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The use of a cell filter for state estimation in closed-loop NMPC of low 
dimensional systems 

Sridhar Ungarala ·, Keyu Li 
Dl>panmenr of Chemical and Biomedical £/lginuring, Cleveland Stole Un;vmily, 2121 EUClid Avenue. SH 455, Cleveland. OM 44115. USA 

1. Introduction 

General model predictive control (MPC) solves an open-loop 
optimal control problem in a finite horizon based on the prediction 
of future dynamics originating from the current state of the pro-
cess. Only the first control action is implemented and a new con­
trol profile is obtained at the next sampling time based on 
updated state information. However, directly measuring the entire 
state vector may nOI be economical or even feasible. Using avail­
able measurements and dynamic models. an estimation algorithm 
is used to reconstruct the state vector, which is then used as feed­
back to the MPC regulator. Since the quality of prediction and the 
optimality of control profile are dependent on the initial condition 
fed back. both the accuracy and speed of estimation are critical for 
the performance of the regulator. 

The use of nonlinear models in estimation and predictive con­
trol is gaining importance in the face of performance limitations 
faced by linear MPC and Kalman filter when applied to nonlinear 
processes commonly encountered in chemica l and biological sys­
tems. There is a small but growing list of industrial MPC applica­
tions based on nonlinear models [1[. The major challenge is the 
execution of nonlinear est imator-regulator solution in real -time, 
which can have a strong influence on the stabilizing properties of 
the regulator [2[. Several computationally feasible approaches for 
the regulator problem have been demonstrated recently such as 

successive quadratic programming 13[. off-line preparation and 
feedback [41 and in situ adaptive tabulation [51. 

The state estimation task may be posed as a general recursive 
Bayesian inference problem. For linear dynamic processes. the 
mean vectors and covariance matrices are sufficient summary sta­
tistics to represent the variables. Hence, iterative relationships for 
the conditional mean and covariance of the states track the evolu­
tion of the conditional probability density function (pdf) of the 
states. However. process nonlinearity can render the conditional 
pdf into a time-varying multimodal non-Gaussian. which is dis­
torted, spread and translated at each time instance. It is widely rec­
ognized that it is generally not possible to compute the infinite 
dimensional conditiona l pdf for real-time applications in a recur­
sive manner. 

Originally the extended Kalman filter (EKF) was used as a state 
estimator in conjunction with nonlinear MPC and it is still popular 
in ind ustrial applications due to its simplicity [61. More recently, 
moving horizon estimation (MHE) has gained attention due to its 
superior estimation properties [31. The ability to impose con­
straints has been the most appealing feature of state estimation 
by moving horizon formulation. Several authors derived a probabi­
listic formulation and interpreted the MHE as a genera l Bayesian 
estimator [7- 91. Closed-loop nonlinear MPC based on MHE is a to­
pic of recent investigations 131. The presence of two nested nonlin­
ear programs is a challenge for practical applications. In some cases 
the optimization in MHE may have larger number of degrees of 
freedom than the MPC regulator. Advances in nonlinear program­
ming may alleviate the computational demands of MHE. while 
real-time implementations remain a challenge. 



During recent years there has been a revived interest in solving 
recursive Bayesian inference problems without simplifying 
assumptions about nonlinearity or non-Gaussianity. Density based 
methods such as sequential Monte Carlo (SMC) filter has been 
shown to be more accurate and faster than optimization based 
methods [10,11]. Similar to SMC the cell filter (CF) is based on 
Monte Carlo integration but relies on aggregate Markov chains 
developed offline, which reduces the online computational burden 
[12]. Extension of both SMC and CF to constrained systems are also 
reported [13,14]. So far SMC and CF approaches have been demon­
strated in open-loop processes only. The main objective of this pa­
per is to demonstrate the use of the cell filter for closed-loop 
nonlinear MPC regulation, where an MHE may be avoided. Simula­
tion examples dealing with a nonlinear CSTR and an agricultural 
pest control problem are discussed. 

2. Closed-loop regulation 

The nonlinear process under consideration is described by a sto­
chastic vector difference equation 

xk ¼ f ðxk-1 ;uk-1;wk-1Þ; ð1Þ 

where xk is the state vector, uk is the control vector and wk is a vec­
tor of uncorrelated random variables distributed according to a 
known probability density function pw(wk), which is generally a 
non-Gaussian pdf. In practice f may be realized via numerical inte­
gration of ordinary differential equations (ODEs) over a sampling 
interval Dt. During the sampling interval the inputs uk-1 and wk-1 

are considered constant to generate a portion of the state trajectory 
originating at xk-1 and terminating at xk. 

The state of the process is often not observable directly or com­
pletely. It is assumed that the available process measurement vec­
tor yk is related to the states through a nonlinear function 

yk ¼ hðxk ; vkÞ; ð2Þ 

where vk denotes uncorrelated random measurement errors distrib­
uted according to a known pdf pv(vk), which is in general a non-
Gaussian pdf. 

Given the knowledge of the current state of the process, say x̂k 

the regulation task is posed as an open loop optimal control prob­
lem inside a finite time horizon extending into the future. A model 
predictive controller determines the control signal profile over the 
control horizon Hc based on the prediction of future dynamic 
behavior over a prediction horizon Hp P Hc, while optimizing a 
performance criterion. The optimization is posed as follows 

min 
uk;...;kþHc -1 

J ¼ CðxkþHc Þ þ  
X kþHc-1 

j¼k 

Uðxj;uj Þ; ð3Þ 

subject to a deterministic predictive model and constraints: 

xk ¼ f ðxk-1 ;uk-1; Efwk-1gÞ; 
xk 2 X; and uk 2 U; 

ð4Þ 
ð5Þ 

where Eq. (1) is used for prediction with the stochastic variable 
wk-1 assumed to be constant at its mean value. The sets X and U 
are often considered as boxed polyhedral convex sets. 

The performance criterion function U, known as the stage cost 
function, is most often taken as a measure of the deviation of the 
state variables and the control signal from their respective target 
values xt and ut. The target values are the steady states of the model 
that correspond to the setpoint value for the output ys.The following 
quadratic form for the performance criterion is frequently used 

t Þ t Þ t ÞUðxk; ukÞ ¼ ðxk - x TQ c ðxk - xt Þ þ ðuk - u T Rc ðuk - u

þ ðuk - uk-1ÞTScðuk - uk-1Þ; ð6Þ 

where Qc, Rc and Sc are symmetric, positive definite weighting 
matrices. The last term in the above equation represents penalty 
imposed on changes in control action. The terminal cost function 
C is defined as 

TCðxkþHc Þ ¼ xkþHc 
TcxkþHc ; ð7Þ 

where the weighting matrix Tc is obtained from the linear quadratic 
control solution of the linearized system [15]. 

If one knows the current state xk perfectly and there are no 
plant-model mismatch or unknown external disturbances, the 
open loop optimal control profile may be solved for infinite hori­
zons for some cases. The optimized control may then be executed 
at k = 0 for all future k > 0. In general both the initial condition and 
the predictive model are not known exactly. As a result the ex­
pected dynamic behavior inside Hc due to the implementation of 
the optimized control signal uk,. . .,k + Hc - 1 will differ from the true 
state of the process. 

When information is available in the form of new state estimates 
from measurements, disturbance estimates or updated models, a 
new control profile must be determined by incorporating the new 
information as feedback. In practice, only the first control value uk 

is executed as a constant input until the next state estimate is avail­
able from the measurements at k + 1, at which point the horizons 
are moved forward and the regulation problem is solved once again. 
The purpose of the state estimation algorithm is to reconstruct both 
the measured and unmeasured states from noisy measurements to 
provide an approximate initial condition for the regulation prob­
lem. Hence the accuracy and computational efficiency of the esti­
mator are critical for the performance of the regulator. 

It is desirable to estimate the temporal evolution of the states in 
some optimal sense. Since the state vector is a random variable, the 
complete statistical information about the state is embodied in its 
probability density conditioned on measurements p(xkjyk). Hence, 
the state estimator must construct the evolution of the conditional 
density from which optimal inferences may be drawn as state esti­
mates. The general formulation of the state estimator is posed as 
the well known recursive Bayesian update problem [16] Z

1 
pðxk jykÞ ¼  pðykjxkÞ pðxkjxk-1 Þpðxk-1jyk-1Þdxk-1; ð8Þ 

pðykÞ

where p(xk-1jyk-1) and p(xkjyk) are the conditional a posteriori den­
sities at time instances k - 1 and k respectively. The integral term is 
the a priori density where the state transition probability density is 
obtained as l l lof-1 l l lpðxk jxk-1Þ ¼ p ðf -1ðxk ; xk-1 ;uk-1ÞÞ ; ð9Þw l oxk 

l 
-1where for fixed xk-1 and uk-1, the inverse of f(xk-1,uk-1,wk-1) is  f . 

If the dimension n of the state vector is equal to the dimension m of 
the random noise vector, the model can be solved for wk-1 and f-1 is 
an n-dimensional vector function. In case m < n the state vector is 

ðmÞT ðn-mÞTpartitioned into xk 
T ¼ ½xk ; xk ] and the state transition pdf 

is 

ðn-mÞ ðmÞ ðmÞ pðxk jxk-1Þ ¼ pðx jx Þpðx jxk-1Þ; ð10Þk k k 

ðmÞ f ðmÞ ðn-mÞ ðmÞwhere pðx jxk-1Þ is computed from 
-1 

and pðx jx Þ ¼k k k 
ðn-mÞ n-dðxk - f ð mÞÞ, a Dirac delta function. 
The likelihood function p(ykjxk) is obtained as l ll ll l pðykjxkÞ ¼ pvðh

-1ðyk; xkÞÞl oh-1 

l; ð11Þ l oyk l 
where for fixed xk, the inverse of h(xk, vk) is  h-1. The denominator 
p(yk) is a normalizing constant independent of the states. State esti­
mates are drawn by maximizing or computing the appropriate mo­
ments of the conditional pdf. 



3. Practical approaches to nonlinear estimation 

3.1. Moving horizon estimation 

Moving horizon estimation aims to construct a conditional joint 
probability density function for a sequence of discrete state trajec­
tory in a horizon H. The joint pdf is maximized subject to con­
straints on states and inputs to locate the state estimates for the 
entire horizon 

max pðxk-H;...;k jyk-H;...;kÞ: ð12Þ 
x̂k-H;...;k 

Using Bayes rule the joint density can be written as 

pðyk-H;...;kjxk-H;...;kÞpðxk-H;...;k jy0;...;k-H-1Þ pðxk-H;...;kjyk-H;...;k Þ ¼ : ð13Þ 
pðyk-H;...;kÞ 

The Markovian nature of the random variables allows us to write 

k k-1 Y Y1 
pðxk-H;...;kjyk-H;...;k Þ ¼  pðyjjxjÞ pðxjþ1jxjÞ pðyk-H;...;kÞ j¼k-H j¼k-H Z 

x pðxk-Hjxk-H-1Þpðxk-H-1jyk-H-1 Þdxk-H-1 ; 

ð14Þ 

where the integral term summarizes the past information at the 
beginning of the horizon. For an infinite horizon Eq. (14) contains 
all the information to draw the estimates. In practice when a finite 
horizon is moved forward, the conditional density p(xk-H-1jyk-H-1) 
in Eq. (14) must be updated to p(xk-Hjyk-H) for the new horizon 
using the recursive update in Eq. (8). 

The general MHE formulation only requires that the nonlinear 
functions f and h are nonsingular and continuously differentiable 
functions of their arguments in order to formulate the joint pdf 
analytically. With no further assumptions, this nonlinear optimiza­
tion approach may need global optimization on the objective func­
tion generated by the joint pdf. 

In order to pose tractable objective functions a few simplifying 
assumptions are often used that aid in practical implementation of 
MHE: 

• Noise processes are additive random variables distributed 
according to Gaussian pdfs or truncated variants. 

• The joint pdf is an exponential function such that the negative 
logarithm may be minimized. 

• Past information is summarized by a mean vector and covari­
ance matrix of the state, which is recursively updated by linear­
ized-Gaussian dynamics. 

• All variables belong to closed and convex sets. 

Under these assumptions, the MHE problem statement is 

k-1 X
TP-1 T -1min ðxk-H - lÞ ðxk-H - lÞ þ  wj Q wj

x̂k-H;...;k j¼k-H 

k X 
þ vj 

TR-1vj; ð15Þ 
j¼k-H 

where mean vector l and covariance matrix P summarize the past 
measurements. The first term in the objective function is known as 
the arrival cost penalizing the errors in the summary of past or prior 
information. The subsequent summation terms are collectively 
known as stage costs intended to penalize model and measurement 
errors, respectively. Q and R are the covariance matrices of process 
and measurement noise processes, respectively. 

The arrival cost is updated by recursive computation of l and P 
using a time-varying linearized state estimator such as the 

extended Kalman filter or smoother. The problem of accurately 
summarizing the past information as arrival cost remains an open 
issue in MHE [17]. The ability to impose meaningful constraints on 
estimates in the optimization framework is an appealing feature of 
MHE. The use of a horizon of data, instead of recursive estimation 
using one measurement at a time, gives the MHE robustness to 
modeling and parameter errors and unknown disturbances. 

3.2. Cell filter 

The support of the conditional density p(xkjyk) in Eq. (8), is a  fi­
nite region of state space X c Rn, such that constraints on the 
states restrict the dynamics of the state vector inside X. The space 
outside the constrained region X ¼ Rn -X, is called a sink cell z0. 
When each state variable is discretized into a collection of indivis­
ible intervals, it forms a state cell space Z ¼ fzi : i ¼ 0;1; . . .  ;Ng
where z is an n-tuple position identifier of a cell. The cell filter is 
a piecewise constant approximation of the conditional density sup­
ported on the discrete cell space Z. 

If the probability associated with a cell zi is denoted by mi
k at in­

stance k, then the cell probabilities are represented by the proba­
bility mass vector (pmv), 

N X  T0 1 N ipðzkÞ ¼  mk ;mk ; . . .  ;mk with mk ¼ 1: ð16Þ 
i¼0 

The probabilistic behavior of the dynamics in cell space can be asso­
ciated with a stationary Markov chain. The transition probability of 
the system being in cell zi knowing that the system is currently in 
cell zj is written as, 

pij ¼ Probfxk is in zijxk-1 is in zjg; i; j ¼ 0;1; . . .  ;N: ð17Þ 

The elements pij form an (N + 1)  x (N + 1) stochastic matrix P, which 
is the transition probability matrix of the finite state Markov chain. 
Now we may numerically approximate the integral term in Eq. (8) 
using the following linear transformation, 

pðzkÞ ¼ Ppðzk-1Þ: ð18Þ 

A piecewise constant approximation of the likelihood function 
p(ykjxk) is denoted as a likelihood mass vector (lmv), l(zk,yk) sup­
ported on the cell space. In case of invertible and differentiable 
measurement function h, the lmv is readily computed by Eq. (11) 
at cell centers zz [12]. Otherwise a region of interest in the output 
space Y c Rp is considered where measurements of x 2 X, i.e., 
y 2 Y are likely to be obtained. Y is discretized into a finite set of 
output cells and Y ¼ Rp -X is the output sink cell d0, forming 
D ¼ fdi 

: i ¼ 0;1; . . .  ; Lg. The likelihood of an output cell di being 
the measurement of state cell zj is, 

lij ¼ Probfyk is in di jxk is in zj g; i ¼ 0;1; . . .  ; L; j ¼ 0;1; . . .  ;N: 

ð19Þ 

The (L + 1)  x (N + 1) likelihood mass matrix L contains the elements 
lij which is a discretized approximation of the likelihood function in 
Eq. (11). Given the output yk, which falls in the output cell di

k the 
lmv lðzk ; d

i
kÞ is presented by the ith row in L. 

The cell filter is a recursive computation of the posterior prob­
ability mass vector as shown below, 

lðzk;d
i
kÞ  Ppðzk-1jdj

k-1Þ pðzkjykÞ ¼  P ; ð20Þ 
ðlðzk; dk

i Þ  Ppðzk-1jdj 
1 ÞÞk-

where  is the Haddamard product. Optimal estimates can be 
drawn as expectation of any real valued function /(x), with a dot 
product, 

Ef/ðxÞg  /ðzzÞT  pðzkjykÞ; ð21Þ 



 

 

where /ðzzÞ is a vector of function values at cell centers. A maximum 
a posteriori (MAP) estimate can be determined by maximizing the 
vector p(zkjyk), 

zMAP ¼ arg max pðzkjykÞ; ð22Þk 

xMAPand the MAP estimate ^k , is taken as the center point of the cell. 
The elements of P are computed using Monte Carlo integration 

known as generalized cell mapping (GCM) [18]. In Eq. (17) the 
transition probability is, 

si 

pij ; ð23Þ 
sj 

where si are the number of uniformly sampled initial conditions in a 
cell zj, and si are the number of end points of trajectories culminat­
ing in the image cell zi. The mapping is performed by implementing 
the process model in Eq. (1) forced by a constant input u and sam­
ples drawn from pw(w). Similarly, the elements of L are obtained by 
a cell mapping between state and output spaces. They are precom­
puted from simulated measurements of samples in state cell zj as 
follows 

ri 

lij 
; ð24Þ 

sj 

where ri are the number of measurements located in output cell di . 
The cell mapping only requires that f and h are computable, hence 
non-singularity and differentiability are not relevant. This may be 
a useful feature for estimation of hybrid systems with mixed con­
tinuous and discrete states. 

Since the argument u is generally continuous in U, an infinite 
number of transition probability matrices are possible. Noting that 
the precision of the control input is limited to the precision of an 
actuator input, it is discretized into M values in U to define a con­
trol cell space V ¼ fvi : i ¼ 1; . . . ;Mg. For instance, Fig. 1 illustrates 
GCM on a slice of state space corresponding to a fixed input. Map­
pings of four samples from z19 indicate that p(z2jz19) = 0.25, 
p(z7jz19) = 0.5 and p(z12jz19) = 0.25. A family of M transition proba­
bility matrices P(vi) define a finite state stationary Markov chain to 
describe the probabilistic behavior of the system in state and input 
spaces. 

The online algorithm for state estimation in a closed loop set­
ting is summarized by the following steps: 

(1) Initialize cell filter with p(zk-1jyk-1) at  k. 
(2) Obtain uk from controller. Locate control cell vi containing uk. 

Load P(vi) into memory. 
(3) Predict a priori pmv with linear transformation in Eq. (18). 

x(2)x(1) 

u 

z 19 

z 2
z7 

z12 

z1 

z 5 
z21 

z25 

Fig. 1. Generalized cell mapping in state and input cell space. 

(4) Obtain measurement yk. Compute lmv l(zk,yk) with Eq. (11) 
or lookup ith row lðzk; d

i
kÞ from matrix L. 

(5) Compute a posteriori pmv p(zkjyk) with Eq. (20). 
(6) Compute expectation in Eq. (21) or MAP estimate in Eq. (22) 

for controller. 
(7) Return to step (2) for k + 1.  

Much of the online computational cost incurred is due to a large 
sparse matrix-vector multiplication in step (3), which can be small 
compared to a nonlinear program solved online. The benefits of the 
cell filter over MHE include: 

• Commonly used simplifying assumptions are not necessary. It 
may be regarded as a numerical approximation of the general 
MHE solution in a horizon of one, without requiring nonlinear 
optimization. 

• Provides mean or mode estimates, error statistics and confi­
dence intervals. 

• Recursion is on the entire conditional pmv, hence propagation 
errors in arrival cost is avoided. 

• The off-line computational cost for the Markov chain and likeli­
hood matrices a one time burden, which can alleviate the online 
computational cost for estimation and control of low dimen­
sional systems. 

There are several limitations for practical implementations of 
the cell filter: 

• Model accuracy is critical because of recursion based on one 
sample time. 

• If model parameters or inputs change, the cell mapping exercise 
must be repeated all over again. 

• Presence of unconstrained variables in the model make the CF 
unpractical. 

• The curse of dimension limits the CF for low dimensional sys­
tems because the number of cells in input and output space, 
(Nn xmm) explodes with dimension. 

4. Simulation examples 

4.1. CSTR 

Consider the following pair of nonlinear ODEs governing a con­
tinuously stirred tank reactor (CSTR), 

dCA F E1=RT¼ ðCf - CA Þ - k1CAe - ; ð25Þ
dt V A 

dCB FE1 =RT E2=RT¼ k1CAe - - k2CBe - - CB; ð26Þ
dt V 

comprising the irreversible reactions A ? B ? C [3]. The parameters 
and operating conditions are tabulated in Table 1. The state vector 
of the reactor is X = [CA,CB]T, while the reactor temperature T is 
the manipulated input. The reactor is simulated by numerically 
integrating the governing equations from the initial conditions 
x0 = [1, 0]T. The state of the reactor is sampled at the interval of 
Dt = 0.05. It is assumed that measurements of only CB are available, 

Table 1 
CSTR parameter set 

Parameter Value Parameter Value 

k1 

k2 

E1/R 
E2/R 

7.2 x 1010/min 
5.2 x 1010/min 
8750 K 
9700 K 

F 
V 
Cf 

A 

Dt 

100 L/min 
100 L 
1 mol/L 
0.05 min 



which are corrupted by additive zero mean Gaussian noise of vari­
ance 0.12. 

The following noisy discrete-time model is available to the state 
estimators, 

Z ðkþ1ÞDt dx 
xkþ1 ¼ xk þ ds þwk; ð27Þ 

kDt dt 

where the process noise vector is wk � N(0,0.012I2). The prior infor­
mation about the initial condition is available to the estimators as 
x̂0 ¼ ½1; 0]T with the covariance matrix 0.0012I2. 

The moving horizon estimator is formulated in a horizon of 3 
data points with the tuning parameters R = 0.12, Q = 0.012I2 and 
P = 0.0012 I2. The constrained nonlinear optimization is performed 
in MATLAB using fmincon function. The discrete-time process 
model in Eq. (27) is executed outside MAT-LAB using numerical 
integration by Adams method with CVODE libraries in C language. 
The arrival cost is calculated by an extended Kalman filter. 

The cell filter is designed in the state space bound by CA 2 [1, 0] 
and CB 2 [1, 0], which is discretized into 50 x 50 state cells. Note 
that the bounds naturally impose constraints on estimates. The 
manipulated input T is considered as piecewise constant over the 
interval [370, 373.5] by defining 36 control cells. Generalized cell 
mapping is implemented using 400 samples per state cell to com­
pute the thirty six transition probability matrices corresponding to 
the possible control moves. It requires 36 million computations of 
the discrete-time process model for one step forward from as many 
initial conditions. The offline numerical integrations are performed 
using Adams method with CVODE libraries in C language. The spar­
sity pattern of a typical low resolution P matrix for constant control 
is shown in Fig. 2. The transition matrices are imported into MAT­
LAB environment for online estimation task. 

For regulation purposes, it is desired to maintain the concentra­
tion of species B at its maximum yield such that the target is 
Ct 

B ¼ 0:654mol=L corresponding to the reactor temperature target 
Tt = 371.4 K. The reactor is regulated by optimally adjusting the 
temperature T while minimizing the cost function in Eq. (6) with 
weight matrices Qc = diag(0,400), Rc = 2 and Sc = 0 inside a predic­
tion and control horizon of 2 min. The constrained nonlinear opti­
mization is performed with fmincon function in MATLAB. 

At each sampling time, when the regulator returns the opti­
mized control move T* the input cell closest to it from 
T ¼ f370;370:1; . . . ;373:5g is located and the corresponding P is 
loaded into memory for estimation. The mismatch between the 

0 

100 
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600 

0 100 200 300 400 500 600 
cell numbers (columns) 

Fig. 2. Sparsity pattern of P matrix for CSTR example. 
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control cell value of the cell filter and the implemented control 
move is a random number T, 2 [-0.05, 0.05]. It introduces a model 
error for the cell filter by perturbing the activation energy in the ( ) ( )

E1 E2terms exp - RðT�þT,Þ and exp - RðT�þT,Þ . Fig. 3 shows the impact 
of discretization of the control input by showing that T2 perturbs 
the activation energy between two limits for any given tempera­
ture. Simulation results show that the filter is robust to this small 
discrepancy in E1/R and E2/R. 

Closed loop simulations were performed using MHE and the cell 
filter separately as state estimators. Fig. 4 shows the results of 
closed loop nonlinear model predictive control using the cell filter. 
A summary of average results for fifty simulation runs are tabu­
lated in Table 2. The offline cell mapping procedure to generate 
36 transition probability matrices ran for 27 CPU minutes and 
stored 29 megabytes of mapping data. By contrast the MHE has 
no offline computation or storage requirement. The accuracy of 
the estimators is measured with the following expression, 

X1 K 
TMSE ¼ ðxk - x̂k Þ ðxk - x̂kÞ; ð28Þ

Kn 
k¼1 

where K is the total number of measurements processed and n is the 
number of states. On the average the cell filter shows better estima­
tion performance over MHE. The cumulative minimized cost Jcumu is 
the sum of the costs minimized at each time instance for the length 
of the simulation. The estimators yielded very close minimums with 
little variance. 

It was observed that the cell filter ran about 400 times faster 
than MHE. The speed comparison is not relevant because special­
ized or compiled code for MHE would run faster. In this particular 
example, since the control horizon is 40 data points wide, the reg­
ulation optimization problem has 39 decision variables. In compar­
ison, the estimation horizon for MHE is 3 data points wide with 7 
decision variables (initial states and noise variables) for the optimi­
zation. Hence regulation optimization required the bulk of the on­
line computations. 

4.2. Agricultural pest control 

Control of agricultural pests using parasitic biological species is 
an attractive alternative to traditional pesticide based programs. 
Similar to many predator-prey dynamics, biological pest control 
also exhibits complicated and often chaotic variations in the pest 
and parasitic species populations. In this example the population 
of the larvae of a crop damaging insect is labeled as l. The popula­
tion of a parasitoid, which kills the larvae, is labeled as p. The 
dynamics of the larvae-parasitoid populations are represented by 
the following set of nonlinear difference equations [19] 

( )
lk-1c 1- apk-b e - 1lk ¼ lk-1e þ d; ð29Þ 

pk ¼ lk-1ð1 - e -apk-1 Þ þ uk-1 : ð30Þ 

The parameters are a = 1,  b = 5 and c = 3. The initial populations are 
l0 = 3 and p0 = 2 and a constant supply of new larvae is denoted by d. 
The control input u represents units of parasitoids introduced to 
exterminate the larvae population. The total cost of the pest control 
operation C, is the sum of the cost of damaged crop due a given lar­
vae population and the cost of the parasitoids introduced. 

CK ¼ cllk þ cuuk ; ð31Þ 

where cl = 1.25 is the crop damage per larva and cu = 1 is the cost of 
a unit of parasitoid population. An input disturbance is introduced 
by doubling the supply of new larvae at k = 25  {

0:1 0  < k 6 25;
d ¼ ð32Þ 

0:2 k > 25: 
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Fig. 3. Influence of T, on activation energy parameters. 
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Fig. 4. Closed loop NMPC regulation of CSTR using cell filter. 
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Table 2 
Average results for CSTR example (50 realizations, 3 GHz P4 Linux) 

MHE CF 

Cell mapping CPU time N/A 27 min
 
Memory for storage N/A 29 MB
 
Estimation MSE 15 x 10-5 (r = 8  x 10-5) 9 x 10-5 (r = 3  x 10-5)
 
Minimized cost Jcumu 17.4607 (r = 3  x 10-4) 17.4587 (r = 3.5 x 10-4)
 

Without the control input u the system exhibits chaotic behavior.
 
Otherwise the system has unstable steady states as well as many
 
quasiperiodic but stable solutions for fixed values of u as shown 
in dotted lines in Figs. 5 and 6. The objective is to find a control pro­

0 

6 
controlled 
uncontrolled 

0 10 20 30 40 50 

4 

file that minimizes the cost of the pest control operation while 2 

maintaining stable and even species populations. The performance 
criterion for model predictive control is 0 

U ¼ ðcllkÞ2 þ ðcuukÞ2 
; ð33Þ time k 

with C = 0 in Eq. (3) Fig. 6. Optimized control signal and cost. 
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Table 3 
Average results for pest control example (100 realizations, 3 GHz P4 Linux) 

MHE	 CF 

Cell mapping CPU time N/A 3 min 52 s
 
Memory for storage N/A 9 MB
 
Estimation MSE 11 x 10-3 (r = 3  x 10-3) 9.6 x 10-3 (r = 5  x 10-4)
 
Minimized cost Jcumu 142.83 (r = 0.02) 142.82 (r = 0.07)
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Fig. 7. Sparsity pattern of P matrix for pest control example. 

The state of the process xk = [lk, pk]T is not directly accessible. 
Estimates of the cost of crop damage yk, is related to the larvae 
population by 

yk ¼ cllk þ vk;	 ð34Þ 

where vk � N(0,0.052) represents the errors in the damage esti­
mates. An estimator must be used to reconstruct the state xk from 
the measurements yk using the noisy model 

xk ¼ f ðxk-1;d; uk-1 Þ þwk	 ð35Þ 

where f refers to the functions in Eqs. (29) and (30) and 
wk � N(0,0.012I2). The initial state of the estimator is poorly known, 
which is assumed to be x̂0 � Nð½2;3]T ; I2Þ. In addition, since all the 
variables are related to populations, negative values for states and 
control are prohibited. 

The state space l, p 2 [0,4] is discretized into 25 x 25 cells and 
the control variable u 2 [0,2] is considered as 201 cells. A fine res­
olution is necessary for the control cells because the system is sen­
sitive to small changes in input. Considering the two values of the 
input disturbance in Eq. (32), the cell mapping procedure with 400 
samples per cell requires 10.05 million mappings. A total of 402 
transition probability matrices are computed in less than 4 min 
(see Table 3) and stored about 9 MB of mapping data. Fig. 7 shows 
the sparsity pattern of a typical P, the spread of which reflects a 
sensitivity of the dynamics to initial conditions. 

The results of nonlinear model predictive control based on cell 
filter estimation are shown in Fig. 5. The control signal profile 
and the cost of pest control operation are shown in Fig. 6. The pop­
ulations are quickly stabilized and the disturbance at k = 25 is also 
effectively rejected with little disruption. 

In this example the control optimization has 4 decision vari­
ables and the MHE optimization has 7 decision variables, hence, 
MHE takes longer than regulation itself, which is not desirable 
for real-time applications. 

5. Conclusions 

In this paper we proposed to use cell filter for providing state 
estimates to closed-loop nonlinear model predictive control. For 
low dimensional systems the cell filter is a practical numerical 
implementation of a truly recursive Bayesian state estimator for 
a wide class of nonlinear systems. No simplifying assumptions 
about the process model or noise processes are necessary, con­
straints are easily handled and most importantly no realtime opti­
mization is necessary. Simulation studies on nonlinear CSTR and 
agricultural pest control problems demonstrate comparable per­
formance with MHE. The computational burden of building the 
Markov chain grows exponentially with the dimensionality of the 
system, hence, memory and computational burdens currently limit 
the approach to dimensions of about four or five. 
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