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GROUNDING OF SPACE STRUCTURES 

P. A. BOSELAt, D. G. FERTISt and F. J. SHAKER§  
t Department of Engineering Technology, Cleveland State University, Cleveland, OR 44115, U.S.A.  

t Department of Civil Engineering, University of Akron, Akron, OR 44325, U.S.A.  
§ Engineering Directorate, Structural Systems Division, Dynamics Branch,  

NASA Lewis Research Center, Cleveland, Ohio, U.S.A.  

Abstract-Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible 
structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining 
the structural adequacy of components, and designing a controls system. The tension pre-load in the 
'blanket' of photovoltaic solar col1ectors, and the free/free boundary conditions of a structure in space, 
causes serious reservations on the use of standard finite element techniques of solution. In particular, a 
phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body 
rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices 
developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance 
inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need 
for a directed force formulation. 
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NOTATION 

area (in2)  
Paz's second order mass-geometrical matrix  
J(P/EIR) 
constants in polynomial expression for Mar-
cal's initial displacement matrices 
Young's modulus (psi) 
shear modulus 
Paz's consistent geometric stiffness matrix 
Paz's second order geometric matrix 
moment of inertia (in4) 
1(1 + P/K'AG) 
beam shear rigidity 
shear factor 
stiffness matrix 
elastic stiffness matrix 
elastic stiffness matrix for a Timoshenko 
beam 
geometric stiffness matrix 
geometric stiffness matrix for a three-node 
beam 
Argyris load correction matrix for a tangent 
fol1ower force 
beam length 
Paz's first order mass matrix 
Paz's second order mass matrix 
mass matrix 
mass per unit length (lb-sec2/in2) 
Marcal's first initial displacement matrix 
Marcal's second initial displacement matrix 
1/2[Nd 
1/3[Nll 
axial tension load 
pseudo-force 
(l-P/K'AG) 
forces 
Paz's rotary inertia and shear matrix 
Paz's dynamic stiffness matrix 
rigid body translation vector in axial direc-
tion 
rigid body translation vector in transverse 
direction 
rigid body rotation vector 

{U} displacement or mode shape vectors 
u axial displacement 
v transverse displacement 
z sin(BL)(2 tan BL/2 - BLR) 
ex (BL)
P half the angle of rigid body rotation 
<1> shear factor = l2EI/UK'AG for Timo-

shenko beam 
rfJ(p4) a function of p4 

(J rotation angle 
n frequency (rad/sec) 

INTRODUcnON 

In order to be cost-effective, space structures must be 
extremely light-weight, and subsequently, very flex-
ible structures. The power system for Space Station 
Freedom is such a structure. Each array consists of a 
deployable truss mast and a split 'blanket' of photo-
voltaic solar collectors. The solar arrays are deployed 
in orbit, and the blanket is stretched into position as 
the mast is extended during deployment. Geometric 
stiffness due to the tension pre-load in the blanket 
makes this an interesting non-linear problem. 

The space station will be subjected to various 
dynamic loads during shuttle docking, solar tracking, 
attitude adjustment, etc. Accurate prediction of the 
natural frequencies and mode shapes of the space 
station components, including the solar arrays, is 
critical for determining the structural adequacy of the 
components, and for designing a dynamic controls 
system. 

This paper has the following objectives: 
I. To examine in detail the 'grounding' phenom-

enon associated with rigid body rotation of a pre-
loaded beam in space. 

2. To examine beam geometric stiffness matrices 
developed by others with respect to rigid body 
motion capabilities. 



Table I. Comparison of finite element method versus exact solution for a beam in tension 
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LIMITATIONS OF CURRENT METHODOLOGY 

Most structural systems are rigidly attached to 
supports at either or both ends. In order for any 
movement to occur, the structure must deform, and 
internal strain energy is developed. Space structures, 
on the other hand, are not rigidly attached to the 
ground. Instead, they are free to move as rigid bodies 
as well as to deform. 

Complex structures are generally analyzed using 
finite element computer programs which solve the 
dynamic equations of motion using matrix analysis 
techniques. The equations of motion are set up in the 
form of the generalized eigenvalue problem 

[[K] - n7[M]]{u;} = {R;}, 

where [K] is the global stiffness matrix, [M] is the 
global mass matrix, n; are the natural frequencies of 
vibration, {u;} are the displacement or mode shape 
vectors, and {R;} are the forces. 

Free/Free ~ 
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Using that basis, rigid body modes are the eigen-
vectors associated with zero frequencies of vibrations 
(eigenvalues). 

Current methodology utilizes MSCjNASTRAN 
Solution 64 to generate the tangential stiffness matrix 
for the deployed array, storing this matrix in a 
database, then using this matrix in Solution 63 dy-
namic analysis, to obtain the frequencies of vibration. 
As a routine check of the model, the global stiffness 
matrix is multiplied with a matrix of the rigid body 
modes to determine whether any pseudo-forces 
occur. (Whether strain energy has developed.) Since 
no internal stresses should occur during rigid body 
motion, the generation of pseudo-forces indicates 
that an internal 'grounding', or false stiffening, of the 
system occurs, due to errors or deficiencies in the 
finite element model. 

It was found that the global stiffness matrix does 
not possess rigid body rotation capabilities. In order 
to predict the dynamic response of the structure, a 
Craig-Bampton sub structuring scheme is used. How-
ever, certain erroneous non-zero terms appear in the 



null set of the partitioned matrices due to the ground-
ing effect. They must be zeroed out, and the missing 
rigid body modes appended to the matrix, in order to 
more accurately predict the dynamic response [I). 

The author idealized the problem as a free/free 
beam in tension, and found that the pseudo-forces are 
developed at the element level due to limitations 
inherent in the geometric stiffness matrices currently 
in acceptable use. In particular, the geometric stiff-
ness matrices for the beam element lack the capability 
for rigid body rotations, especially when the rotations 
are large. 

The geometric (initial stress) stiffness matrices in 
current use developed from a Bernoulli-Euler formu-

convergence to the mlssmg zero frequency in the 
dynamics problem of the pre-loaded beam with 
free/free boundary conditions. In addition, higher 
frequencies may be significantly in error. Table I 
compares the finite element solution for a pre-
tensioned beam with pinned/roller and free/free 
boundary conditions. 

ELASTIC STIFFNESS MATRIX 

The elastic stiffness matrix for a two-node 
Bernoulli beam is 

AL2/1 0 0 -AL2/1 0 0 
0 12 6L 0 -12 6L 

EI 0 6L 4L2 0 -6L 2L2 
[K.] = L3 -AL2f! 0 0 AL2f! 0 0 

0 -12 -6L 0 12 -6L 
0 6L 2L2 0 -6L 4L2 

lation have been shown to provide accetable results The [K.] matrix must possess the capacity of a full 
for most static displacement and buckling problems, set of rigid body modes. In other words, the element 
provided a sufficient number of elements are used [2]. must be able to both translate and rotate without 
However, refinement of the mesh does not produce developing stresses (see Fig. I). 

a a' 	 b b'0····0___________________________0 _____0 

a. 	 Rigid Body Translation in Axial Direction 

(UTX) • [1.0.0.1.0.0] T 

a'0 ________________________________0b' 
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0I ________________________________'0 

a 	 b 

b. Rigid Body Translation in Transverse Direction 

(UTY) 	 • [0.1.0.0.1.0] T 

b' 
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o______________~~--------------, 
I, 
I, 
~/ 
a' 

c. Rigid Body Rotation 

{URBR) • 8[O.-L/2.1.0.L/2.1]T 

Fig. I. Rigid body modes. 



Note that in Fig. I(c) that the rotation is con-
sidered to be relatively small, such that the displace-
ment in the axial direction due to the rotation is 
negligible. 

Multiplying [Ke] x [rigid body mode] 

= [0,0,0,0,0,0] 

holds for all three modes. Hence, [Ke] possesses all the 
required rigid body mode capabilities. 

Another way of determining whether [Ke] possesses 
all the rigid body mode capabilities is to solve the 
dynamic analysis of the beam with free/free boundary 
conditions. This was done [6] using the finite element 
dynamics algorithm in the computer program 
NLFINITE.FOR (see the Appendix). The results 
were three zero eigenvalues and corresponding rigid 
body mode shapes. 

stiffness, or initial stress stiffness matrix. Various 
formulations of the geometric stiffness matrix have 
been developed. 

When the Hermitian interpolating polynomials 
(used to derive the [Ke] matrix) are used in deriving 
the geometric stiffness coefficients, the resulting [Kg] 
is referred to as the consistent geometric stiffness 
matrix (Bernoulli beam geometric stiffness) 

0 0 0 0 0 0 
0 36 3L 0 -36 3L 

X 0 
0 

3L 
0 

4U 
0 

0 
0 

-3L 
0 

_L2 

0 
0 -36 -3L 0 36 -3L 
0 3L -U 0 -3L 4L2 

Application of the rigid body modes to [Kg] results 
in 

I 0 0 
0 I -LO/2 
0 0 0

[Kg] x I 0 0 
0 1 LO/2 
0 0 0 

0 0 0 
0 0 -PO 
0 0 0 
0 0 0 
0 0 PO 
0 0 0 

Another beam stiffness matrix which incorporates The terms ± PO are fictitious forces generated 
shear effects is referred to as a Timoshenko beam. during the rigid body rotation. Similarly, dynamic 
The elastic stiffness matrix for a Timoshenko analysis, using NLFINITE.FOR, yields only two 
beam is zero eigenvalues for the free/free beam in tension, 

AL2(1 + (/J)/l 0 0 -AL2(1 + (/J)/l 0 0 
0 12 6L 0 -12 6L 

EI(1/(l + (/J» 0 6L (4 + (/J)L2 0 -6L (2 - (/J)L2 
[Ke] = L3 -AL2(l + (/J)/l 0 0 AL2(1 + (/J)/l 0 0 

0 -12 -6L 0 12 -6L 

0 6L (2 - (/J)L2 0 -6L (4+(/J)U 

where (/J = 12EI/(L2K'AG), which corrects for shear 
deformation. As K'AG becomes very large, (/J ~ 0, 
and [Keh = [Ke]. The Timoshenko elastic stiffness 
also possesses a full set of rigid body modes. 

A major difference in the Timoshenko approach is 
that the bending rotation isconsidered independently in 
the derivation, not simply the derivative ofthe displace-
ment equation, as is done in the Bernoulli derivation. 

GEOMETRIC STIFFNESS MATRIX DEVELOPMENT 

The presence of an axial force introduces 
additional stiffness terms, resulting in the geometric 

corresponding to axial and transverse rigid body 
translations only. 

Various formulations have been used for 
establishing the geometric stiffness matrices from 
the static displacement problem. Martin [7] used a 
strain energy formulation with interpolating poly-
nomials. Clough and Penzien [8] used minimization 
of the potential function with the Hermitian 
polynomials. Both approaches yield a consistent 
geometric stiffness matrix, which lacks rigid 
body rotation capability, as was previously demon-
strated. 



The first author followed Martin's methodology in developing a three-node beam geometric stiffness 
matrix [9]. The following matrix was obtained 
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7 
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0 
18272 
105L 

0 
3469 
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659L 

105 
Symmetric 
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0 0 
64 
3L 
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-22096 

105L 

-4208 
105 
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27292 
105L 

0 
304 

5 
23L 

2 
0 -72 109L 

5 
13 
3L 

0 0 
-44 
3L 

0 0 
31 
3L 

0 
3824 
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-5296 
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1472 
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0 
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105 
0 

4208 
105 

-23L 

2 
0 

-739 
105 

659L 

105 

[Kgh-node 

By inspection, [Kgh-node has two rigid body transla-
tional capabilities. The exact rigid body rotation 
vector is 

[L(1 - cos(2P»/2, - L sin(2p)/2, 2P, 0, 0, 2P, 

- L(l - cos(2P»/2, L sin(2p)/2,2PY, 

where Pis half the angle of rotation. 
If this vector is expanded in power series form, 

upon retaining the first two terms, and factoring out 
PL, one obtains 

MUltiplying [Kg] by {URBR } yields 

[- 2p 2, 91.73p 3- 16P, L(l7.3p3 -

16P - 106.7p3, L(33.01p3 -

- 6p2, 14.93p3, L(3P - 17.33p3)]. 

which contains numerous non-zero terms. Hence, 
[Kgh-node does not possess rigid body rotation capa-
bility. 

Saunders [10] solves for the exact solution of the 
differential equations using a Timoshenko approach, 
then expands his 'exact' stiffness matrix in a power 
series solution, obtaining a series of matrices of 
increasing order. 

Saunders 'exact' stiffness matrix is 

P 
[K]=-

Z 

BR -sin(BL)  

I-cos BL  

-BR - sin(BL) 

1- cos(BL) 

sin(BL)
---L -cos(BL)

BR 

cos(BL) - 1 BR -sin(BL) 

sin(BL)
L---

BR 
cos(BL) - 1 

3P), 8p2, 

6P), 

Symmetric 

sin(BL) 
--- - L - cos(BL)

BR 



where 

B=J(P/EIR) 


IX=BL 


R=(1-P/K'AG) 


P = axial load 

K'AG = beam shear rigidity 

I = moment of inertia 

z = sin(BL)·(2·tan(BL/2) - BLR). 

-PO(K'AG - P) 
K'AG 

P 
K'AG 

= {P - K'AG)O. 

Thus, Saunders' 'exact' stiffness matrix does not 
possess the required rigid body rotation mode. 

Argyris (11] uses his 'natural formulation' to 
develop [Ke] and [Kg], which are identical with 
traditional [Ke] and [Kg]. He obtains another matrix 
[Knc], referred to as his load correction matrix, which 
compensates for non·conservative forces. 

If we consider the axial load to remain tangent to 
the slope of the beam at the end points, Argyris' total 
geometric stiffness matrix [Kg + Knr] becomes 

0 0 sin 2fJ 0 0 0 
0 6/5L 1/10 + cos 2fJ 0 -6/5L 1/10 

[Kg]roTAL = P 
0 
0 

1/10 
0 

2L/15 
0 

0 
0 

-1/10 
0 

-L/30 
-sin 2fJ 

0 -6/5L -1/10 0 6/5L -1/10 - cos 2fJ 
0 1/10 -L/30 0 -1/10 2L/15 

By observation, rigid body translation capability is 
present in the transverse direction 

Upon mUltiplying [K]· { URBR} 

-2cos{lX) - LR{J' sin(lX) + 2]
PO 0 

= --;- 2cos(lX) + LR{J .sin(lX) - 2 
[ o 

For small IX, COS(IX) ~ I, sin(IX) ~ ex 

-2cOS(IX) - LR{J 'sin(lX) + 2 = -LR{Jex 

= -LRB'BL 

= _L2RB2 

PO PO 

z sin{ex)(2' tan(IX/2) -IXR) 

PO 
~ 

IX(IX -IXR) 

P8 
1X2(l - R) . 

Thus 

P8(-B2L2R)
(P/z)( -PL2/EI) 1X2(1 - R) 

-P8R 
= (I - R) 

The matrix is non·symmetric. Multiplying [KghoTAL 
by the exact rigid body rotation vector, then 
applying small angle considerations, yields 
[4{J2, 0,0, _4{J2, 0, Of, which contains non·zero 
terms. Hence, [KghoTAL does not possess rigid body 
rotation capability. Note that the pseudo·forces now 
occur in the axial direction. 

Martin [12] summarizes work done by Marcal [13] 
which introduced higher order terms in his initial 
displacement matrices. In addition to the conven· 
tional [Ke] and [Kg], his initial displacement matrices 
are 

0 b4 0 0 -b4 0 
b4 b2 0 -b4 -b2 0 
0 0 0 0 0 0[Nd = AE/L 0 -b4 0 0 b4 0 

-b4 -b2 0 b4 b2 0 
0 0 0 0 0 0 

and 

0 0 0 0 0 0 
0 1.5b~ 0 0 -1.5b~ 0 

[N2]= P 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 -1.5b~ 0 0 1.5b~ 0 
0 0 0 0 0 0 

where u = hI + b2x and v = h3 + b4 x. 
The basic non·linear equation is 

[K + 1/2Nl + 1/3N2]'{U} = {R}. 



L~ 

-L~ 

Fig. 2. Rigid body rotation angle of 2ft. 

By inspection, [NIl and [N2] possess the required 
rigid body translation capabilities. 

Let the rotation angle = 2f3 (Fig. 2). 

b4 = (Lf3 + L(3)/L 

Similarly 

Thus, the rigid body rotation check becomes 

[K + NI + NIl· { URBR} must equal 0, 

where 

[NIl = AE/L 

and 

o f3 0 o -f3 0 
f3 _f32 0 -f3 f32 0 
o o 0 o o 0 
o -f3 0 o f3 0 

-f3 	 f32 0 f3 _f32 0 
o o 0 o o 0 

o 000 o 0 

Performing the rigid body rotation check yields 

[0, 4Af3 3E - 4f3 3LP - 2f3P, 0, 0, 

-4Af33E + 4f3 3LP + 2f3P, W. 

Note that non-zero pseudo-force terms still 
appear. 

Development of the stiffness matrices from the 
equation of motion has been investigated by Paz, 
using both a Bernoulli [14] and Timoshenko [IS] 
beam approach. He developed his 'exact' stiffness 
matrix, then expanded it in a power series solution. 

Paz's solution, based on the transverse vibration 
of a beam with an axial compression load, is of the 
form 

[S] = [K] - [Go]P - [Mo]Q2 

where [K] is the traditional elastic stiffness matrix 
with no axial terms, [Go] is the standard geometric 
stiffness matrix, [Mo] is the first order mass matrix 
(consistent mass matrix). 

[Mo] = mL/420 

Symmetric 
4L2 

x [ ~~~ 
S4 13L IS6 

-13L -3L2 -22L 

[Ad is the second-order mass-geometrical matrix 

[Ad =mL 3/EI 

o 2f32 0 0 - 2f32 0 Symmetric ]o o 0 0 o 0[N2] = P L 2/31S0o o 0 0 o 0  
o -2f32 0 0 2f32 0  ri:;:~oX L/1680 1/31S0 ' 
o o 0 0 o 0 -L/1680 L 2/3600 -L/1260 L 2/31S0 



[G I ] is the second-order geometrical matrix 

L/700 

L 2/1400 
[Gd = I/EI 

-L/700
[ 

L 2/1400 

[Md is the second-order mass matrix 

59 
161·7 

223L 

2910·6m 2L5 
[M I ] = 1000EI 1279 

3880·8 
-1681L 

2384·8 

The mass matrices do not possess rigid body 
modes, but they are not intended to, since they 
generate the inertial forces. [Gd possesses all the rigid 
body modes, hence, no correction to [Go], which lacks 
rigid body rotation capability, is applied. Thus, 
'grounding' during rigid body rotation still occurs. 

Similarly, Paz's Timoshenko formulation (which 
includes rotary inertia and shear terms), generates the 
matrix 

[Ro] = (mL/30)(R/L)2(l + E/K'G) 

Symmetric ] 

36 
-3L 4L2 

where the terms within the matrix are the same as the 
consistent geometric stiffness matrix. Thus, [Ro]lacks 
rigid body rotation capabilities. 

FORCE UNBALANCE 

Closer examination of the traditional static formu-
lation of [Kg] indicated that there is a load imbalance 

Symmetric ] 
11L 3/6300 

-L2/1400 L/700 

-13L3/12600 -L2/1400 11L3/6300 

Symmetric 

71L2 

4365·9 
1681L 

23284·8 
-1091£2 

69854·4 

59 
161·7 
-223L 

2910·6 
71L2 

4365·9 

in the representation, and that pseudo-forces occur to 
maintain equilibrium [Fig. 3). 

Recall that [Kg ]- {URBR } = {-PO, 0, PO, O}. 
Using Fig. 3, and letting the sum of the moments at 
o equal zero, yields 

PL sin 2fJ - P'L cos fJ = 0 

P' = P - tan 2fJ 

=P-tanO 

= PO + higher order terms. 

Thus, P' represents pseudo-forces required for equi-
librium. 

Collar and Simpson [16] acknowledge the lack of 
rigid body rotation capability of [Kg], but indicate 
that it is not a problem, because the energy represen-
tation is correct. 

Consider the work/energy relationship from Fig. 3, 
without P'. 

pI 

r-1 

L/2(1-COS2~) 

p 
L~ 

[ LI2-51." 

p 

pI 
Fig. 3. P' represents pseudo-forces required for equilibrium. 



P-SIN2~ 
P-COS2P 

L~ 
[ L/.-Sn2p 

p 

P-cos2~ 
P-SIN2~ 

Fig. 4. Work done during rigid body rotation by follower force. 

Work done by P 

= PL(I - cos 2P) 

=2PL(1 - cos 2P)/2 

= 2PLp2+ <f>(P)4 + higher order terms. 

Similarly, using a matrix development 

Energy = 1/2{UY'[K]' {U} 

=PP2/2[ -2,0,2,0]'[ -L, 2, L, 2Y 

Therefore, the energy relationship is correct for the 
p2 terms, but the higher order terms are neglected. 
For large rigid body rotation, this is significant. 

It should be noted that as long as the pre-load P 
is assumed to remain horizontal during rotation, 
work will be done by the force. Thus, true rigid body 
rotation cannot occur. In order for the true strain 
energy to equal zero, the force P must change its 
orientation as the beam rotates (i.e. a follower force, 
as in Fig. 4). 

Work done = - L(P + P .cos 2p)(1 - cos 2P)/2 

+ P .sin 2P(L .sin 2P)/2 

=PL[ -(I +cos 2p)(1-cos 2p)+sin2 2P] 

= PL/2( -I + cos22P + sin22P) 

=PL/2( -1 + 1) 

=0. 

SUMMARY 

Based upon this investigation, the following con-
clusions have been developed: 

1. Grounding is due to the development of pseudo-
forces at the element level required to counteract a 

CAS 45/1-K 

force-imbalance inherent in the development. This 
causes a lack of rigid body rotational capability of the 
geometric stiffness matrix. 

2. Although the consistent geometric stiffness 
matrix provides acceptable results for most static 
displacement and buckling problems, provided a 
sufficient mesh is used, modifications of the global 
stiffness matrix (zeroing out of erroneous terms, and 
appending the missing rigid body modes) must be 
done to more accurately predict the dynamic re-
sponse. 

3. Although the rigid body mode test is routinely 
used to detect the presence of modeling errors in finite 
element models, it is not sufficient reason to invali-
date a model subjected to pre-loads. 

4. Various higher order stiffness matrices devel-
oped by others, which include shear and rotatory 
inertia effects, were examined. As expected, the in-
clusion of these higher order effects does not compen-
sate for the inaccuracy (lack of rigid body rotation 
capability) of the geometric stiffness matrix. 

5. Development of the geometric stiffness matrix 
from a directed or follower force approach has the 
potential for providing full rigid body mode capabili-
ties, since the force imbalance inherent in the other 
developments can be eliminated. 
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APPENDIX 

NLFINITE.FORj FULL KE+KG MATRICES,REVISED 10-24-90  
THE AREA ARRAY A IS:  

A(1) - 0.4800000E+02  

THE ELASTICITY ARRAY E IS.  

E(l) - 0.3000000E+08  

THE MOMENT OF INERTIA ARRAY IA IS.  

IA{l)· 0.1000000E+04  

THE GAMMA ARRAY IS.  

GAMMA{l). 0.3525000E-Ol  

THE AXIAL PRETENSION LOAD IS;  

O.  

THE JOINT-NUMBER MATRIX IS;  

1 2 

THE JOINT COORDINATES ARE: 

X(l)- O.OOOOOOOE+OO Y(l)- O.OOOOOOOE+OO 
X(2)- 0.10000ooE+03 Y(2)- O.OOOOOOOE+OO 

THE REOUCED SYSTEM STIFFNESS MATRIX IS: 

0.1440£+08 O.OOOOE+OO 0.0000E+00-0.1440E+08 O.OOOOE+OO O.OOOOE+OO 

O.OOOOE+OO 0.3600E+06 0.1800E+08 0.0000E+00-0.3600E+06 0.1800E+08 

O.OOOOE+OO 0.1800E+08 0.1200E+l0 0.0000E+00-0.1800E+08 0.6000E+09 

-0.1440E+08 	O.OOOOE+OO O.OOOOE+OO 0.14.0E+08 O.OOOOE+OO O.OOOOE+oo 

0.0000E+00-0.3600E+06-0.1800E+08 O.OOOOE+OO 0.3600E+06-0.1800£+08 

O.OOOOE+OO 0.1800E+08 0.6000E+09 0.0000E+00-0.1800£+08 0.1200E+l0 

THE R£DUC£D SYSTEM MASS MATRIX IS: 

0.1175E+01 0.0000£+00 0.0000£+00 0.5875£+00 O.OOOOE+OO 0.0000£+00 

O.OOOOE+OO 0.1309E+01 0.1846E+02 O.OOOOE+OO 0.4532E+00-0.1091E+02 

O.OOOOE+OO 0.1846£+02 0.3357E+03 0.0000£+00 0.1091£+02-0.2518£+03 

0.5875E+00 0.0000£+00 O.OOOOE+OO 0.1175E+01 O.OOOOE+OO O.OOOOE+OO 

O.OOOOE+OO 0.4532E+00 0.1091£+02 0.0000£+00 0.1309E+01-0.1846£+02 

0.0000E+00-0.1091£+02-0.2518£+03 0.0000E+00-0.1846£+02 0.3357£+03 



THERE WERE 5 ROTATIONS SKIPPED ON SWEEP NUMBER 1 
THERE WERE 9 ROTATIONS SKIPPED ON SWEEP NUMBER 2 
THERE WERE 9 ROTATIONS SKIPPED ON SWEEP NUMBER 3 
THERE WERE 14 ROTATIONS SKIPPED ON SWEEP NUMBER 4 

THERE WERE 1S ROTATIONS SKIPPED ON SWEEP NUMBER 5 

THE SCALAR PRODUCT OF THE FIRST AND LAST 
EIGENVECTORS OF THE TRANSFORMED MATRIX IS 0.00000000000000000 

THERE WERE 5 SWEEPS PERFORMED. 
THE EIGENVALUES AND EIGENVECTORS FOLLOW: 

LAMBDA ( 1) • 0.0000 
OMEGA( 1) • 0 .0000 RADIS 

THE ASSOCIATED EIGENVECTOR IS:  
0.1000000000D+01  
0.00000000000+00  
0.00000000000+00  
0.10000000000+01  
0.00000000000+00  
0.00000000000+00  

LAMBOA ( 2) • 0.0000 
OMEGA( 2) • 0.0000 RADIS 

THE ASSOCIATED EIGENVECTOR IS:  
O.OOOOOOOOOOD+OO  
0.9334669755D+00  
0.6653302446D-03  
O.OOOOOOOOOOD+OO  
0.10000000000+01  
0.6653302446D-03  

LAMBDA ( 3) • 0.0000 
OMEGA( 3) • 0.0000 RAOIS 

THE ASSOCIATED EIGENVECTOR IS:  
0.00000000000+00  
0.10000000000+01  

-0.19773193200-01 
0.00000000000+00  

-0.97731932040+00  
-0.19773193200-01  

LAMBOA ( 4) • 6127659.5745 
OMEGA( 4) • 2475.4110 RAOIS 

THE ASSOCIATEO EIGENVECTOR IS:  
0.00000000000+00  
0.10000000000+01  

-0.60000000000-01  
0.00000000000+00  
0.10000000000+01  
0.60000000000-01  

LAMBOA ( 5) • 49021276.5957 
OMEGA( 5) • 7001.5196 RADIS 

THE ASSOCIATED EIGENVECTOR IS:  
0.10000000000+01  
0.00000000000+00  
0.00000000000+00  

-0.10000000000+01  
0.00000000000+00  
0.00000000000+00  

LAMBOA ( 6) • 71489361.7021 
OMEGA( 6) • 8455.1382 RAD/S 

THE ASSOCIATEO EIGENVECTOR IS: 
0.00000000000+00 
0.10000000000+01 

-0.12000000000+00 
0.00000000000+00 

-0.10000000000+01 
-0.12000000000+00 
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