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A NEW PRE-LOADED BEAM GEOMETRIC STIFFNESS  
MATRIX WITH FULL RIGID BODY CAPABILITIES  

P. A. BosELAt, D. G. FERTISt and F. J. SHAKER§  
tDepartment of Engineering Technology, Cleveland State University, Cleveland, OH 44115, U.S.A.  

tDepartment of Civil Engineering, University of Akron, Akron, OH 44325, U.S.A.  
§Engineering Directorate, Structural Systems Division, Dynamics Branch,  

NASA Lewis Research Center, Cleveland, Ohio, U.S.A.  

Abstract-Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible 
structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining 
the structural adequacy of components, and designing a controls system. The tension pre-load in the 
'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, 
causes serious reservations on the use of standard finite element techniques of solution. In particular, a 
phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body 
rotation. The authors have previously shown that the grounding phenomenon is caused by a lack of rigid 
body rotational capability, and is typical in beam geometric stiffness matrices formulated by others, 
including those which contain higher order effects. The cause of the problem was identified as the force 
imbalance inherent in the formulations. In this paper, the authors develop a beam geometric stiffness 
matrix for a directed force problem, and show that the resultant global stiffness matrix contains complete 
rigid body mode capabilities, and performs very well in the diagonalization methodology customarily used 
in dynamic analysis. 
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NOTATION 

area of beam cross-section, in2 

derivative of the load correction vector with 
respect to the nodal degrees of freedom 
Young's modulus, psi 
moment of inertia, in4 

the global stiffness matrix 
directed force load correction matrix 
elastic stiffness matrix for a Bernoulli beam 
consistent geometric stiffness matrix for a 
Bernoulli beam 
tangential stiffness matrix, [K.l + [Kg] 
length of beam 
the square of the natural frequencies, rad2/sec2 

mass per unit length, Ib-sec2/in2 

the natural frequencies of vibration, rad/sec 
axial tension force 
Argyris load correction vector for vertical force 
component 
transverse displacement of node i 
angle of rotation as shown in Fig. I 
rigid body rotation angle 
the matrix of mode shapes (eigenvectors) 
used for diagonalization of the global stiffness 
matrix 

INTRODUCTION 

'blanket' of photovoltaic solar collectors. The solar 
arrays are deployed in orbit, and the blanket is 
stretched into position as the mast is extended during 
deployment. Geometric stiffness due to the tension 
pre-load in the blanket make this an interesting 
non-linear problem. 

A space station is subjected to various dynamic 
loads during shuttle docking, solar tracking, attitude 
adjustment, etc. Accurate prediction of the natural 
frequencies and mode shapes of the space station 
components, including the solar arrays, is crit-
ical for determining the structural adequacy of the 
components, and for designing a dynamic controls 
system. 

This paper has the following objectives: 

1. To examine the directed force (bow-string) 
problem for its potential as a basis for developing 
stiffness matrices which possess rigid body rotational 
capabilities. 

2. To check the performance of any new 
matrix which possesses a complete set of rigid 
body motion capabilities in the diagonalization/ 
partitioning methodology used in dynamic 
response. 

In order to be cost-effective, space structures must 
be extremely light-weight, and subsequently, very GLOBAL FORMULATION OF BOW-5TRING 
flexible structures. The power system for Space 
Station Freedom [1] is such a structure. Each array The authors developed a geometric stiffness matrix 
consists of a deployable truss mast and a split for a bow-string [2] using the equations of motion 



developed by Fertis and Lee [3], and found that the 
resultant matrix did possess all the rigid body modes. 
However, it was shown that an assemblage of such 
elements did not correctly model a force directed 
between the end nodes. 

Examination of a two-element model of traditional 
beam elements indicated that the only fictitous forces 
that occurred during rigid body rotation were the end 
shears required for equilibrium [4]. The shear at the 
center node was zero. The corresponding row in the 
geometric stiffness matrix was full, indicating that 
there is a relationship between the stiffness terms at 
each degree of freedom, and the shear at the center 
node. 

Examination of the first and fifth rows, how-
ever, indicate that there is not any relationship 
between the end nodes. This is inherent in the 
assembly process and is contrary to the basic suppo-
sition that we are considering a problem where 
the applied forces remain directed between the end 
nodes. 

Consider Argyris' methodology [5] for the directed 
force problem (Fig. I). Let 

If one neglects the change in the axial component 
of P that occurs during rotation, as is customarily 
done (P cos ,p ~ P), we obtain the consistent 
geometric stiffness matrix, 

Suppose we retain the vertical component, P sin ,p, 
and use Argyris' approach to develop a load 
correction matrix. The load vector for this force 
becomes 

R DFC = [P sin(V3- V1)/L, 0, 0, 0, 

The load correction matrix is generated using the 
equation 

which yields 

For small rotation, COS(VI - V3 )/L ~ I, and [KDFC] 
becomes 

P P 
0 0 0 0 

L L 

0 0 0 a 0 0 

0 0 0 a a 0 
[KDFC] = 

0 0 0 0 0 0 

P P 
0 0 0 0 

L L 

0 a 0 0 0 a 

At this point, combine [Kg] + [KDFC] and check 
rigid body rotation. Since [KDFC] contains non-zero 
terms in rows 1 and 5, and [Kg] pseudo-forces occur 
only in the same two rows, only these two rows must 
be checked for rigid body rotation capability. 

Row I 

P[12/5L - I/L, 1/10, -12/5L, 1/10, I/L, 0] 

-UJ/2 
8 
o 
8 

L8/2 

8 

= P[ -1.28 + a.58 + O. J(} + 0.18 + 0.58] 

=0. 

Row 5 

P[I/L,O, -12/5L, -1/10, 12/5L - I/L, -1/10] 

-L8/2 

8 
o 
8 

L8/2 

8 

= P[ -0.5L - O.1L + 1.2L - 0.5L - O.1L] 

=0. 

P [V1  V3]--cos ---
L L 

0 0 0 P [V1 - V3]-cos ---
L L 

0 

0 0 0 0 0 0 

0 0 0 0 0 0 
[KDFC] = 

0 0 0 0 0 0 

-cos ---P [V1 - V3] 
L L 

0 0 0 P [V1 - V3 ]-Lcos --L 0 

0 0 0 0 0 0 



5 The eigenvalues and eigenvectors generated by
6~ NLFINITE were 
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Fig. I. Directed force two-element representation. 

Therefore, [Kgl + [KDFCl does possess rigid body 
rotation capability. By inspection, it also possesses 
rigid body translation capabilities. 

PERFORMANCE OF IKrl + IKIDFC 

Consider a two-element model using using 
[Krl + [KlDFC, utilizing the computer program 
NLBO.FOR.t Table I compares the results from 
NLBO.FOR with the finite element solution using 
[Krl only (consistent [Kel and [Kgl matrices). 
Note that the stiffness matrix generated by 
NLBO.FOR possesses the additional zero eigenvalue 
required for a complete set of rigid body modes. 
The other frequencies have extremely close corre-
lation with the traditional finite element solution 
obtained using NLFINITE.FOR.t Most of them 
were identical. The largest difference was 2.8% for 
frequency No.6. 

When one considers the stiffness matrix [Krl 
generated by NLFINITE.FOR for this problem, 
the following is obtained: 

0 0 0 
0 0 -6 X 107 

0 0 0 
0 0 0 

[Krl x [rigid body modesl = 0 0 0 
0 0 0 
0 0 0 
0 0 6 X 107 

0 0 0 

As expected, large pseudo-forces occurred during 
rigid body rotation. 

t NLFINITE.FOR is based upon the finite element 
dynamics program FINITEL.FOR found in [6), with 
modifications added to solve the geometric non-linear prob-
lem. NLBO.FOR contains additional modifications for the 
directed force correction as well as capability for spring 
supports. The modifications will be provided by the authors 
upon request. 

A(I) = 0.0000 

0(1) =0.0000 rad/sec. 

The associated eigenvector is 

O.IOOOOOOOOOD + 01 

O.OOOOOOOOOOD + 00 

O.OOOOOOOOOOD + 00 

0.10000oo000D + 01 

O.OOOOOOOOOOD + 00 

O.OOOOOOOOOOD + 00 

O.IOooOooOOOD + 0 I 

O.OOOOOOooOOD + 00 

O.OOOOOOOOOOD + 00 

A (2) = 0.0000 

0(2) = 0.0001 rad/sec. 

The associated eigenvector is 

O.OOooOOOOOOD + 00 

O.lOOOOOOOOOD + 01 

-0.1022543458D -17 

O.OOOOOOOOOOD + 00 

0.1000000000D + 01 

-0.1102256093D-15 

O.OOOOOOOOOOD + 00 

O.lOooOOOOOOD + 01 

-0.5808321841D - 16 

A(3) = 1930958.5265 

0(3) = 1389.5893 rad/sec. 

The associated eigenvector is 

O.OOOOOOOOOOD + 00 

-O.lOOOOOOOOOD + 01 

0.1508421072D - 01 

O.OOOOOOOOOOD + 00 

0.1746464363D - 14 

0.2418478835D - 01 

O.OOOOOOOOOOD + 00 

O.IOOOOOOOOOD + 01 

O.l508421072D - 01 

A (4) = 12477499.9590 

0(4) = 3532.3505 rad/sec. 



Table I. Frequency comparison using NLFINITE.FOR and NLBO.FOR 

P P 
0 2__ 

0 
0__ A - 48 IN 

2 ele.ents E - 30 x 106 PSI 

P P I - 1000 IN4 
__0 __0 __0 __0 __0 __ 

LB-SBC 2 /l N2• - 0.03525 
4 ele.ents 

L - 100 IN 

P - 60,000,000 LBS 

Preq NLPINITE. POR NLBO.POR % Oitf %Olff 

• 2 Ele•. 4 Ble•. 2 Elell. 4 Ele•. 2 Ble. 4Blell 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 1390 1385 0 0 0 0 

4 3532 3524 3532 3524 0 0 

5 7002 6514 7002 6524 0 0 

6 7847 7163 7657 6969 2.4 2.7 

7 14003 12565 14003 12565 0 0 

8 17683 14003 17683 14003 0 0 

9 27189 21782 27090 21715 0.4 0.3 

10 1 22755 22755 0 

11 28006 28006 0 

12 33395 33395 0 

13 51048 51083 0.07 

14 84845 84645 0 

15 93157 93200 0.05 

The associated eigenvector is 

0.00000000000 + 00 

0.10000000000 + 01 

-0.41257653570 - 01 

0.00000000000 + 00 

-0.65618622020 + 00 

-0.69545523470 - 17 

0.00000000000 + 00 

0.10000000000 + 01 

0.41257653570 - 01 

A (5) = 49021276.5957 

0(5) = 7001.5196 rad/sec. 

The associated eigenvector is 

0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

0.20411104870 - 15 

0.00000000000 + 00 

O.OOOOOOOOOOD + 00 

-0.1000000000D + 01 

0.00000000000 + 00 

O.OOOOOOOOOOD + 00 

A (6) = 61570298.8787 

0(6) = 7847.6744 rad/sec. 



The associated eigenvector is 0.4120001744D + 00 

O.OOOOOOOOOOD + 00 -0.3619443243D - 18 

O.IOOOOOOOOOD + 01 O.OOOOOOooOOD + 00 
-0.8622993042D - 01 

O.OOOOOOOOOOD + 00 

0.1067276729D - 15 

0.7402023912D - 01 

O.OOOOOOOOOOD + 00 

O.lOOOOOOOOOD + 01 

0.16944oo209D + 00 

A (9) = 739222146.5762 

n(9) = 27188.6400 rad/sec. 

- O.IOOOOOooOOD + 01 The associated eigenvector is 

-0.8622993042D - 01 O.OOOOOOOOOOD + 00 

A (7) = 196085106.3830 0.100oo0oo00D + 01 

n(7) = 14003.0392 rad/sec. -0.2124292332D + 00 

The associated eigenvector is O.OOOOOooOOOD + 00 

0.1000000000D + 01 0.3363477755D - 15 

O.OOOOOOOOOOD + 00 -0.109 I 964722D + 00 

O.OOOOOOOOOOD + 00 O.OOooOODq.t)OD + 00 

-0.1000000000D + 01 - 0.1 ooOooOOOOD + 0 I 

O.OOOOOOOOOOD + 00 -0.2124292332D +00. 
O.OOOOOOOOOOD + 00 

0.1000000000D + 01 

O.OOOOOOOOOOD + 00 

O.OOOOOOOOOOD + 00 

Let [q,] be the matrix of mode shapes (eigen-
vectors). Then [q, y[K][q,] would yield a diagonal-
ized stiffness matrix if all of the rigid body modes 
were present. Performing that matrix multiplication 
yields 

0 0 0 0 0 0 0 0 0 

0 1.92 -0.66 0 -1.98 0 0.41 -1.36 

0 2.54 X 106 0 0 109 0 -I 41 

0 -2 1.19 x 107 0 -3 0 220 -2 

0 0 0 0 5.6 X 107 0 -2 0 0 

0 -I 113 -I 0 4.9 X 107 0 -I -909 

0 0 0 0 -I 0 2.30 x 108 0 0 

0 2 219 0 -I 0 1.33 x 108 -I 

0 43 -I 0 -908 0 0 3.30 X 108 

A(8) = 312696968.0165 

n(8) = 17683.2397 rad/sec. 

The associated eigenvector is 

O.OOOOOOOOOOD + 00 
O.lOOOOOOOOOD + 01 

-0. I 694400209D + 00 
O.OOOOOOOooOD + 00 

It should be noted that small errors occur during 
the computations (initial data errors, roundoff 
errors, truncation errors, relative errors, etc.). 
The 2.54 x 106 term in the 3,3 position is due to the 
lack of rigid body rotation capability. The other 
non-diagonal terms should also be zero, but may 
be attributed to the above mentioned errors. The 
largest of these, ± 909, is still relatively insignifi-
cant compared to the magnitude of the diagonal 
terms. 



If one neglects the relatively small terms due to arithmetic errors, the following diagonal matrix is obtained 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 2.54 X 106 0 0 0 0 0 0 

0 0 0 1.19 X 107 0 0 0 0 0 

0 0 0 0 5.76 X 107 0 0 0 0 

0 0 0 0 0 4.91 X 107 0 0 0 

0 0 0 0 0 0 2.30 X 108 0 0 

0 0 0 0 0 0 0 1.33 x JOB 0 

0 0 0 0 0 0 0 0 3.30 X 108 

Now consider the modified finite element solution from NLBO.FOR, which utilized the directed force 
correction matrix. The two-element stiffness matrix generated is 

0.2SSES 0 0 -0.2SSES 0 0 0 0 0 

0 0.372E7 O.7SES 0 -O.432E7 O.7SES 0 0 0 

0 O.7SES O.2SElO 0 -O.7SES O.IIEIO 0 0 0,'·,"t 

-O.2SSES 0 0 O.576ES 0 0 -O.2SSES 0 0 

0 -0.432E7 -O.7SES 0 O.S64E7 0 0 -0.432E7 O.7SES 

0 O.7SES O.l1ElO 0 0 O.56ElO 0 -O.7SES O.llElO 

0 0 0 -O.2SSES 0 0 0.2SSES 0 0 

0 0.6E6 0 0 -O.432E7 -O.7SES 0 O.372E7 -O.7SES 

0 0 0 0 O.7SES O.IIEI0 0 -O.7SES O.2SEI 

The rigid body rotation matrix is 

o o o 0 o The associated eigenvector is 
o 1T 

o 0 0 0 o 
-50 o 0 0 50 1 

. O.OOOOOOOOOOD + 00 

-0.9999999660D - 01 

O.oooOOOOOOOD + 00 

0.1701762335D - 07 

0.1999999966D - 01 

O.OOOOOOOOOOD + 00 

O.OOOOOOOOOOD + 00 

O.lOOOOOOOOOD + 01 

O.l999999971D - 01 

A (2) = 0.0000 

n(2) = 0.0000 rad/sec. 

[KT ] x [rigid body modes] = 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

The large, erroneous term ( ± 6 x 107) due to lack of 
rigid body rotation capability has been eliminated. The associated eigenvector isThe eigenvalues and eigenvectors generated by 
NLBO, corresponding to all rigid body and elastic O.OOOOOOOOOOD + 00 
modes and frequencies, were O.lOOOOOOOOOD + 01 

A(I) = -0.0122 -0.1021057361D - 08 

n(l) = 0.000 rad/sec. O.OOOOOOOOOOD + 00 



0.99999994890 + 00 

-0.10210573410 - 08 

0.00000000000 + 00 

0.99999989790 + 00 

-0.10210573450 - 08 

A (3) = 0.0000 

Q(3) =0.0001 rad/sec. 

The associated eigenvector is 

0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

A (4) = 12477499.9590 

Q(4) = 3532.3505 rad/sec. 

The associated eigenvector is 

0.00000000000 + 00 

0.10000000000 + 01 

-0.41257653570 - 01 

0.00000000000 + 00 

-0.65618622020 + 00 

-0.13734475330 - 16 

0.00000000000 + 00 

0.10000000000 + 01 

0.41257653570 - 01 

A(5) = 49021276.5957 

Q(5) = 7001.5196 rad/sec. 

The associated eigenvector is 

0.10000000000 + 01 

0.00000000000 +00 

0.00000000000 + 00 

0.83765740570 - 16 

0.00000000000 +00 

0.00000000000 + 00 

- 0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 +00 

A (6) = 58630070.5158 

Q(6) = 7657.0275 

The associated eigenvector is 

0.00000000000 +00 

0.10000000000 + 01 

-0.89514114540 - 01 

0.00000000000 + 00 

0.12591267940 - 15 

0.75728828210 - 01 

0.00000000000 + 00 

-0.10000000000 + 01 

-0.89514114540 - 01 

A(7) = 196085106.3830 

Q(7) = 14003.0392 rad/sec. 

The associated eigenvector is 

0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

-0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

0.10000000000 + 01 

0.00000000000 + 00 

0.00000000000 + 00 

A(8) = 3126968.0165 

Q(8) = 17683.2397 rad/sec. 

The associated eigenvector is 

0.00000000000 + 00 

0.10000000000 + 01 

-0.16944002090 + 00 

0.00000000000 + 00 

0.41200017440 + 00 

0.32804514860 - 16 

0.00000000000 + 00 

0.10000000000 + 01 

0.16944002090 + 00 

A (9) = 733880567.5204 

Q(9) =27090.2301 rad/sec. 



The associated eigenvector is 

0.00000000000 + 00 

0.10000000000 + 01 

-0.21348588550 + 00 

0.00000000000 + 00 

0.62068118950 - 15 

- 0.11022882830 + 00 

0.00000000000 + 00 

-0.10000000000 + 01 

-0.21348588550 + 00. 

Let [4>] be the matrix of mode shapes (eigenvec-
tors). Then [4> f [K][4>] should yield a diagonalized 
stiffness matrix if all of the rigid body modes were 
present. Performing that matrix multiplication yields 

0 0 0 0 0 

0 0 0 0.08 0 

0 1.71 -0.55 0 

0 -1.99 1.19E7 0 

0 0 0 0 5.76E7 

0 -I -1.91 -2 0 

0 0 0 0 -1 

0 0 0.56 -39 0 

0 0 1.65 -I 0 

It should be noted that minor errors still occur 
during the computations (initial data errors, roundoff 
errors, truncation errors, relative errors. etc.). The 
examination of these errors is beyond the scope of 
this dissertation. It can be readily seen, however, that 
the largest of these error has been reduced an order 
of magnitude (from ± 909 to 81). 

Neglecting the relatively small terms due to 
arithmetic errors, the following diagonal matrix is 
obtained 

Most importantly, the large erroneous term in the 
3,3 position of the matrix obtained using the conven-
tional finite element formulation is now identically 
zero, and the matrix has been properly diagonalized. 
Thus, adding [KtFC

, as developed in this dissertation, 
corrected the lack of rigid body rotation capability 
of the pre-loaded beam element, as well as provided 
the correct diagonalized stiffness matrix in the 
diagonalization/partitioning methodology used in 
finite element dynamic analysis. 

SUMMARY 

Based upon this investigation, the following 
conclusions have been developed: 

I. Grounding is due to the development of pseudo-
forces at the element level required to counteract a 
force-imbalance inherent in the development. This 

0 0 0 0 

0 0 0.34 0 

-1.97 0 0.33 0.84 

-3 0 -39 -I 

0 -2 0 0 

4.91E7 0 -1 -81 

0 2.31E8 0 0 

0 1.33E8 -1 

-81 0 -2 3.32E8 

causes a lack of rigid body rotational capability of the 
geometric stiffness matrix. 

2. The directed force (i.e., bow-string) problem 
was examined, since the force unbalance inherent in 
the other developments does not occur in this 
situation. 

3. By considering the directed force problem at the 
global level, using traditional development of [Kg] 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 1.19E7 0 0 0 0 0 

0 0 0 0 5.76E7 0 0 0 0 

0 0 0 0 0 4.91E7 0 0 0 

0 0 0 0 0 0 2.31E8 0 0 

0 0 0 0 0 0 0 1.33E8 0 

0 0 0 0 0 0 0 0 3.32E8 



from the horizontal component of the directed force, 
and Argyris' load correction method for the vertical 
component, a load correction matrix [KDFC) was 
developed, which, when combined with [Kg], pro-
vided a complete set of rigid body modes. This 
combined matrix performs properly in'the diagonal-
ization/partitioning methodology used in dynamic 
response. 
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