheat 
area. 

Table 4 
Stability margins for parameter variation test. 

Parameter values Gain margin (dB) Phase margin (deg.) 

Nominal 11.5 108 
+20% 14.0 96 
−20% 8.5 103 

Table 5 
Stability margins for model uncertainty test. 

GenCos situation Gain margin (dB) Phase margin (deg.) 

Normal 
GenCo 3 fails to operate 
GenCo 2 & 3 fail to operate 

11.2 
9.4 

10.7 

77 
74 
51 

Next, we will develop the TF from the power load ∆PL(s) to the
 
ACE output Y (s). With ∆Ptie(s) = 0, (6) is changed to
 

Y (s) = GP (s)U(s) + GD(s)∆PL(s). (44)
 

Since R(s) = 0, (40) can be rewritten as
 

U(s) = −GEC (s)Y (s). (45)
 

Substituting (45) into (44), we obtain the following TF.
 

Y (s) GD(s)GDcl(s) = = . (46)
∆PL(s) 1 + GP (s)GEC (s) 

Similarly, we can get the TF between ∆Ptie(s) and Y (s): 

Y (s) Gtie(s)Gtiecl(s) = = . (47)
∆Ptie(s) 1 + GP (s)GEC (s) 

According to (35)–(47), the closed-loop control system for one area 
is constructed in Fig. 19. From Fig. 19, the open-loop TF is 

GO(s) = GEC (s)GP (s). (48) 



Table 6 
Definitions of system parameters. 

Mi∗ Area Inertia Constant Di Area load damping constant 
Tchi Turbine time constant Tg i Governor time constant 
Ri Speed regulation coefficient Ti Tie-line synchronizing coefficient between each two areas 
Fhp High pressure stage rating Trh Low pressure reheat time 
Tr Reset time for hydraulic unit Rt Temporary droop coefficient 
Tw Water starting time B Area frequency response coefficient 

Note: The letter i represents the number of an area, and i = 1, 2, 3. 

Table 7 
Parameter values. 

Non-reheat Reheat Hydraulic 

M1 (p.u. s.) ∗ 10 ± 20% M2 (p.u. s.) 10.0 M3 (p.u. s.) 6.0
 
D1 (p.u./Hz) 1 ± 20% D2 (p.u./Hz) 1.0 D3 (p.u./Hz) 1.0
 
Tch1 (s.) 0.3 ± 20% Tch2 (s.) 0.3 Tg3 (s.) 0.2
 
Tg1 (s.) 0.1 ± 20% Fhp 0.3 Tr (s.) 5.0
 
R1 (Hz/p.u.) 0.05 ∓20% Trh (s.) 7.0 Rt (Hz/p.u.) 0.38
 
T 1 (p.u./rad.) 22.6 ±20% Tg2 (s.) 0.2 R3 (Hz/p.u.) 0.05
 

R2 (Hz/p.u.) 0.05 T w (s.) 1.0 
T 2 (p.u./rad.) 22.6 T 3 (p.u./rad.) 22.6 

Fig. 21. Bode diagram of the open-loop transfer function GO(s) with model 
uncertainties. 

5.2. Stability and robustness against parameter variations 

The frequency responses of the open-loop TF represented by 
(48) are shown in Fig. 20, in which the system parameters of area 1 
(M1, D1, Tch1, Tg1, R1, and T1) in Fig. 2 are varying from −20% to 20% 
of their nominal values. The stability margins of the system with 
system uncertainties are listed in Table 4. The Bode Diagram and 
stability margins demonstrate the stability of the ADRC controlled 
power system in the presences of ±20% parameter variations in 
the selected area. 

5.3. Stability ad robustness against model uncertainties 

In this part, we will utilize the second test power system to test 
the stability and robustness of ADRC system. The block diagram 
of this power system is shown in Fig. 10. For contingency test, 
we suppose two extreme situations. In this first situation, the 
power generating company GenCo2 fails to operate. In the second 
extreme situation, both the power generating companies GenCo2 
and GenCo3 fail to operate. In both situations, the controller 
parameters of ADRC remain unchanged. Then the Bode diagram of 
the open-loop transfer function (48) with the unchanged ADRC is 
shown in Fig. 21. The stability margins are listed in Table 5. From 
the Bode diagram and the stability margins, we can see that ADRC 
is quite stable and reliable under the extreme situations. 

Fig. 22. Frequency responses of GDcl(s) with variant parameters for the non-reheat 
area. 

5.4. External disturbance rejection 

Eq. (46) gives the transfer function between ACE output and 
active power load input (∆PL(s)). For the selected area 1, the Bode 
diagram of this transfer function (46) is shown in Fig. 22, where the 
system parameters (M1, D1, Tch1, Tg1, R1, and T1) are varying from 
−20% to 20% of their nominal values. 

Fig. 22 successfully proves the disturbance rejection ability of 
the desired LFC controller (ADRC) since the magnitude responses 
are under 0 dB at any input frequency. In addition, the frequency 
responses are almost unchanged with the changes of system 
parameters. This also verified the robustness of the control system 
against internal uncertainties. 

6. Concluding remarks 

As an increasingly popular practical control method [23–27], 
ADRC has the advantage of requiring little information from the 
plant model. Specifically the controller mainly needs the relative 
order (n − m), output data and controller gain (b) from the power 
plant. This advantage makes the controller very robust against 
system uncertainties. In addition, compared to the PID controller 
with three tuning parameters [8–12], ADRC only has two (ωc and 
b). The controller bandwidth ωc can be selected based on the 
performance requirement such as the settling time constraint. The 
parameter b is a plant parameter either known to the designer 
or can be determined from open loop response. The two-tuning
parameter feature enables simple implementation of the ADRC in 
the real world. 

An ADRC-based decentralized LFC for interconnected three-
area power systems is presented in this paper to regulate ACE in 
the presences of load changes and system uncertainties. The ADRC 
is designed for the power system containing both thermal and 
hydraulic turbines. The frequency-domain analyses demonstrated 
the effectiveness of the controller. The simulation results verified 
the stability and robustness of the ADRC. The comparison study in 
Section 4 also proved the superiority of the ADRC to the GALMI 
tuned PI Controller that is a dominant controller in power industry. 



For future research, we will study singularities of speed gover
nor such as rate limits on valve position and generation rate con
straints and will use ADRC to compensate for such singularities. We 
are also going to simulate the ADRC controlled power system in 
Simplorer, a powerful CAD tool in modeling real power systems. 
We will use this CAD tool to test the controller and to ensure its 
applicability in power industries 

Appendix 

See Tables 6 and 7. 
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