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An analytical model for rotator cuff repairs 
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1. IntToduction 

Rotator cuff tears affect 40% or more of those over age 60 (Milgrom 
el .11.. 1995: Tempelhof. 1999: Yamaguchi. 2001 ) and are a common 
cause of debilitating pain, reduced shoulder function and weakness. 
Thirty to seventy-five thousand rotator cuff TepJirs are performed 
annually in the United States (Vitale et .11., 2007 ). While the best 
treatment for this disorder remains a topic of debate. open and 
arthroscopic surgical rep.lir is currently the accepted Hgold" standard 
for the treatment of tears that fail to improve after conservative 
treatment. Despite advances in the surgical treatment of these tears. 
high surgical failure rates that range from 20 to 90% have been reported 
(Accousti and Flatow. 2007: Bishop et .11.. 2006: Boileau et .11.. 2005; 
Galatz et .11.. 2004; Gazielly et a1. 1994; Gerber et .11. 2000; Harryrnan et 
.11. 1991) due to factors not restricted to patient age. tear size and 
chronicity. muscle atrophy and degeneration. tendon quality. repair 
technique and the post-operative rehabilitation ( Bartolozzi et .11.. 1994; 
Cofield et al .. 2001; Goutallieret al .. 2003: Hamadaetal.. 1997; lannoni. 

1994; Rileyet a1. 1994: Rorneo et .11.. 1999: Thomopoulos et .11.. 2002: 
Uhthoff et .11.. 2003 ). Hence. repair strategies that can augrnent the 
repair by rnechanically reinforcing it. while at the sarne tirne biologically 
enhancing the intrinsic healing potential of the patient are needed. 

Currently. natural and synthetic scaffolds are being used as devices to 
augrnent soft tissues repaired by sutures or suture anchors during the 
repai r of large to rnassive rotator cuff tears (Aurora et .11.. 2007; Coons and 
Alan. 2006; Derwin et .11.. 201 0). When used as an augmentation device. 
these scaffolds are believed to provide some degree of load sharing in a 
rnanner that will decrease the likelihood of tendon re-tear. While the 
biorncchallical benefit achieved by using scaffolds as augmentation 
devices has recently been reported using human and anirnal rnodels 
(Barber et .11.. 2008: Derwin et .11.. 2009: McCarron et .11.. 20 10). no studies 
have investigated the degree of load sharing provided by a scaffold used 
for rotator cuff repair augrnentation. Furthermore. the rnanner in which 
loads on an augrnented rotator cuff repair are distributed among the 
various components of the repair is not known. nor is the relative 
biornechanical irnportance of the various cornponents of the augmented 
rotator cuff repair. To answer these questions. the objectives of this study 
are to ( I ) develop quasi-static analytical rnodels of sirnplified rotator cuff 
repairs. (2) validate the models by oomp.lring the predicted model force 
to experimental measurements offorce for human and canine rotator cuff 



repairs, and (3) use the models to predict the degree of  load sharing  
provided by a scaffold used for rotator cuff repair augmentation. To 
achieve these objectives, analytical models were developed based on the 
physics of springs in series and parallel. The models were then validated 
and used to predict the degree of load sharing offered by a scaffold used 
for rotator cuff repair augmentation. Spring models allow us to predict the 
biomechanics (stiffness and yield load) of the repair construct during 
different loading scenarios and surgical repair techniques, which is not 
possible with finite element models that are used to predict the stress 
distribution in the tissues (Funakoshi et al, 2008; Sano et al, 2006, 2007; 
Seki et al, 2008; Wakabayashi et al., 2002). The development and 
validation of a spring model for rotator cuff repair is anticipated to provide 
an improved understanding of the mechanisms governing both non-
augmented and augmented rotator cuff repair biomechanics, which in 
turn might aid in the development of improved scaffolds and/or surgical 
techniques for rotator cuff repairs. 

2. Methods 

From the physical observation of non-augmented and augmented 
rotator cuff repairs, the individual components of the repair 
constructs were modeled as non-linear springs. Non-linear springs 
were used to model the points of compliance of the repair constructs, 
namely, the tendon attachment to bone, the tendon itself, the scaffold 
together with its attachment to bone and the scaffold attachment to 
the tendon. The parameters of the individual springs were estimated 
by non-linear least-squares analysis of the load-displacement data 
determined from isolated mechanical tests of each component of the 
repair. The assembly of the individual spring components into an 
aggregate model of the repair construct was based on the physics of 
springs in series and parallel. The estimated parameters were then 
used to solve the fully assembled model equations, and the force was 
predicted for the rotator cuff repair models. The models were 
validated by comparing the predicted model force to experimental 
measurements of force of human and canine rotator cuff repairs for a 
given displacement. The augmented rotator cuff repair model was 
then used to predict the degree of load sharing provided by the 
scaffold. Finally, a parametric sensitivity analysis was used to identify 
which of the component(s)/parameter(s) most influenced the 
mechanical behavior of the augmented rotator cuff repair model. 

2.1. Model structure 

2.1.1. Non-augmented rotator cuff repair 
The non-augmented rotator cuff repairs in human (Fig. 1A) and 

canine (Fig. 1B) were modeled as two springs in series (Fig. 1C), 
namely, the bone–suture–tendon interface (spring#1) and the tendon 
itself (spring#2). 

2.1.2. Augmented rotator cuff repair 
The augmented rotator cuff repairs in human (Fig. 1D) and canine 

(Fig. 1E) were modeled as five springs in series and parallel (Fig. 1F). 
The tendon (spring#2) was split into two half springs, spring#2′ and 
spring#2″. The  bone–screw–scaffold–suture component (spring#3) 
and the medial suture–tendon interface (spring#4) were in series 
with each other and together in parallel with the primary tendon 
repair (springs 1 and 2′). The entire augmented rotator cuff 
repair model was then placed in series with the other half tendon 
spring#2″. 

2.2. Experimental mechanical testing 

All human and canine rotator cuff repairs described below were 
done using #0 and #2 Fiberwire sutures respectively (Arthrex 
Corporation, Naples, FL, USA). 

2.2.1. Non-augmented and augmented rotator cuff repairs 

2.2.1.1. Non-augmented rotator cuff repairs. Human (n =5) and canine 
(n =5) cadaveric shoulders were used to perform non-augmented 
rotator cuff repairs. For the human repairs, a strip of the superior 
infraspinatus tendon (12 mm wide) was released and repaired to the 
greater tuberosity using a double row transosseous technique with 
two Mason Allen sutures per row (Fig. 1A) (McCarron et al., 2010). 
Similarly, repair of the canine shoulders involved release and repair of 
the infraspinatus tendon to the greater tuberosity using two 
transosseous Mason Allen sutures (Fig. 1B). 

2.2.1.2. Augmented rotator cuff repairs. The contralateral human 
(n =5) and canine (n =5) cadaveric shoulders were used to perform 
augmented rotator cuff repairs. For both human (Fig. 1D) and canine 
(Fig. 1E) specimens, a primary rotator cuff repair was performed as 
described above. The repairs were augmented with a 12mm×35 mm 
prototypical polymer scaffold (X-Repair, Synthasome Inc., San Diego, 
CA, USA), fixed to the bone laterally with a screw and sutured 
medially to the tendon using three modified Mason Allen sutures 
(Derwin et al., 2009; McCarron et al., 2010). 

For mechanical testing of all repairs, the muscle belly was freeze-
clamped and the repair was cycled between 5 and 100 N at 0.25 Hz 
and subsequently loaded to failure at 30 mm/min (Derwin et al., 
2009; McCarron et al., 2010). Optical markers placed in the bone and 
on the tendon were used to determine the displacement of the repair 
constructs. Experimental data for the non-augmented and augmented 
human rotator cuff repairs have been published previously (McCarron 
et al., 2010). 

2.2.2. Individual spring components 

2.2.2.1. Spring#1 (bone–suture–tendon). The distance between an 
optical marker placed on the humeral head and in the tendon just 
medial to the repair sutures provided local displacements across the 
bone–suture–tendon interface. These displacement data were obtained 
from mechanical testing of human and canine non-augmented repairs 
(n=5, respectively) (Fig. 1A and B). 

2.2.2.2. Spring#2 (tendon only). The distance between two optical 
markers placed on the tendon provided local displacements in the 
tendon. These displacement data were obtained from mechanical 
testing of human and canine non-augmented repairs (n=5, respec
tively) (Fig. 1A and B). The displacements of spring#2 were divided in 
half to obtain the displacements of spring#2′ and spring#2″ used in 
the augmented repair models. 

2.2.2.3. Spring#3 (bone–screw–scaffold–suture). A prototypic polymer 
scaffold was screwed to a wood block on one end and sutured with 3 
simple stitches to a rod on the other end (Fig. 2A). The construct was 
preloaded to 5 N and subsequently loading to failure at 30 mm/min. 
The displacements of spring#3 were obtained using actuator position 
from these isolated mechanical tests (n =5). 

2.2.2.4. Spring#4 (medial suture–tendon). Three modified Mason Allen 
sutures were placed in either isolated human superior infraspinatus 
tendon or canine infraspinatus tendon and secured over a rod using a 
double half-hitch suture configuration (six throws) (Fig. 2B). The 
associated muscle was freeze-clamped and the suture interface was 
cyclically loaded (5–30 N) for 20 cycles at 0.25 Hz and subsequently 
loaded to failure at 30 mm/min. The displacements of spring#4 were 
obtained using actuator position from these isolated mechanical tests 
(n =5, respectively). 



Fig. 1. The non-augmented rotator cuff repairs in human (A) and canine (B) were modeled as two springs in series (C), namely, the bone–suture–tendon interface (spring#1) and the 
tendon itself (spring#2). The augmented rotator cuff repairs in human (D) and canine (E) were modeled as five springs in series and parallel (F). Details of the surgical repair 
techniques can be found in the text. Dotted lines represent suture markers that were placed on the tendon, and the black dot represents the optical marker that was placed on the 
bone, for optical displacement measurements. 

Fig. 2. Schematic of the experimental load-displacement testing for (A) spring#3 (bone– 
screw–scaffold–suture) and (B) spring#4 (medial suture–tendon interface). For spring#3, 
the prototypic polymer scaffold was screwed to a wood block on one end and sutured with 
3 simple stitches to a rod on the other end. For spring#4, three modified Mason Allen 
sutures were placed in either isolated human superior infraspinatus tendon or canine 
infraspinatus tendon and secured over a rod using a double half-hitch suture configuration 
(six throws). Details of the mechanical testing protocol can be found in the text. The 
displacements of spring#3 and spring#4 were obtained using actuator positions. 

2.3. Formulation of the model 

The model was developed by representing the individual components 
of the repair as non-linear springs. Each non-linear spring was modeled 
using either a single-phase non-linear equation of the form F=Fo +Axb 

or a biphasic non-linear equation of the form F = Fo + Axb 

1 +  Bxc , 
depending on the equation goodness of fit. Here, Fo , A, B, b and c are 
parameters estimated by non-linear least-squares analysis of component 
specific experimental data. Single equations were then formulated for the 
non-augmented and augmented rotator cuff repair models using the 
physics of springs in series and parallel. 

2.4. Parameter estimation 

The parameters of the individual spring components were estimated 
by non-linear least square analysis of the component specific load
displacement data of the individual spring components up to the yield 
load to one of the aforementioned non-linear equations (Section 2.3). 
The yield load was defined as the first relative maximum load achieved 
during the experimental test. The non-linear least-squares analysis was 
performed using Sigma Stat. 

2.5. Model validation 

To predict the force response of non-augmented and augmented 
rotator cuff repairs, the fully assembled model equations were solved 

image of Fig.�2


under static equilibrium conditions using standard non-linear 
equation solver, fsolve, provided with the optimization toolbox in 
MATLAB (Version 7.0). The model was validated by comparing the 
model predicted force to experimental measurements of the force of 
human and canine rotator cuff repairs for a given displacement. The 
95% confidence intervals for the model predictions were calculated 
using the error propagation formula 

  n  ∂F    = ∑EF;i   Ep;k 
k =1  ∂pk xi 

where, EF,t is the total error in the model equation at the displacement 
∂Fxi and Ep· k  is the standard error of the kth parameter. jxi is the ∂pk 

partial derivative of the model equation with respect to the kth 
parameter evaluated at the displacement xi. 

The goodness of fit for each model was assessed using the root 
mean square error (RMSE) and the root mean square relative error 
(RMSRE) defined as follows: 

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u un n u  2 u u ∑ Fi
e−Fm u∑ ε2 

i i t t Fi
e−Fm 

i =1  i =1  iRMSE = ; RMSRE = where; εi = 
Fen n i 

F i
e is the experimental measured force value, Fi m is the model predicted 

force for a displacement xi and n is the number of data points. The 
predictions of the model were considered acceptable if the experimental 
data fell within the 95% confidence intervals of the predicted force 
response of the model and the RMSE (% of the average experimental 
yield load) values of the model predicted force was less than or equal to 
5%. Five percent was chosen based on the consideration that, on average, 
model predictions could be reported with at least two significant figures. 

2.6. Parametric sensitivity analysis 

A parametric sensitivity analysis was used to identify which of the 
component(s)/parameter(s) most influenced the mechanical behav
ior of the augmented repair model. The sensitivity of each parameter 
was investigated by calculating the sensitivity coefficient S defined as 

  j o∂F   pk   Spk ;xi 
= ⋅ Fo ∀i = 1… N∂pk xi i

where pk
o and F i

o are the baseline values of the kth parameter and the 
ith force measurement respectively. The partial derivatives were 
estimated numerically by central differences. Our clinical interests 
and application of this model lie in predicting the change in the 
mechanics of rotator cuff repair with a change in surgical procedure 
and/or scaffold design. Hence, the parametric sensitivity analysis was 
carried out only for the parameters A and b of springs1, #3 and #4, 
which are considered to be associated with such modifications. 

We now present the parameter estimation for the individual spring 
components, the model validation and predictions for non-augmented 
and augmented rotator cuff repairs, using both human and canine 
experimental data. The validated non-augmented and augmented 
repair models will then be compared to each other to investigate the 
mechanical role of scaffold augmentation. The distribution of forces in 
the individual components of the augmented repair will also be assessed 
through the model. This data will predict the degree of load sharing 
offered by using a prototype polymeric scaffold as an augmentation 
device for rotator cuff repairs. Finally, the results of the parametric 
sensitivity analysis will be presented. 

3. Results 

3.1. Parameter estimation 

Table 1A and B shows the parameters and the standard error of the 
individual spring components estimated for both human and canine 
rotator cuff repairs. Spring#1 for both human and canine models and 
spring#4 for the canine model were most reliably modeled using the 
biphasic non-linear equation (see Section 2.3). The other spring 
components in both human and canine rotator cuff repairs were most 
reliably modeled using the single-phase non-linear equation (see 
Section 2.3). 

3.2. Non-augmented repairs 

Fig. 3A and C show the experimental load-displacement data for the 
human and canine non-augmented repairs respectively, as well as the 
model predictions and the 95% confidence interval for the model 
predictions. The two spring non-augmented rotator cuff repair model 
appears to reliably reproduce the experimental data for both human and 
canine non-augmented rotator cuff repairs. Except for a small portion of 
the data corresponding to two human repairs at large displacement 
values, the experimental data remained within the 95% CI limits, for 
both the human and canine models. The RMSE for the human non-
augmented rotator cuff repair model (14 N) is 8% of the average 
experimental yield load (180 N) and the RMSRE is 7%. Ninety-seven 
percent of the model predictions for the human non-augmented rotator 
cuff repair can be reported with at least two significant figures. The 
RMSE for the canine non-augmented rotator cuff repair model (15 N) is 
11% of the average experimental yield load (140 N) and the RMSRE is 
12% (Table 1C). Eighty-four percent of the model predictions for the 

Table 1 
Non-linear least-squares fit parameters (standard error) of the individual spring 
components for (A) human and (B) canine repairs. Significant figures were reported 
based on the magnitude of the standard errors, which represent 95% confidence level. 
“NS” implies that the parameter is not significantly different from zero at 95% confidence 
level. Spring#1 for both human and canine models and spring#4 for the canine model 
were most reliably modeled using the biphasic non-linear equation (see Section 2.3). 
The single-phase non-linear equation was the most reliable model for the other spring 
components in both human and canine repairs. (C) The root mean square error (RMSE) 
as a % of the average experimental yield load, the root mean square relative error 
(RMSRE) and percent model predictions with at least two significant figures for human 
and canine rotator cuff repair models. 

Spring Fo A b B c 

(A) Human model parameters 
1 20 (10) 300 (200) 2 (1) 2 (1) 2 (1) 
2′ NS 300 (30) 0.5 (0.1) n/a n/a 
3 −35 (2.8) 95 (2.6) 0.70 (0.01) n/a n/a 
4 −40 (10) 130 (13) 0.5 (0.03) n/a n/a 
2″ NS 300 (30) 0.5 (0.1) n/a n/a 

(B) Canine model parameters 
1 10 (6) 800 (500) 2 (0.4) 4 (3) 1.5 (0.36) 
2′ NS 350 (46) 1 (0.2) n/a n/a 
3 −35 (2.8) 95 (2.6) 0.70 (0.01) n/a n/a 
4 4 (2) 170 (11) 1.3 (0.10) 1.3 (0.14) 1.5 (0.10) 
2″ NS 350 (46) 1 (0.2) n/a n/a 

(C) RMSE and RMSRE for human and canine rotator cuff repair models 
Non-augmented repair Augmented repair 
Human Canine Human Canine 

RMSE (N) 14 15 8 12 
RMSE (%) 8% 11% 3% 6% 
RMSRE (%) 7% 12% 19% 14% 
Percent model 97% 84% 93% 85% 
predictions with at
 
least two
 
significant figures
 



Fig. 3. Experimental load-displacement data, model predictions, and model 95% confidence intervals for (A) human non-augmented repairs, (B) human augmented repairs, (C) 
canine non-augmented repairs and (D) canine augmented repairs. Except for a small portion of the data corresponding to two human repairs at large displacement values, the 
experimental data remained within the 95% CI limits, for both the human and canine models. 

canine non-augmented rotator cuff repair can be reported with at least 
two significant figures. 

3.3. Augmented repairs 

Fig. 3B and D show the experimental load-displacement data for 
the human and canine augmented repairs respectively, as well as the 
model predictions and the 95% confidence interval for the model 
predictions. The five spring augmented rotator cuff repair model 
appears to reliably reproduce the experimental data for both human 
and canine augmented rotator cuff repairs. Except for a small portion 
of the data corresponding to two human repairs at large displacement 
values, the experimental data remained within the 95% CI limits, 
for both the human and canine models. The RMSE for the human 
augmented rotator cuff repair model (8 N) is 3% of the average 
experimental load (250 N) and the RMSRE is 19%. Ninety-three 
percent of the model predictions for the human augmented rotator 
cuff repair can be reported with at least two significant figures. The 
RMSE for the canine augmented rotator cuff repair model (12 N) is 7% 
of the average experimental yield load (180 N) and the RMSRE is 14% 
(Table 1C). Eighty-five percent of the model predictions for the canine 
augmented rotator cuff repair can be reported with at least two 
significant figures. 

3.4. Comparison of non-augmented versus augmented repair model 

Fig. 4A compares the model predictions for the non-augmented 
versus augmented rotator cuff repairs for the human model. The 

model suggests that scaffold augmentation will stiffen the repair 
construct, but only after displacements exceed 2 mm. Further the 
model suggests that scaffold augmentation increases the yield load of 
the repairs. Similar results were found when comparing model 
predictions for the canine models (data not shown). 

3.5. Load sharing 

Fig. 4B shows the distribution of load between the augmentation 
components (spring#3 and spring#4) and the underlying tendon 
repair component (spring#1 and spring#2′) as predicted by the 
model for human augmented rotator cuff repairs. The model suggests 
for displacements of 2 mm or less, the tendon repair component 
carries ∼80% of the total load acting on the augmented repair 
construct. Thereafter, the load carried by the tendon repair compo
nent is predicted to decrease from 80% to 73% of the total load. In other 
words, the augmentation component is predicted to carry between 20 
and 27% of the total load acting on the augmented rotator cuff repair 
for the entire range of displacements. Similar results were found 
when comparing model predictions for canine augmented rotator cuff 
repairs (data not shown). 

3.6. Parametric sensitivity analysis 

The sensitivity analysis was carried out only for parameters A and b 
of springs#1, #3 and #4, which may be considered to represent 
modifications associated with changes in surgical procedure and/or 
scaffold design. 

image of Fig.�3


Fig. 4. (A) Model predictions for non-augmented versus augmented human rotator cuff 
repair. The model suggests that scaffold augmentation will stiffen the repair construct 
only after displacements exceed 2 mm. Further, the model suggests that scaffold 
augmentation increases the yield load of the repair. (B) Load distribution in the 
different components of the augmented human rotator cuff tendon repair. The model 
predicts that the augmentation component will carry between 20 and 30% of the total 
load acting on the repair construct for the entire range of displacement. 

3.6.1. Parameter A 
Fig. 5A and B show the parametric sensitivity coefficients for the 

parameter A corresponding to springs#1, #3 and #4 for both human 
and canine augmented rotator cuff repair models. Both models are 
most sensitive to perturbations in parameter A for spring#1. A value of 
0.5 for a given sensitivity coefficient suggests that a 100% change for 
the corresponding parameter from its baseline value (pko) would result 
in a 50% change in the model response from its baseline value (Fko) (see 
Section 2.6). The model appears to be less sensitive to parameter A in 
springs#3 and #4. 

3.6.2. Parameter b 
Fig. 5C and D shows the parametric sensitivity coefficients for the 

parameter b corresponding to springs#1, #3 and #4 for both human 
and canine augmented rotator cuff repair models. Similarly to the 
results observed for parameter A, both models are more sensitive to 
perturbations in parameter b for spring#1 than for springs#3 and #4. 

4. Discussion 

There has been much interest in developing scaffolds as devices to 
augment the repair of large to massive rotator cuff tears. However, to date 
no studies have investigated the degree of load sharing provided by a 
scaffold used for rotator cuff repair augmentation. Furthermore, the 
manner in which loads on an augmented rotator cuff repair are 

distributed among the various components of the repair is not yet 
known. Finally, the relative biomechanical importance of various 
components of the rotator cuff repair construct is also unknown. Aiming 
to answer these questions, this study was designed to meet three 
objectives. The first objective was to develop quasi-static analytical models 
of simplified rotator cuff repairs, which was accomplished through 
formulating non-linear models based on the physics of springs in series 
and parallel. The second objective was to validate the models by 
comparing the model predicted forces to experimental measurements 
for human and canine rotator cuff repairs. Our results indicate that except 
for a small portion of the data corresponding to two human repairs at 
large displacement values, the experimental data remained within the 
95% CI limits, for both the human and canine models. The RMSE (% of the 
average experimental yield load) of both human and canine augmented 
rotator cuff repair models was less than or equal to 6%. The RMSE of both 
human and canine non-augmented rotator cuff repairs was slighter higher 
(8–11%) as was the RMSRE of both human and canine rotator cuff repair 
models (7–19%). The generally higher values for RMSRE arise primarily 
from large relative differences between the model predictions and 
experimental data at the low displacement measurements. However, 
more than 90% and 80% of the model predictions for the human and 
canine rotator cuff repair models respectively can be reported with at 
least two significant figures. This suggests that the models can provide a 
reliable prediction of the expected performance of the rotator cuff repairs. 
The models also predicted an increase in the yield load but not initial 
stiffness of repairs augmented with a prototypic polymeric scaffold, which 
is in agreement with the findings of our experimental repairs with this 
same scaffold (Derwin et al., 2009; McCarron et al., 2010). In summary, 
these results demonstrate the validity of the formulated models for 
predicting the biomechanics of these simplified human and canine rotator 
cuff repairs. 

The final objective of the study was to predict the degree of load 
sharing provided by a scaffold used for rotator cuff repair augmen
tation. The model predicts that the augmentation component (i.e., the 
scaffold plus its attachments to tendon and bone) will carry between 
20 and 30% of the total load acting on the repair construct for the 
entire range of displacement. A corollary to this result is that the 
underlying tendon repair carries the majority of the total load (70– 
80%) acting on the augmented rotator cuff repair component for the 
entire range of displacement. This finding suggests that this particular 
scaffold, together with its attachments components, is less stiff than 
the tendon and its repair. 

Our model appears to be most sensitive to perturbations in the 
parameters A and b of spring#1 (the bone–suture–tendon interface). 
These results highlight the biomechanical importance of the suture 
attachment site, and suggest that the greatest improvements in the force 
carrying capacity of a tendon repair may be achieved by improving the 
bone–suture–tendon interface. At this time we are unable to explain the 
reversal in trend seen in the sensitivity curve of parameter b for 
spring#1 for both human and canine augmented rotator cuff repair 
models, but this result may be related more to an interdependence 
among the model parameters than to the actual mechanics of the repair. 
We would like to emphasize that these model parameters do not carry 
any particular physical significance; rather they are derived from non
linear least-squares analysis. However these parameters, particularly A 
and b for the individual components, are dictated by the shape of the 
load-displacement data and can be varied parametrically to simulate 
changes in the mechanical properties of each component. Such a 
parametric analysis will be the subject of our future work with this 
model. 

Parameter A for spring#1, for both the human and canine models 
[Table 1A], has a large standard error compared to those of the remaining 
model parameters. We attribute this result to the inherent variability 
associated with performing a surgical repair. Further, spring#1 for both 
human and canine models and spring#4 for the canine model were most 
reliably modeled using the biphasic non-linear equation whereas all other 



Fig. 5. Parametric sensitivity plots for the parameters A and b corresponding to springs#1, #3 and #4 for both human (A, C) and canine (B, D) augmented rotator cuff repair models. 
Both models appear to be most sensitive to perturbations in parameters A and b for spring#1. 

spring components in both human and canine rotator cuff repairs were 
most reliably modeled using the single-phase non-linear equation. The 
need for a biphasic equation to model the load-displacement behavior of 
the suture interface components may be due to the combined mechan
isms of stretch of the tendon and slip of the suture from the tendon that 
occur in these components. The fact that spring#4 of the human model 
was not best modeled by the biphasic non-linear equation as other suture 
interfaces may be due to the difference in the architecture of the human 
infraspinatus tendon compared to that of the canine infraspinatus tendon. 
Unlike the organized nature of collagen fibers of the canine infraspinatus 
tendon, the collagen fibers of the human infraspinatus tendon are more 
randomly organized, particularly in the region medial to the insertion site 
(Clark and Harryman, 1992; Dejardin et al., 1999). This random 
organization of the collagen fibers in the human tendon may minimize 
suture slip and thus explain why a single-phase non-linear equation was 
better for fitting the medial suture–tendon interface (spring#4) of the 
human model. 

Our study is not without limitations. First, compared to the clinical 
scenario, the experimental repairs used to develop our models were 
greatly simplified and idealized. An isolated tendon was released and 
repaired acutely, with only one type of surgical technique and one type of 
scaffold, and tested under only one loading condition. The model results 
are therefore dependent on the particular experimental conditions tested. 
While the scaffold and the surgical technique are representative of typical 
scaffolds and techniques commonly used for the repair of human rotator 
cuff tears, one must remain cautious in making a direct translation of 
these model predictions to human rotator cuff tendon repairs which are 
inherently multidimensional and structurally variable. Second, since the 
models are represented by non-linear-springs, there is dependence 

(cross-correlation) among the parameters for each component of the 
model. However, since the parameters for each spring were obtained 
from independent experiments, it is safe to assume that there is no 
dependence among parameters representing different springs. Therefore, 
assessing the relative contribution of each spring to the construct's 
performance by way of the sensitivity analysis is appropriate and any 
cross-correlation within the parameters of a given spring will not change 
these conclusions. Thirdly, we modeled mechanical testing performed 
under in vitro conditions, which may not reflect the biomechanics of in 
vivo repairs that are subjected to biological processes. Fourth, the model 
parameters for springs#1 and 2 were obtained from failure testing of 
specimens that were first subjected to a cyclic loading protocol. Hence, the 
models cannot be used to predict the biomechanics of repairs on the first 
initiation of load following surgical repair. Finally, the analytical 
formulation used to predict the mechanical performance of the repairs 
is only valid up to and including the point of maximum (yield) load. 
Hence, the model cannot be used to predict failure loads of the repair. 

In summary, we have developed and validated simple spring-based 
non-linear models for predicting the trends associated with scaffold 
augmentation of rotator cuff repairs. The ability of our models to 
predict the biomechanics of non-augmented and augmented rotator 
cuff repairs from both human and canine strengthens the interpreta
tion, application and relevance of our observations. For the simplified 
repairs modeled herein, the total load was distributed ∼70–80% to the 
tendon repair component (i.e., tendon plus its suture attachment to 
bone) and ∼20–30% to the augmentation component (i.e., the scaffold 
plus its attachments to tendon and bone). This finding suggests that 
this particular scaffold, together with its attachments components, is 
less stiff than the tendon and its repair and highlights the applicability 

image of Fig.�5


of the model to predict the degree of load sharing provided by scaffolds 
commonly used to augment rotator cuff repairs. The model results and 
sensitivity analysis suggest that although the scaffold contributes to 
the overall mechanical properties of the repair construct, the greatest 
improvements in the force carrying capacity of a tendon repair may be 
achieved by improving the properties of the bone–suture–tendon 
interface. In the future, we will use this model to conduct a parametric 
simulation study with the aim to predict the manner in which changes 
to the individual components of the repair, representing different 
surgical techniques and scaffold devices, may influence the biome
chanics of the repair construct. The model provides, for the first time, a 
conceptual framework in which surgeons using scaffolds for augment
ing tendon repair can understand their utility and apply them in a 
manner that maximizes their performance. 
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