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Time-varying system identification using modulating functions and 

spline models with application to bio-processes 
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I. Introduction 

Process modeling and parameter estimation together 
have become an integral part of the study of dynamic 
processes, and the design of adva nced control and 
optimization schemes. Many real processes are modeled 
in continuous-time by nonlinear d ifferen tia l eq uations 
with characteristic parameters moti vated by the physi. 
cal processes occurri ng in the system. These parameters 
are indications of complex relationsh ips between vari­
o us physical characteristics of the process and may 
often exhibi t time dependency due to the inherent non­
stationary nature of the process or due to model inac­
cUnlcies. A knowledge of the process parameters along 
with the process state variables is highly desirable in 
real-t ime fo r three importan t reasons. First, tracking 
the trajectory o f a time-varying parameter provides a 
beller understanding of the process response to aid in 

model development and verificat ion (Bastin & Dochain, 
1990; Fo nt & Fabregat, 1997). Second, the design of 
model based predictive cont rol algorithms requires de­
termination of the process parameters accurately in 
real- time (Goodwin & Mayne, 1987; Hecker, Knapp & 
lsermann, 1994; Feng, Geneeli & Nikolaou, 1996). And 
third, process moni toring and supervision are closely 
related to the identi fication of changes or dri ft s in 
process parameters which may indicate the inception 
und growth of fa ult modes in a process (Iserman, 1984; 
H6ftin g & Iserman n, 1996). 

Many di fferent approaches are available for the iden­
tification of con tinuous-time nonlinear models (Young, 
1981; Unbehauen & Rao, 1990; Unbehauen, 1996). The 
modulati ng functions method belongs to a class of 
identi fication techniques, which apply an integral trans­
form to the measured signals over a fi nite period of 
time. It is an efficient approach for continuous-time 
system identification because it avoids the approx.ima­
tion o f time derivatives of measured signals and does 
not require a knowledge of the initial conditions. The 



method was first suggested by Shinbrot (1957) as a 
means of parameter estimation in nonlinear dynamic 
systems by converting the original differential equations 
into a set of algebraic equations. Several versions of the 
method are currently in use with a variety of modulat­
ing functions, including spline type functions 
(Maletinsky, 1979; Preisig & Rippin, 1993a), Hermite 
functions (Takaya, 1968; Jalili, Jordan & Mackie, 
1992), Poisson moment functionals (Saha & Rao, 
1982), Hartley modulating functions (Patra & Unbe­
hauen, 1995; Daniel-Berhe & Unbehauen, 1998), sinu­
soidal functions (Shinbrot, 1957; Pearson & Lee, 1985; 
Benhadj-Braiek & Rotella, 1990; Co & Ydstie, 1990; Co 
& Ungarala, 1997) and wavelets (Schoenwald, 1993; 
Carrier & Stephanopoulos, 1998). 

Although the modulating functions method has been 
available in several versions for over three decades, 
surprisingly few applications can be found in the litera­
ture. Applications are almost nonexistent in chemical 
and biochemical engineering disciplines, which offer a 
rich variety of identification problems involving physi­
cally meaningful time-varying parameters. Catalyst de­
activation is a prime example. Catalyst activity is 
generally a complex function of time, temperature and 
other physico-chemical properties. It cannot be mea­
sured directly and the relevant kinetic parameters must 
be inferred from measurements of state variables such 
as temperature and species concentrations (Cheng, Abi 
& Kershenbaum, 1996; Tatiraju & Soroush, 1998). In 
large industrial processes like refineries, tracking cata­
lyst deactivation rate constants in the fluid catalytic 
cracking process offers substantial economic advan­
tages (Ancheyta-Juárez, López-Isunza, Anguilar-Ro­
drı́guez & Moreno-Mayorga, 1997). Measurement of 
heat transfer coefficients, changes in which may be 
early indications of fouling, is another potential appli­
cation (Chen & Yuan, 1996). In microbial growth 
processes, the specific growth rate and yield factors are 
generally time-varying in nature, which need to be 
estimated for control and optimization purposes 
(Bastin & Dochain, 1986). 

Applications of trigonometric and spline type modu­
lating functions have been reported earlier for parame­
ter estimation in nonlinear CSTR and observer schemes 
in batch reactors (Preisig, 1988, 1989; Co & Ydstie, 
1990; Preisig & Rippin, 1993b). Recently reported ap­
plications include the estimation of kinetic parameters 
and reaction order (Ungarala & Co, 1996; Co & 
Zhong, 1997; Zhong, 1997), parameter estimation in 
microbial growth systems (Ungarala & Co, 1998a,b), 
and Hartley modulating function for bilinear models of 
electrical and robotic systems (Daniel-Berhe & Unbe­
hauen, 1997, 1999). 

Time-varying parameters have been dealt with previ­
ously by assuming a functional form for the time 
dependency of the parameter and obtaining the esti­

mates of the constant coefficients in the functional form 
(Puchkov & Chinayev, 1973; Benhadj-Braiek & Rotella, 
1990; Preisig & Rippin, 1993a). The modulating func­
tions method is essentially an off-line method that is 
implemented on a batch of time series data to estimate 
constant parameters. The possibility for real-time appli­
cations of the method was suggested by Pearson and 
Lee (1985) through sequential processing of data. The 
main bottleneck for on-line estimation of time-varying 
parameters is the large amount of computation re­
quired. To address the issue of indeterminate and time-
varying parameter estimation, in an earlier paper (Co & 
Ungarala, 1997) the authors developed a batch scheme 
recursive implementation of the Pearson–Lee method. 
The approach avoids the use of FFT at every sampling 
time by using efficient matrix update relations. Operat­
ing as a filter on a data window, the batch scheme 
introduces a lag and estimates the parameters as aver­
age values for the batch. The present work focuses on 
adapting the batch scheme recursive method for esti­
mating parameters as polynomials of arbitrary degree. 
This approach eliminates the lag introduced by the 
windowing operation. 

In the following sections the theoretical development 
of the modulating functions method is presented for 
time-varying system identification by modeling the 
parameters as polynomial splines and a sliding window 
recursive implementation of the method is derived for 
on-line parameter estimation. The recursion relations 
use shifting properties and commutative ring properties 
of trigonometric functions. A batch of time series data 
are processed at each sampling instant as the data 
window is moved forward. The estimation algorithm is 
fast and computationally efficient as it does not require 
sequential use of FFT. The method addresses the issue 
of on-line implementation of the modulating functions 
method. An application of the on-line estimation al­
gorithm is illustrated with a simulation example involv­
ing a continuous-time model of a fermentation 
processes with endogenous metabolism. Finally, a few 
related computational issues are discussed. 

2. Modulating functions method 

A modulating function ¢(t)ECK, defined over a finite 
time interval [0, T ], satisfies the following terminal 
conditions, 

dk¢(0)=0=dk¢(T) k=0, 1, …, K−1 (1) 

where dk is the differentiation operator d/dt of order k. 
A function f(t)EL1 over [0, T ] is modulated by taking 
the inner product with a modulating function ¢(t),p T 

< f, ¢)= f¢ dt (2) 
0 



The terminal constraints of Eq. (1) essentially make 
the boundary conditions of the function f(t) irrelevant 
after modulation. The following adjoint property trans­
fers the differentiation operation from the function f(t) 
on to the modulating function ¢(t), thereby eliminating 
the need to approximate time derivatives from noisy 
measurement data. 

<dkf, ¢)= (−1)k< f, dk¢) (3) 

Pearson and Lee (1985) utilized sinusoidal functions 
to construct orthogonal sets of modulating functions 
and took advantage of FFT/DFT methods. A family of 
r trigonometric modulating functions i(t), are con­
structed as linear combinations of cosine and sine func­
tions of the first 1+L frequency modes, 

i(t)=CF(w, t) (4) 

F(w, t)= (1, cos wt, −sin wt, …, cos  Lwt, −sin Lwt)t 

(5) 

where L is an integer valued filtering parameter and 
w=2n/T. The combination matrix C, of size r× (1+ 
2L), is formulated to satisfy the terminal conditions set 
in Eq. (1) and guarantees the linear independence of the 
r modulating functions. There are several procedures 
for obtaining C, including the one by Maletinsky 
(1979), Pearson and Lee (1985) who used Vandermonde 
matrix identities and an explicit formulation given in 
Co and Ungarala (1997). 

Sinusoidal functions are smooth and infinitely differ­
entiable, which facilitates the use of a simple block 
diagonal matrix operator to perform differentiation on 
trigonometric modulating functions, 

dki(t)= (−1)kCDkF(w, t) (6) 

 0  
−1 Obtaining a polynomial fit to a parameter over a finite 

where i is a column vector of r modulating functions 
of order K=max{kj }, which is the order of the system. 
The number of parameters to be determined is q, hence 
the number of linearly independent algebraic equations 
generated must be at least equal to q, i.e. r;q. 

The unknown parameters aj are time-dependent, con­
sequently they cannot be moved out of the integral 
sign, p T p T 

¢aj (t) dkjlj dt-aj (t) ¢dkjlj dt (10) 
0 0 

In cases where a model of the parameter’s functional­
ity with time and process variables is previously deter­
mined, the embedded parameters belonging to the 
function can be estimated, provided the differential 
equation remains linear in parameters (Unbehauen & 
Rao, 1990; Preisig & Rippin, 1993a). Such an approach 
is limited to fixed and predetermined functional forms 
of time dependencies. It may not be suitable for pro­
cesses in which previous knowledge of the behavior of 
the parameter is not available or when the process 
moves into previously unknown fault modes or when a 
failure event causes drastic changes in the process. 

The trajectory of the unknown time-varying parame­
ter may be modeled by a piecewise polynomial spline of 
appropriate degree over a finite time interval and the 
constant coefficients of the polynomial can be estimated 
subsequently. Benhadj-Braiek and Rotella (1990) com­
bined the modulating functions method with polyno­
mial approximations for off-line identification of 
vectorial time-variant differential equations. They con­
sidered time-varying parameter matrices comprising ele­
ments of polynomial functions and modulating 
functions of the kind tnl, where l is a trigonometric 
function. Zhong (1997) employed the method to esti­
mate rate parameters in catalyst deactivation kinetics. 

D=wdiag(0, r, 2r, …,  Lr); r=
1 0

(7) 
time interval facilitates the tracking of the behavior of 
the parameter with time and eliminates the complexities 

Consider a general nonlinear differential equation associated with establishing the functionality of the 
possessing the affine structure shown below (Co & parameter in terms of other variables. Once the trends 
Zhong, 1997), in parameters are accurately estimated, the factors infl­

p q uencing the parameter’s time dependency can be inves-
I dkj(j (t, u, y)= I aj (t)dkjlj (t, u, y) (8) tigated to find a model for the behavior of the 

j=1 j=1 

where (j and lj are nonlinear functions of time t, input 
u, and output y, which do not contain any unknown 
parameters and aj are the unknown time-varying 
parameters to be determined. For kq =0 and lq =1, 
the parameter aq serves as a bias term if the process 
model requires one. Modulation of Eq. (8) with a set of 
linearly independent modulating functions converts it 
into a set of algebraic equations, 

p q 

<i, dkj(j)= <i, aj d
kjlj ) (9) 

parameter. 
Let us assume that a time-varying parameter a(t), 

can be modeled by a polynomial spline of degree M on 
a finite time interval (Ungarala & Co, 1996), 

a=a0 +a1r+a2r
2 +…+aMrM (0:r:T) (11) 

It is evident from the structure of the differential 
equation (Eq. (8)), that the unknown parameters multi­
ply pure derivatives of a function of the input and 
output signals, in other words, the nonlinearities are 
integrable. A polynomial spline model of the parame­

j=1 j=1 ters allows us to extract the coefficients of the polyno­
I I 



  

  

    

  
  

mial out to multiply the derivatives of a new set of 
functions and preserve the structure of the differential 
equation. Lemma 1 provides the basis for rearranging 
the product of a parameter and the derivative of a 
nonlinear function in the original differential equation. 

Lemma 1. Let the functions f(t) and g(t), belonging to a 
class of functions Ck , be defined over [0, T ], then 

k k 
fdkg= I (−1)i dk− i(gdif ) (12) 

i=0 i 

Proof: see Appendix A. 
Lemma 2 makes use of Lemma 1 on the inner 

product <¢, adkl), to move the coefficients of the 
polynomial out of the inner product. 

Lemma 2. If a(t) is approximated as a polynomial spline 
in r of degree M on [0, T ], modulation is applied to a new 
set of functions dk−1(lrn−1) instead of rndkl, 

M min{k,n} 

<¢, adkl)= I an I Ik,i,n <¢, dk− i(lrn− i )) (13) 
n=0 i=0 

where an are the coefficients of the polynomial spline and, 

Ik,i,n = (−1)i k !n ! 
(14)

i !(k− i )!(n− i )! 

Proof: see Appendix B 
To illustrate the use of Lemma 2, consider the Van 

der Pol oscillator, 

d2y dy
=a (1−by2)−cy (15)

dt2 dt 

where the parameters a and b are time-varying in 
nature. Eq. (15) can be transformed into affine form as 
shown below, 

d2y dy d(y3)
=a1 +a2 +a3y (16)

dt2 dt dt 

where the parameters aj are combinations of a, b and c. 
Suppose a1 is modeled by a linear polynomial spline, a2 

is modeled by a quadratic spline and a3 is a constant 
over a given time interval 0:r:T, 

d2y dy d(y3) 
2 = (a10 +a11r) + (a20 +a21r+a22r

2) +a30ydr dr dr 
(17) 

Applying the result of Lemma 2, 

d2y dy d(ry) d(y3) 
2 =a10 +a11 −y +a20dr dr dr dr 

d(ry3) d(r2y3)
+a21 −y3 +a22 −2ry3 +a30y (18)

dr dr 

Using Pearson–Lee method with trigonometric mod­
ulating functions, the constant coefficients aij, in the  
above equation can be obtained by least squares (Co & 
Ungarala, 1997). See Appendix C for the extension of 
Pearson–Lee method for a general differential equation 
in affine form with q unknown parameters modeled as 
polynomial splines of different degrees. 

3. On-line implementation 

The parameter estimation as outlined in the previous 
section is implemented on a batch of time series data 
spanning a time interval [0, T ]. Pearson and Lee (1985) 
suggested the applicability of the method to on-line 
identification by sequentially solving the least squares 
estimation problem for [0, T ], [tt, T+tt ], [2tt, T+ 
2tt ] and so on. Although the idea is conceptually 
appealing, in practice it requires a large amount of 
computation because FFT is used at every sampling 
instant and the data sets over the interval of duration T 
are required to be of length 2m . 

Pearson–Lee method, like the other versions of the 
modulating functions method, is an off-line procedure 
despite possessing significant advantages over many 
system identification techniques. Co and Ungarala 
(1997) developed computationally efficient recursion 
formulae for Pearson–Lee method applied to sequen­
tial estimation of time-varying parameters. However, 
the procedure introduced a lag of T/2 time duration in 
the estimates. The lag is a direct consequence of the 
assumption that the parameters are constant inside a 
given interval [ktt, T+ktt ], thus yielding average 
values of the parameters over the length of the interval. 

In this section we will generalize the treatment of 
time varying parameter estimation based on the poly­
nomial spline models for parameters introduced in the 
previous section. A set of sliding window recursion 
relations with simple matrix update equations will be 
constructed that do not require the use of FFT for 
sequential estimation. A batch of data spanning T time 
duration is processed at each sampling instant to deter­
mine the constant coefficients of the parameter 
polynomials. 

At the current sampling instant k, the integrals 
Cm

n 
,k( f ) and Sm

n 
,k( f ) resulting from the modulation of 

rnf(r) with trigonometric functions are, p T 2n 
Cm

n 
,k( f )= r nf(ktt+r−T) cos mr dr (19) 

0 T p T 2n 
Sn

m,k( f )= − rnf(ktt+r−T) sin mr dr (20) 
0 T 



  
  

  

  
  

  

These integrals can be numerically computed using a 
quadrature formula such as the rectangular rule, the 
trapezoidal rule or the Simpson’s rule. Co and Un­
garala (1997) contains a comparison between rectangu­
lar and trapezoidal methods. We will use the 
trapezoidal rule to approximate Cm

n 
,k( f ) and Sm

n 
,k( f ) as  

shown below, 

n nCm,k( f )� (tt)C( m,k( f ) (21) 

n nSm,k( f )� (tt)S( m,k( f ) (22) 

where, 

N−1 2n 1 n nC( m,k( f )= I ( jtt)nf( j+k−N)cos mj +  N,k( f ) 
j=0 N 2

(23) 

N−1 2n
 n
S( m,k( f )= −  I ( jtt)nf( j+k−N)sin mj (24)
j=0 N 

 N
n 

,k( f )= (Ntt)nf(k) − (0)nf(k−N) (25) 

with  N
0

,k( f )= f(k)− f(k−N) when n=0 and  N
n 

,k( f )= 
(Ntt)nf(k) for n>0. 

Using shifting properties of trigonometric functions, 
efficient recursion formulae can be developed for evalu­

n nating C( m,k and S( m,k for successive sampling instants. 
Lemma 3, which forms the basis for online implementa­
tion of the extended Pearson–Lee method, is a matrix 

n n nequation that relates C( m,k−1 and S( m,k−1 to C( m,k and 
nS( m,k, respectively. The essence of the lemma is as 

follows, if the integrals are computed at the present 
sampling instant k with N data points from the past, 
successive values of the integrals are calculated by using 
the next available sample and discarding the oldest 
sample. Thus the recursion formulae allow us to evalu­
ate the integrals sequentially for [tt, T+tt ], [2tt, 
T+2tt ] and so on as a window of N data points is 
moved one sampling time forward, without using FFT. 

nLemma 3. A matrix equation relates C( ( f ) andm,k−1
 
n n n
S( m,k−1( f ) to C( m,k( f ) and S( m,k( f ), respectively, by shift­

ing a window of N data points one sample time forward: 

cos((2n/N)m) −sin((2n/N)m)
8m = (27)

sin((2n/N)m) cos((2n/N)m) 

n 
hn,l = (−tt)n− l (28)

l 

 N
n 

,k−1( f )= [(N−1)tt ]nf(k) − (−tt)nf(k−N) (29) 

Proof: see Appendix D 
A similar version of the moving discrete Fourier 

transform was used for model reduction in Lilly (1991). 
Lemma 3 can be used to formulate a straight forward 
matrix update equation to recursively compute ZL

n 
,k( f ) 

which is a matrix of the integrals Cm
n 

,k( f ) and Sm
n 

,k( f ) 
for successive k as in the following Corollary 4. Define 
the following update matrices with respect to the edges 
of a data window of length N. 
1. Update matrix for a new data point 

0 n 0tk ( f )= ( N,k( f ), …,  N,k( f ))= f(k)1n − f(k−N)1n 

(30) 

1n = (1,(N−1)tt, …,{(N−1)tt}n) (31) 

1n 
0 = (1,−tt, …,(−tt)n) (32) 

2. Update matrix for trapezoidal rule

0 n 0 k ( f )= ( N,k( f ), …,  N,k( f ))= f(k)Pn − f(k−N)Pn 

(33) 

Pn = (1, Ntt, …,(Ntt)n) (34) 

Pn 
0 = (1, 0, …, 0n) (35) 

Corollary 4. Matrix formulation for recursive update of 
ZL

n 
,k( f ) 

1 1 
Zn

L,k( f )=< Zn
L,k−1( f )Hn+ wtk−1( f ) + wrk ( f )2 2 

(36)
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Il
n hn,lC( l ( f )=0 m,k−1 where,C( n 

m,k( f ) 
=8mnS( m,k( f )  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

hn,lS( l 
m,k−1( f )nIl

0 1C0,k C0,k( f ) ( f ) …  C0,
n

k( f )=0 

0 1 nC1,k( f ) C1,k( f ) …  C1,k( f ) 
0 1 nS1,k( f ) S1,k( f ) …  S1,k( f ) 

 
 
 
 

1 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

( f ) (37)nZL,k =( f ) ( f )n N,k−1 
n N,k · · ·  

+ + 2 (26) 
0 1 nCL,k( f ) CL,k( f ) …  CL,k( f )0 0
0 1 nSL,k( f ) SL,k( f ) …  SL,k( f )

where, <=diag(1, 81, …,  8L ) (38) 

1 

2



    

    

 hn,i− j i; j
Hn (i, j )= i, j=1, 2, …, n+1 (39)

0 i< j 

w= (1, 1, 0, …, 1, 0)t (vector of length 1+2L) 
(40) 

The following lemma states a commutative relation­
ship between Dk and < which will be used to improve 
the computational efficiency of the algorithm. 

Lemma 5. Let <=diag(1, 81, …,  8L ) and D=w diag(0, 
r, 2r, …,  Lr) then the following commutativity relation­
ship holds true, 

Dk<=<Dk (41) 

Proof: see Co and Ungarala (1997) 

Lemma 6. The recursion formulae to sequentially solve 
the least squares problem resulting from the modulation 
of the affine differential equation with polynomial spline 
models for time-varying parameters are: 

1  

GP (k)=< GP (k−1)H+ VP o(wtP (k−1))

2 

Fig. 1. Algorithm of on-line identification of no-stationary continu­
ous-time systems. 

1 
+ VP o(wrP (k)) (42)

2   1 
GQ(k)=< GQ (k−1)H+ VQ o(wtQ (k−1))

2
 

1
 
+ VQ o(wrQ (k)) (43)

2 

where o is the Haddamard product and 

0 0 0GP(k)= (Dk1ZL,k((1), Dk2ZL,k((2), …, DkpZL,k((p )) 
(44) 

GQ(k)= ('1, '2, …,  'q ) (45) 

'j =(DkjZL,k 
Mj−1(lj), …, Mj (lj ), Dkj−1ZL,k 

Dkj−/jZL,k (46)Mj−/j (lj )) 

VP = (Dk1w, …,  Dkpw) (47) 

VQ = (Dk1w, …,  Dkqw) (48) 

H=diag(···, HMj
, …,  HMj −/j

, …) (49) 

tP (k)=w(tk ((1), tk ((2), …, tk ((p )) (50) 

tQ (k)=w(tk (l1), tk (l2), …, tk (lq)) (51) 

P (k)=w( k ((1), k ((2), …, k ((p )) (52) 

Q (k)=w( k (l1), k (l2), …, k (lq)) (53) 

Proof: use Corollary 4 
Fig. 1 summarizes the on-line implementation of 

Pearson–Lee modulating functions method with spline 
models of time-varying parameters. For a given win­
dow size N, filtering parameter L and spline models for 
the parameters, the constant matrices C, B, <, D, W, w, 
VP, VQ and H are calculated. The on-line identification 
algorithm is initialized by computing the regressor and 
regressand using Pearson–Lee method with FFT and 
solving the resulting least squares problem for the 
polynomial coefficients. The regressor and regressand 
are updated for the next available sample by calculating 
the update matrices. Thus, the least squares problem is 
sequentially solved at each sampling instant to obtain 
the parameter vector A(k). 

4. Bio-process model identification 

On-line identification of microbial growth processes 
has been receiving increasing attention in recent years, 
primarily due to the growing interest in the application 
of modern systems theory to bio-process control and 
optimization schemes. Modeling and identification of 
bio-processes are known to be the main bottlenecks in 
the design of bio-process control methodologies. Apart 
from being highly nonlinear in nature, bio-processes are 
generally non-stationary. Variability in model parame­



ters may be induced by the sensitivity and selectivity 
exhibited by microorganisms to their environmental 
conditions. 

The typical unstructured model of a fermentation 
process comprises a set of mass balance equations of 
the state variables coupled with one or more kinetic 
rate models. A multitude of analytical expressions are 
available to represent the complex relationships be­
tween kinetic rate parameters and the state variables 
(Bastin & Dochain, 1990). Regardless of the type of 
model employed, the model parameters are often as­
sumed to have biological significance and are treated as 
characteristic of the process, although the identification 
of a unique set of physically meaningful parameters 
may not be feasible for many systems. While any such 
interpretation is limited by the validity of the model, 
changes in model parameters may indicate physico­
chemical changes inside the process (Holmberg & 
Ranta, 1982). The rational design of advanced control 
and optimization schemes for bio-processes is therefore 
intricately linked to the identification of kinetic rate 
parameters accurately and in real-time (Van Impe & 
Bastin, 1995; Thatipamala, Hill & Rohani, 1996). 

The problems of identifiability of kinetic rate models 
such as the Monod law with limited and noisy experi­
mental data have been well documented (Nihtilä &  
Virkkunen, 1977; Holmberg, 1982; Andrews, 1984; 
Stephanopoulos & San, 1984). Several methodologies 
are currently employed for on-line identification of the 
kinetic rate models. Adaptive estimation techniques 
employing recursive least squares (RLS) methods have 
been frequently used to track the Monod law parame­
ters. Aborhey and Williamson (1978) reported the esti­
mation of Monod parameters and yield coefficient as 
functions of culture temperature and Golden and Yd­
stie (1989) used recursive least squares with forgetting 
factors. The RLS algorithms suggested in the literature 
are adaptations of schemes developed for time-invari­
ant systems and they fare poorly when used for moni­
toring parameters that drift with time, besides being 
very sensitive to noise (Holmberg & Ranta, 1982). 
Estimation of time varying parameters in a linearized 
discrete fermentation model are also reported in the 
literature (Zhou & Cluett, 1996). However, the dynamic 
behavior of biological systems cannot be adequately 
described by a linear model and the parameter drifts of 
the linearized discrete model may not correspond to 
changes in actual physical parameters. 

In general, the functionality of the kinetic rate 
parameters with respect to process variables are inade­
quately known. Hence, it is difficult to define and 
validate these functions. The analytical expressions 
available for kinetic rate parameters are limited in 
scope because they are often system specific and exten­
sions to wider operating regions may not be feasible 
(Stephanopoulos & San, 1984). Motivated by the need 

to find estimation schemes that are independent of 
kinetic rate models, several researchers proposed non­
linear adaptive schemes for estimating the kinetic rates 
themselves as time-varying parameters. The extended 
Kalman filter (EKF) is widely applied to this effect 
(Stephanopoulos & San, 1984; Shimizu, Takamatsu, 
Shioya & Suga, 1989). The EKF is derived from the 
application of Kalman filter to the linearized model of 
a nonlinear system. These algorithms may result in 
biased estimates if they are not properly initialized, and 
analyzing the stability and convergence properties of 
the EKF schemes over wide ranges of operation is 
known to be extremely difficult. 

Bastin and Dochain (1986) developed an adaptive 
observer to estimate the unmeasurable state variables 
and kinetic rate parameters on-line. Despite the simple 
structure of the proposed approach, the tuning of these 
estimators has been known to be difficult (Oliveira, 
Ferreira, Oliveira & Feyo de Azevedo, 1996; Farza, 
Busawon & Hammouri, 1998). Assuming that the oxy­
gen uptake rate (OUR) data and its derivative are 
available on-line, Lubenova (1996) suggested an adap­
tive algorithm for the estimation of specific growth rate. 
Although these algorithms are simple in structure and 
their stability is proven, they tend to be highly sensitive 
to initial guesses and the OUR data from off gas 
analysis can have a high signal-to-noise ratio, particu­
larly in animal cell cultures where the oxygen demand 
can be extremely small (Singh, 1996). 

4.1. Fermentation model 

The growth dynamics of a general single organism-
single rate limiting substrate fermentation process in a 
chemostat are described by the following set of mass 
balance equations with endogenous metabolism and 
maintenance requirements included (Blanch & Clarck, 
1996), 

dx 
=/x−Dx−Kex (54a)

dt 

ds / 
=D(si −s)− x−mx (54b)

dt Y 

where x is the concentration of the biomass, s is the 
concentration of the rate limiting substrate, D is the 
rate of dilution, si is the concentration of limiting 
substrate in the nutrient feed, / is the specific growth 
rate, Y is the biomass on limiting substrate yield factor 
and Ke and m are endogenous metabolism rate constant 
and maintenance coefficient, respectively. Additional 
mass balance equations are used to account for the 
formation of synthesis products, if any. 

The process parameters in the model /, Y, Ke and m 
represent the state of growth of the biomass and sub­
strate consumption in the chemostat. The specific 



 
 
 

 
 
 

Fig. 2. Simulation data (a) culture temperature, (b) biomass concen­
tration and (c) limiting substrate concentration. 

growth rate is one of the most important parameters of 
the process because maximum / is synonymous with 
maximum biomass cultivation. In order to optimize the 
biomass production, the specific growth rate needs to 
be observed and controlled. Generally, / is a nonlinear 
function of the state variables, environmental condi­
tions, operating conditions and other physico-chemical 
factors such as temperature, pH, light intensity and cell 
age. In practice, / is not directly measurable and thus, 
has to be estimated from measured data such as 
biomass and substrate concentrations. One of the most 
simple and frequently used expressions for the specific 
growth rate is the Monod law, 

/*s 
/= (55)

Ks +s 

where / is represented as a function of the substrate 
concentration only, /* is the maximum growth rate 
and Ks is the half saturation constant which is termed 
as a measure of the organism’s affinity to the substrate. 
The functionality of / with respect to s is not important 
for the asymptotic solution of the model Eqs. (54a) and 
(54b), as long it is a monotonously increasing function. 
The Monod law fails to predict some experimentally 
observed phenomena like transient oscillations and hys­
teresis in biomass growth (Tang, Sitomer & Jackson, 
1997). Assuming that the Monod law is valid, Topiwala 
and Sinclair (1971) studied the effects of temperature 
on specific growth rate and found that the Monod law 
parameters /* and Ks are strong functions of 
temperature. 

The yield coefficient Y relates the amount of biomass 
produced per unit of limiting substrate consumed. A 
knowledge of Y is essential for the formulation of the 
nutrient feed and to make the desired substrate rate 
limiting. Cells consume some substrate to provide en­
ergy for maintaining chemical gradients, transport of 

nutrients across the cell membrane and DNA repair 
and replication. Maintenance energy requirements are 
accounted for in the substrate mass balance, Eq. (54b). 
Cells may also consume part of their own mass for 
providing maintenance energy, termed as endogenous 
metabolism, which is accounted for in the cell mass 
balance, Eq. (54a), Both the endogenous metabolism 
rate Ke, and the maintenance coefficient m, vary with 
biomass growth rate, temperature and pH (Topiwala & 
Sinclair, 1971). Hence, the observed yield coefficient 
Yobs exhibits a strong dependency on growth rate and 
environmental variables. The potential yield Y, remains 
a constant for a wide range of operating conditions 
until, at high temperatures and extreme pH values, the 
cells begin to die. 

4.2. Simulation example 

Consider a fermentation process characterized by the 
state space model given in Eqs. (54a) and (54b). Let us 
assume that the ‘true’ specific growth rate is governed 
by the Monod law. Furthermore, the Monod parame­
ters /* and Ks and the endogenous metabolism rate Ke, 
will be assumed to be governed by the Topiwala–Sin­
clair model for the organism Aerobacter aerogenes with 
glucose as the rate limiting substrate as shown below, 

−14230/RTc −1.39×1023 −32900/RTc/*=2.45×1010e e
(56) 

1 −11800/RTc=2.96×1010e (57)
Ks 

−9000/RTcKe =2.71×105e (58) 

where Tc is the culture temperature. The maintenance 
coefficient m=0 and the yield coefficient is assumed 
constant at Y=0.5 in the range 25°C:Tc :45°C. 

The model equations were integrated for 150 h of 
chemostat operation with a trapezoidal signal for the 
culture temperature Tc, as shown in Fig. 2a. 

35°C t:10 

35−0.2(t−10) 10< t<60 

Tc(t)= �25°C 60: t:90 (59) 

25+0.2(t−90) 90< t<140 

35°C t;140 

The operating conditions and initial values for inte­
gration are, D=0.65 per h, si =0.3 g/l and x0 =0.1235 
g/l, s0 =0.0107 g/l. The output sequence shown in Fig. 
2b and c was generated with a sampling time tt=0.15 
h. The biomass concentration x, was corrupted with 
white noise of Gauss (0, 0.001) and the substrate con­
centration s, was corrupted with Gauss (0, 0.002). 

The first step towards using modulating functions 
method is to represent the model equations in the 
prescribed affine form. Eq. (54a) is rearranged to obtain 



  

  

Fig. 3. Estimation of specific growth rate /. 

Fig. 4. Estimation of (a) yield coefficient Y and (b) endogenous 
metabolism rate constant Ke. 

Fig. 5. Estimation of Monod law parameters (a) maximum specific 
growth rate /* and (b) half saturation constant Ks as functions of 
temperature. 

an affine form (Eq. (60b)) for the estimation of (/− 
Ke). Elimination of / from Eqs. (54a) and (54b) results 
in the second affine equation (Eq. (60b)) for the estima­
tion of Y and Ke. 

dx 
+Dx= (/−Ke)x (60a)

dt 

dx ds 
+Dx=Y D(si −s)− −Kex (60b)

dt dt 

The parameter (/−Ke) was estimated by assuming 
that it is modeled by a quadratic polynomial spline 
inside a data window of N=50 samples using a filter­
ing parameter L=3. From the second affine form Eq. 
(60b), parameters Y and Ke were estimated by assuming 
that Y is a constant and Ke is approximated by a 
quadratic spline with N=80 and L=6. As the data 
window moves forward at each sampling time, the 
parameters are given by evaluating the polynomial 
spline models at the leading edge (r=T) of the sliding 
data window. Once the window slides over and pro­
cesses N samples, the previous N estimates of the 
parameters were smoothed out over the length of the 
window by their respective spline models. The smooth­
ing eliminates the small errors caused by the spline 
models at the edges of the data window. The resulting 
estimate of the specific growth rate / as a function of 
time is shown in Fig. 3. Estimates of the yield coeffi­
cient Y, and endogenous metabolism rate Ke are shown 
in Fig. 4. The variations in the parameters were tracked 
faithfully with good accuracy. Note that the parameter 
(/−Ke) was estimated using the biomass concentration 
only; in the absence of endogenous metabolism, the 
estimation of specific growth rate does not require the 
substrate concentration measurements. 

The estimates of / and Ke were obtained without 
using the models of their dependencies on time and 
temperature. Thus, the specific growth rate can be 
estimated as a time-varying parameter, independent of 
the analytical expression chosen to model it. Nonethe­
less, in cases where / is known to be modeled by the 
Monod law fairly well, the Monod parameters /* and 
Ks can also be estimated on-line. Substituting Monod 
law into the substrate mass balance Eq. (54b), results in 
an affine equation from which both /* and Ks are 
readily computed. 

1 ds2 ds /* 
−Ds(si −s)=Ks −D(si −s) − sx (61)

2 dt dt Y 

Fig. 5 shows the results of the estimation of /* and 
Ks, plotted against the culture temperature Tc, with 
quadratic spline approximations, N=80 and L=6. 
The Arrhenius parameters in the Topiwala–Sinclair 
models of Eqs. (56)–(58), can be estimated subse­
quently by employing a batch modulating functions 
method or other nonlinear optimizers, utilizing the 



Fig. 6. Effect of window size N and filtering parameter L on the 
estimation error for the estimation of /−Ke modeled by a quadratic 
spline (M=2). 

smooth estimates of /*, Ks, Ke and Tc measurements. 
Pearson–Lee method was used on Eqs. (57) and (58) 
after taking the logarithm on both sides to express them 
in affine form. A batch of 70 estimates of Ks and Ke and 
the corresponding Tc (noise-free) was used to compute 
the Arrhenius constant and activation energy for the 
half saturation constant (Ks), A1 =2.96×1010, E1 = 
11800, and for the endogenous metabolism rate (Ke), 
A2 =2.71×105, E2 =9000. Eq. (56) cannot be con­
verted to affine form, hence, the Levenberg–Marquardt 
method was used with initial guesses (15000, 30000). 
The fitted values of the Arrhenius parameters of maxi­
mum specific growth rate (/*) are A3 =2.45×1010, 
A4 = −1.39×1023 and E3 =14230, E4 =32900. These 
are the exact values used in the simulation. 

5. Computational issues 

In the derivation of the recursion formulae for the 
online implementation of Pearson–Lee method, it was 
assumed that signals from a continuous system are 
sampled at a uniform rate. The sampling time interval 
tt, plays an important role in parameter identification 
schemes (Sinha & Puthenpura, 1985). If the process is 
sampled too fast or tt is too small, the computational 
burden on the algorithm increases, which is not desir­
able especially in the case of on-line identification. A 
general rule of thumb for selecting the sampling time is, 
tt<0.1rmax where rmax is the dominant time constant 
of the process. Another related factor in terms of 
computational load is the variation of the parameters 
with time. If the parameters are changing relatively 
slowly, even though samples are available, the least 
squares problem need not be solved for every tt. The 
parameters may be estimated after N updates to the 

recursion formulae by using least squares once every N 
samples, which in turn reduces the computational load. 
The resulting estimates are the same as the smoothed 
out estimates mentioned above. It should be noted that 
the computational burden is independent of the length 
of the data window. 

The algorithm contains three critical variables to be 
selected by the user, the window size T=Ntt, the 
degree of polynomial model Mj and the filtering 
parameter L. In order to assess the influence of these 
variables on the accuracy of the estimates obtained, 
define the following expression for estimation error, e 1 p TE 

E= [a(t)true −a(t)est]2 dt (62)
Te 0 

where a is the parameter and Te is the total time of the 
estimation. 

As a general rule, the window should be sufficiently 
wide to contain the characteristic nonlinearity informa­
tion of the system. If the window is too small, the data 
may not be sufficient to distinguish the system dynam­
ics, which will result in large fluctuations around true 
parameters. A small window is usually suitable for 
parameters that vary slowly enough so that they can be 
treated as essentially constants or at best ramp func­
tions inside the window. On the other hand a wider 
window will require increased complexity of the 
parameter’s functionality with time. 

Simulations were performed for different values of N, 
L and M for the estimation of (/−Ke). The results are 
summarized in Fig. 6; there exists an optimum window 
width, which adequately captures the dynamics of the 
process, the estimation error passes through a minimum 
as the window size increases. This feature is consistent 
with other recursive moving window estimation meth­
ods. The filtering parameter L must be chosen such that 
the terminal conditions for the modulating functions 
are not violated. A general rule is 2L;K, the order of 
the system (Pearson & Lee, 1985). By definition, modu­
lation results in the filtering of signals through the 
Fourier series coefficients. If L is too large, the higher 
frequency noise accompanying the signals receives em­
phasis resulting in deteriorated estimates. The negative 
effects of a large L can be compensated for by choosing 
a wider window, but a large window may require a 
more involved expression to approximate the time de­
pendency of the parameter. 

In general, parameter trends inside a window that 
captures the dynamics adequately, can be approximated 
by second, third or at most fourth degree polynomials; 
using higher degrees may result in errors because of the 
tendency of piecewise splines to stray away near the 
ends of the interval. Fig. 7 shows the effect of the 
degree of polynomial approximation M. A zero degree 
assumption shifts the parameter estimates by a delay 
proportional to the window size, since the estimates are 



assumed constant and are averaged over the length of the 
window (Co & Ungarala, 1997). On the other hand, using 
increasingly higher degree results in undesirable oscilla­
tions around the true parameters at the edges of the data 
window. 

6. Conclusions 

The modulating function methods offer two distinct 
advantages over other identification methods, they allow 
for arbitrary initial conditions and avoid the approxima­
tion of time derivatives from noisy signals. The Pearson– 
Lee method is a computationally efficient off-line 
estimation scheme that employs trigonometric modulat­
ing functions and takes advantage of fast Fourier trans­
form techniques. However, the method was not suitable 
for on-line application because of the considerable com­
putational burden it imposes with the use of FFT for 
every sampling instant. In this paper, the Pearson–Lee 
method was extended for the estimation of time-varying 
parameters by approximating them as polynomial splines 
over finite time intervals. A sliding window recursive 
estimation algorithm is derived to sequentially determine 
the coefficients of the parameter model polynomials as 
a data window of fixed length moves forward at each 
sampling time. The algorithm is initiated with the Pear-
son–Lee formulation using FFT on a batch of data and 
then the regressor and regressand are updated by a simple 
matrix update equation. The algorithm is derived in a 
matrix formulation so that efficient matrix manipulation 
abilities of commercial software programs like MAT­
LAB can be utilized. 

The recursive estimation algorithm was utilized for 
time dependent parameter tracking in a fermentation 
process model. The specific growth rate and endogenous 
metabolism rate were estimated as time-varying parame-

Fig. 7. Effect of the degree of spline model on the estimation error for 
the estimation of /−Ke with L=3. 

ters without utilizing the associated kinetic rate models. 
The estimates yielded were accurate and faithful to their 
true variations with time in the presence of noise. The 
estimation of the embedded parameters in Monod law 
and Arrhenius parameters is also illustrated. The simula­
tion study concludes that model independent estimation 
of specific growth rate and yield factor in bio-processes 
facilitates further investigations into possible correla­
tions between parameters and the various factors that 
influence them. 

The effects of three important user selected variables 
in the estimation algorithm were investigated. It was 
found that an optimum data window size exists to 
capture the dynamics information adequately and the 
estimation error is dependent on the filtering parameter 
and the degree of polynomial used for modeling the 
parameters. The recursive version of the modulating 
functions method was shown to be fast and computation-
ally efficient for real time implementation. It proves to 
be a practical tool for time dependent parameter tracking 
and will be a good alternative to existing methods of 
parameter estimation in continuous time systems. 

Finally, it must be noted that at present the window 
size T, is fixed for the algorithm. It would be desirable 
to have an adaptive window size that varies with the 
frequency content of the signals so that a small window 
size can be employed at high frequencies and larger 
window sizes at low frequencies. Schoenwald (1993), 
Carrier and Stephanopoulos (1998) proposed a wavelet 
modulating function to address the issue. Future research 
will be centered around implementing a variable window 
size, including forgetting factors to discount past data 
and approximation of the parameters with adaptive 
degrees of polynomials. 

7. Nomenclature 

Latin symbols 
C combination matrix 

nC( k,m summation as defined in Eq. (23) 
D dilution rate, per h 
D matrix differentiation operator 
Ke endogenous metabolism rate g/l 
Ks half saturation constant, per h 
L filtering parameter 
M degree of polynomial 
N number of data points in [0, T ] 

nS( k,m summation as defined in Eq. (24) 
R gas constant, cal/K mole 
T size of the sliding window 
Tc culture temperature, K 
Y yield factor 
Zn

L,k matrix of summations defined in Eq. (37) 
aj coefficients of polynomials 
cm cos(2nm/N) 



  

 

 

 

  

  
  

   
    

          

  

  

 
 
 
 

l 

k  k nd differentiation operator d/dt of order kj k 

dk− i+1(g dif )+ (−1)0(−1)ir matrix rotation operator I + 
i−1i sm sin(2nm/N) i=1 

s substrate concentration, g/l 
si inlet substrate concentration, g/l 
x biomass concentration, g/l 

Greek symbols 

P, Q update matrices 
tP,tQ update matrices 

k difference vector 
tk difference vector 
tt sampling time 
i family of r modulating functions of order K 
aj unknown parameter 

n 
N difference defined in Eq. (25) 
n difference defined in Eq. (29) 

k k
dk+1(g d0f)+ (−1)k+1 d0(g dk+1f ) (A.5)

0 k 

but, 

k k k+1 k k 
+ = and = =1 

i i−1 i 0 k 

(A.6) 

Thus the lemma is valid for k+1, 

k+1 k+1 
dk+1− i(g dif )f dk+1 (−1)iI (A.7)g=

N 

( nonlinear function of u, y, and t i=0 

1n,1n 
0 vectors defined in Eqs. (31) and (32) 

8 matrix defined in Eq. (27) 
/ specific growth rate, per h 
/* maximum specific growth rate, per h 

0 Appendix B. Lemma 2 
Pn, Pn vectors defined in Eqs. (34) and (35) 
¢ modulating function 

i 

Proof: using Lemma 1on a dkl with,nonlinear function of u, y, and t 
a=a0 +a1r+a2r

2 +…+aMrM (B.1) 

k k ! k 

dk− i(ldia dkl (−1)i (−1)iI Ia)= =
i !(k− i )!i=0 i=0Appendix A. Lemma 1 

Mk ! n !
dk−i n−iIl an r

i !(k−i )! (n−i )!Proof (by induction): n=0 

M min{k,n} k !n !
(−1)i dk− i(lrn− i )I an If dg=d(gf )−g df (A.1) =

i !(k− i )!(n− i )!j=0 i=0 

(B.2)satisfies the lemma for k=1. Consider the differentia­
tion of f dkg, Note that, 

f dk+1g=d( f dkg)−df dkg (A.2) n ! 
rn− i n; i 

di n (n− i )!r = � (B.3)Suppose the lemma is true for any k. Differentiating 0 n< i
the lemma yields, 

Modulation of Eq. (B.2) results in, 
k k 

dk− i+1(g dif )d( f dk (−1)iIg) (A.3)= M min{k,n}
i <¢, adkl)= I an I Ik,i,n <¢, dk− i(lrn− i ))i=0 

n=0 i=0 

(B.4)Applying the lemma to df dkg, 
where, 

k k+1k k !n !dk− i(g di+1f ) (−1)i−1df dk (−1)iI Ig= = Ik,i,n = (−1)i
i i !(k− i )!(n− i )!i=0 i=1 

k 
dk− i+1(g dif ) (A.4)

i−1 Appendix C. Spline models and Pearson–Lee method 

Substituting Eqs. (A.3) and (A.4) into Eq. (A.2), The general nonlinear differential equation in the 
f dk+1g= affine form, 



 
 
 
 
 
   

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

   

 
 
 
 
 

 
 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 

 

 

  
 

  
 

  
    
    

 

  
  

 

p q 

I dkj(j (t, u, y)= I aj d
kjlj (t, u, y) (C.1) 

j=1 j=1 

If kj is the order of d operator on lj and Mj is the 
degree of the spline model for aj, then define /j = 
min{kj, Mj }. The nonlinear functions (j and lj of the 
affine equation can be expanded and grouped into row 
vectors P and Q, respectively, 

P= (dk1(1, dk2(2, …,  dkp(p ) (C.2) 

Q= (l( 1, l( 2, …,  l( q ) (C.3) 

where, 

l( j = [dkj (lj), dkj (rlj ), …, dkj (r Mjlj ), dkj −1(lj ), dkj −1 

Mj −1(rlj ), …, dkj−1(r lj ), …, dkj−/j (lj ), dkj −/j (rlj), 

…, dkj −/j (r Mj −/jlj )] (C.4) 

Define a matrix B such that, 

b1 0 ··· 0 10

0 ··· 0 1b2 1B= bj = (C.5)· · ·
 
0 0 ··· bq 1/j
 

Ikj,i,i 
0 ··· 0 

0 Ikj i,i+1 ··· 0
1i = 0(Mj − i+1)× i · · · 

0 0 ··· Ikj,i,Mj 

(C.6) 

The affine equation is now represented in a matrix 
formulation, 

PW= (QB)A (C.7) 

where W is a column vector of ones of length p and A 
is a column vector of length (q+L1 

q Mj ) containing the 
coefficients of the polynomial splines which are the new 
parameters to be estimated. 

A= (a1,0, …,  a1,M 1
, …,  aq,0, …,  aq,M )t (C.8)

q 

Modulation with a set of r trigonometric modulating 
functions <, yields a set of r linear algebraic equations. 

<i, P)W=<i, Q)BA (C.9) 

Note that the size of the parameter vector has in­
creased and consequently, r; (q+L1 

q Mj ). The parame­
ter estimation problem is now reduced to a linear 
regression and the parameter vector A is obtained by 
using regular least squares method. 
(CGPW)= (CGQB)A (C.10) 

where, 

GP = (Dk1Z0 
L((1), D

k2ZL 
0 ((2), …, DkpZ0 

L((p )) (C.11) 

GQ = (' 1, ' 2, …,  ' q ) (C.12) 

' j = (DkjZL 
Mj−1(lj ), …, Mj (lj ), D

kj −1ZL 

Dkj −/jZL 
Mj−/j (lj )) (C.13) 

C0 
0( f ) C0 

1( f ) …  C0 
n( f ) 

C1 
0( f ) C1 

1( f ) …  C1 
n( f ) 

ZL 
n ( f )= 

S1 
0( f ) S1 

1( f ) …  
· 

S1 
n( f ) 

(C.14) 
· · 

CL 
0 ( f ) CL 

1 ( f ) …  CL 
n ( f ) 

SL 
0 ( f ) SL 

1 ( f ) …  SL 
n ( f ) 

p T 

Cn
m( f )= rnf cos mwr dr (C.15) 

0 p T 

Sm
n ( f )= − rnf sin mwr dr (C.16) 

0 

Appendix D. Lemma 3 

Proof: define the following differences, 

n 
N,k( f )= (Ntt)nf(k) − (0)nf(k−N) (D.1) 

n 
N,k( f )={(N−1)tt}nf(k) − (−tt)nf(k−N) (D.2) 
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