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Transport analysis and model for the performance ofan ultrasonically 
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I. Introd uction 

A process for the fi ltration of small suspended particles 
using a high-porosity polyester mesh situated in a resonant 
ultrasonic field has been reported recently (Gupta and Feke, 
1997, 1998; Wang et al., 2004). A schematic of this filtration 
concept is depicted in Fig. I. Shown is a rectangular cham-
ber in which the polymer mesh is sandwiched between a 
piezoelectric transducer and a glass reflector. As suspension 
flows through the mesh when the sound field is active, small 
particles are entrapped even though the pores of the mesh 
are approximately two orders of magnitude larger than the 
particle diameter. Upon deactivation of the acoustic field, 
the particles are released from the mesh. 

The basis for the particle entrapment arises from com-
plex interactions between the mesh, the acoustic and hy-
drodynamic flow fields, and the particles themselves. The 

acoustic field, scattered from the mesh elements, results 
in acoustic forces that attract particles toward the collec-
tor. The relevant transport phenomena active on the length 
scale of the particles been modeled and experi mentally ver-
ified. This microscale analysis focuses on the motion of 
individual particles in the vicin ity of one collection cle-
ment comprising the mesh (Grossner et aI., 2003, 2005). 
While this single-collector model is an excellent tool to 
understand the underlying fundamental phenomena active 
in the acoust ic filtration process, it alone is not sufficient to 
predict the macroscopic perfomlance of such a filter system. 
Here, we seek to develop a model that combines information 
from the sing le-collector studies and properties of the overall 
filtration system that leads to predictions of important pro-
cess characteristics such as particle breakthrough times and 
the general retention perfonnance of the acoustic separator. 

An approach taken by investigators of high gradient mag-
netic separation (HGMS) provides the starting point for 
this analysis (Gerber and Birss, \983). In HGMS, a steel 
mesh (similar to steel wool) is magnetized to collect small 
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Fig. 1. A schematic of the acoustic filtration process. 

magneticallysusceptible particles from a suspension. This 
process has been examined microscopically( Gerber and 
Birss, 1983) in a similar manner as the acoustic separation 
process in this research. Once a capture radius has been de-
fined for a single collector (akin to the “capture window” 
discussed in a previous paper (Grossner et al., 2003)), a 
multi-collector model is assembled to form a model of the 
entire separator (Gerber and Watmough, 1982). 

In this paper, we extend this approach to derive a perfor-
mance model for the acoustic filtration process. Numerical 
simulations of the model provide predictions of the spatial 
and temporal evolution of the concentration of particles cap-
tured within the mesh. These model results are further com-
pared to the results of experiments in which macroscopic 
performance parameters, such as particle breakthrough 
times, are reported. 

2. Derivation of the transport model 

2.1. Coordinate system and important parameters 

The overall operation and performance of the filtration 
device is modeled on the basis of a conservation relation for 
the suspended particles. Consistent with the configuration 
within the experimental trials, the model assumes depen-
dence on onlyone spatial variable. A schematic with coordi-
nate system definitions are presented in Fig. 2. The chamber 
has length L in the flow direction and a cross-sectional area 
of S. The independent variable in the flow direction is x. Due 
to the presence of the mesh, the convective flow is taken to 
be a one-dimensional plug flow with superficial velocity v0. 

Two variables are used to describe the spatial and tempo-
ral distribution particles within the chamber. First, C(x, t) 
is used to denote the concentration of particles in free sus-
pension (not trapped within the mesh), and has units of the 
number of particles per volume of fluid. The variable N(x, t)  
denotes the particle retention density, or number of trapped 
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Fig. 2. Schematic depicting the coordinate system used for the model. 
The suspension flows (superficial velocity v0) into the mesh (porosity 80) 
at x = 0 and exits at x = L; NT is the concentration of captured particles 
at saturation. The temporal variable is t. 

particles per unit volume of the mesh, and NT is used to 
indicate the saturation value of N inside a particular mesh. 
With the concentration of the entering suspension fed to the 
mesh C(0, t)  specified as a boundarycondition and the ini-
tial loading of the mesh N(x, 0) specified as an initial condi-
tion, the model intends to predict how C and N change with 
position and time during operation of the filtration process. 

2.2. Particle conservation model 

A material balance for a differential section of the mesh is 
used as the basis for a model relating C and N to position and 
time. Since the particles are presumed to be relativelylar ge 
(tens of microns), diffusion is neglected. We also assume that 
the mesh has a uniform porosity 80 throughout. As particles 
become trapped, the free volume within the mesh decreases. 
However, in the experimental trials, 80 is high (typically 
95 vol%) and solids loading within the mesh is typically 
below 10 vol%. Thus, we use the single parameter 80 to 
approximate the mesh porositythroughout the course of the 
particle collection process. A material balance on particles 
with the mesh is then 
a aC 

(N + 80C) + V0 = 0. (1)
at ax 

To close this model, an expression relating the conver-
sion of free to trapped particles (the functional relationship 
between N and C) must be developed. Our previous micro-
scale analysis of the efficiency of individual collectors to 
capture suspended particles provides the basis for this rela-
tionship. Here, we extend the results of the single-collector 
analysis to apply to the multiple collectors present within 
the actual mesh. 

The abilityof an individual collection element to capture 
particles can be quantified in terms of a capture window 
(Grossner et al., 2003). This is the area, upstream from the 
collectors, defined such that particles that flow through this 
window eventuallybecome associated with the collector ele-
ment. Particles that do not flow though the upstream capture 
window will flow around the collector. The single-collector 



model assumes that the cylindrical collector (uniform radius 
Rc, average length Lc) is aligned perpendicular to the flow 
and to the acoustic field. Based on a trajectoryanaly sis, the 
dimensions of the upstream capture window (area Acap) are 
determined as a function of acoustic and flow conditions. In 
general, the capture area is larger than the actual area pro-
jected bythe collector when an appropriate acoustic field is 
applied. For convenience, we define a dimensionless capture 
radius as 

Acap∗ Rcap ≡ . (2)
2RcLc 

For favorable acoustic conditions, R ∗ > 1.cap 
In order to extend the single-collector results to the config-

uration of a random mesh, we adopt a conceptual model for 
the mesh structure. The number of individual collectors per 
volume within the mesh maybe estimated from its porosity 
as 

fraction of solids comprising the mesh 1 − 80 
nc = = . 

average volume of one collector nR2Lcc

(3) 

Within a differential volume of the mesh (cross-sectional 
area S and length  x), the total number of collectors is 
ncS x. However, since the collectors are oriented randomly 
to the flow and acoustic field, the total capture area pre-
sented bythese collectors is not simplythe product of the 
number of collectors and the value of Acap derived from the 
single-collector analysis. We thus introduce a collector ori-
entation parameter (f ) such that the total effective capture 
area projected perpendicular to the superficial flow for the 
differential section of the mesh is 

Acap,tot = (f )AcapncS x (4) 

and the probability, p, of capturing an individual particle 
flowing through the differential volume is given by 

p = Acap,tot/S = (f )Acapnc x. (5) 

The rate of particle trapping in the differential element is 
given bythe rate at which particles flow through the differ-
ential volume times the probabilityof their capture. Thus 
a(NS x) = Sv0pC (6) 

at 

which upon substitution of Eqs. (2)–(5) and subsequent sim-
plification yields 

2(1 − 80)R ∗ aN cap= v0(f ) C. (7) 
at nRc 

Finally, we recognize that the capture radius is expected 
to diminish as the number of previouslycaptured particles 
increases. Thus, we follow the lead of Gerber and Birss 
(1983) and introduce a correction of the form   Y

N 
R ∗ = R0∗ 1 − , (8)cap cap NT

where R0∗ represents the dimensionless capture radius for cap 
a clean collector. The empirical exponent Y depends on the 
general operating conditions, but is typically between 0.1 
and 2. With the definition 

L0 ≡ 
nRc 

2(1 − 80)(f )R0∗ 
cap 

. (9) 

Eq. (7) becomes 

aN 
at 

= 
v0 

L0

 
1 − 

N 
NT

 Y

C. (10) 

3. Solution method 

Eqs. (1) and (10) form a coupled system of equations that 
give N(t, x)  and C(t, x). For convenience, we rewrite these 
equations in terms of a new set of independent variables 
(r, X) where 

r = t − 80x/v0 (11) 

is the displacement time, and 

X = x (12) 

is the new spatial coordinate. Using these variables, Eq. (1) 
can be transformed into 
aN aC 
ar 

+ v0 = 0, (13) 
aX 

while Eq. (10) becomes 
  YaN v0 N = 1 − C. (14) 

ar L0 NT

Eqs. (13) and (14) form a coupled system of first-order equa-
tions in (r, X) space. 

In the experimental trials, filtration is typically performed 
under the condition 

C(r, X  = 0) = C0 (15) 

which reflects a suspension of constant composition fed at 
the entrance to the mesh. Two different categories of exper-
iments have been performed. In one type, the acoustic field 
is applied prior to the introduction of particles to the mesh. 
To simulate this type of experiment, we use 

N(r = 0, X)  = 0. (16) 

Imbedded in this condition is the constraint that no particles 
can be trapped in the mesh at position x earlier than the flow 
transport time to that position (x/v0). 

For this case, the model equations were solved using 
a finite difference method suggested by Gerber and Wat-
mough (1982). First, Eq. (14) is solved for x = 0 using 
the Runge–Kutta method to give N(0, r). From this result, 
aN/ar is computed and substituted back into Eq. (13) to 



  

  

 

obtain aC/ax. Then, the free particle concentration at the 
next x position is calculated from 

aC 
C(0 + x, r) = C(0, r) + x. (17) 

ax 

The process of alternatelysolving Eq. (14) then Eq. (13) is 
then repeated one spatial layer at a time until the end of the 
separator x = L is reached. 

In the second type of experiment, suspension flow through 
the mesh is established prior to the application of the acoustic 
field and thus particles will be present at all positions within 
the mesh when the acoustic field is applied. Thus, since 
C(t=0, x)=C0 and N(t=0, x)=0, the boundaryconditions 
for this case become 

C(r = −80x/v0, X)  = C0, (18) 

N(r = −80x/v0, X)  = 0. (19) 

The same solution algorithm as described above can be ap-

Table 1  
Parameters used in the experiments by Gupta and Feke (1998)  

Feed suspension 
Flow rate 

0.5 wt% 325-mesh polystyrene 
30 mL/min 

Chamber dimensions 
Mesh composition 

5.82 mm × 35 mm × 70 mm 
Polyester, 10 pores per inch 

Power supplied to transducer 20 W 
Frequency1.103 MHz 
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plied to this case as well. However, the solution grid must 
be designed such that 

r = 80 x/v0 (20) 

and the solution domain starts along the line r = −80x/v0. 

4. Results and discussion 

The filtration performance model described above has 
been applied to simulate the two types of experiments that 
demonstrate the ultrasonicallyassisted mesh-filtration pro-
cess. For our simulations, we selected the value of Y = 2, 
based on trial runs of the model using values of Y between 
0.1 and 2. This value of the deterioration parameter was not 
adjusted for the different sets of simulation results. In addi-
tion, we selected a value of (f )=1/3 to represent the effec-
tive fraction of collectors oriented in the same direction as 
that used in the single-collector analysis (perpendicular both 
to the flow direction and parallel to the acoustic pressure 
nodes). All other parameters in the model are set to values 
obtained through measurements of system parameters (e.g. 
v0, 80, C0, and Rc), independent experiments (e.g. NT ), or 
calculated from independent theory(e.g. R ∗ ).cap

4.1. Data from Gupta and Feke (1998) 

Table 1 summarizes the experimental conditions used in 
this study. These experiments were performed according to 
the second scenario described above, namelythe suspension 
flows through the mesh prior to energizing the acoustic field. 

The single-collector model (Grossner et al., 2003) was  
used to determine the dimensions of the capture window 
for the particular acoustic and flow environment. The en-
ergydensityinput for this calculation was found using a 
multi-layer resonance model developed by Rusinko (2001). 
Subsequently, the algorithm described above was applied to 
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Fig. 3. The normalized concentration at the separator exit for a flow rate 
of 30 mL/min and an inlet concentration of 0.5 wt%. Other conditions of 
the experiment are listed in Table 1. The circles are experimental data 
(Gupta and Feke, 1998) and the unmarked line is the output of the present 
model. Without anyparameter adjustments, breakthrough time is predicted 
quite well, but the actual concentration does not drop as significantlyas 
the simulation predicts. 

obtain profiles of C(x, t) and N(x, t). Based on experimen-
tal results, the value of NT was taken to be 15 vol% for the 
particular mesh used in these experiment. Results are pre-
sented in dimensionless form, using C0 and NT as normal-
izing scales. 

Fig. 3 presents the predicted concentration of particles 
in the exit stream from the mesh (C(x = L, t)/C0) for the 
conditions listed in Table 1 along with the corresponding 
experimental data. Figs. 4 and 5 show predicted and exper-
imental results for the case when the flow rate increased to 
60 mL/min and the feed concentration increased to 1.0 wt%, 
respectively. 

In Fig. 3, the normalized concentration, C/C0, begins at 
1 and is predicted to sharplydecline toward zero for the first 
20 s. A discontinuityin the output is seen at 0.5 min, which 
corresponds to the residence time of the suspension in the 
chamber. After 5–6 min with no particles exiting the sepa-
rator, a gradual rise in the concentration appears before a 
sharp increase begins near 10 min of operation. The normal-
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Fig. 4. The normalized concentration at the separator exit for a flow rate 
of 60 mL/min and an inlet concentration of 0.5 wt%. Other conditions 
of the experiment are listed in Table 1. In this case, the experimental 
output concentrations (circles) are again slightlyhigher than expected 
from model predictions (unmarked line). 
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breakthrough times, so if the simulation predicts the same 
changes, this is an indication of the applicabilityof the 
model. Table 2 lists breakthrough times from experiments 
and model calculations for different flow rates and feed 
concentrations. 

The breakthrough times compare well between model and 
experiment; it is important to note that no model parameters 
were adjusted to fit the data between experimental results. As 
one might expect, doubling the feed concentration halves the 
time to breakthrough in both the experiment (approximately) 
and in the model. Since twice as manyparticles pass through 
the chamber in the same amount of time, the capacityof the 
filter is reached in half the time. 

Envisioning the effect of doubling the flow rate, however, 
is not as straightforward. One might expect again that the 
time to fill the capacityof the separator would be halved. 
According to both the experiment and the model, however, 
this is not the case. In Gupta’s work, the breakthrough time 
is reduced to 30% of the original value when the flow rate 
is doubled, whereas the model predicts breakthrough time 
should be reduced to nearly20% for the corresponding in-
crease in flow rate. This can be interpreted bye xamining 
what is happening on the microscale in the single-collector 
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Fig. 5. The normalized concentration at the separator exit for a flow rate 
of 30 mL/min and an inlet concentration of 1.0 wt%. Other conditions 
of the experiment are listed in Table 1. Again, the model predicts a 
lower concentration (unmarked line) than the experiment (circles), but the 
breakthrough time is appropriatelyscaled relative to that in Fig. 3. 

ized concentration asymptotically approaches 1 as the time 
continues past 20 min. 

One quantitative difference between experimental results 
and model predictions is that, after a rapid initial drop in exit 
concentration from C0, the model shows 100% efficiencyin 
particle retention until saturation and breakthrough begins 
to occur. The experimental data show approximately85% 
retention efficiencyduring the corresponding period. How-
ever, the main features of the experimental results, a sharp 
decline in exit concentration, followed bya plateau and then 
a breakthrough period, are predicted bythe model. In his ex-

Table 2 
Breakthrough time comparison between simulation and experiment 

Flow rate 
(mL/min) 

Feed concentration 
(wt%) 

Breakthrough time 

Experiment Model 
(min) (min) 

30 
60 
30 

0.5 
0.5 
1.0 

10 
3 
4 

9 
1.5 
4.5 

periments, Gupta recorded the exit concentration as a func-
tion of time up to, but not beyond, the breakthrough point. 

The time to breakthrough can be used to gauge the 
correspondence between model and experiment. Particu-
larly, changes in experimental conditions give changes in 

model. The dimensionless capture radius was calculated us-
ing the single-collector model (Grossner et al., 2003) to be  
2.8 for a 30 mL/min flow rate, but only0.98 when the flow 
was doubled to 60 mL/min. So, not onlyis the separator ex-
posed to more particles per unit time, the effectiveness of 
each collector element is reduced bythe increase in linear 
flow speed. Both of these factors affect the breakthrough 
time, and the model predicts this behavior quite appropri-
ately. 

4.2. Data from Grabenstetter (2004) 

Table 3 summarizes the conditions used for these experi-
ments. Here, the suspension was fed through the mesh prior 
to the application of the acoustic field, so the second set of 
boundaryconditions described above applies to this case as 

http:only0.98


Table 3  
Parameters used in the experiment by Grabenstetter (2004)  

Feed suspension 0.21 wt% 74 �m-diameter polystyrene 
Flow rate 35 mL/min 

Chamber dimensions 25.5 mm  × 22.3 mm  × 42.2 mm  
Mesh composition Polyester, 10 pores per inch 

Energydensity 0.02 J/m3 

Frequency1.100 MHz 
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Fig. 6. The normalized concentration at the exit of the separator is shown 
for both the integrated model (solid line) and the experiment (dashed line) 
with conditions shown in Table 3 (Grabenstetter, 2004). Here the model 
predictions are performed using NT = 0.05. 

well. The acoustic energydensityin the fluid was estimated 
using the model of Rusinko (2001). The saturation limit of 
this particular mesh was not explicitlydetermined, but ex-
perimental observations indicate that it is lower than that of 
the previous set of examples. For the purposes of illustra-
tion, we performed simulations using a value of NT = 0.05. 

Model predictions are shown in Fig. 6. As before, the 
model predicts a sharp drop off in exit particle concentra-
tion followed bya protracted period in which retention ef-
ficiencyis relativelyhigh. In this case, the normalized exit 
concentration C/C0 is predicted to drop to 0.32, which is 
similar to the experimental result of 0.20. Also, both the 
model and experiments show a nearlylinear increase with 
time following this initial drop. Since these experiments 
were performed in a larger chamber, the acoustic energy 
densityis somewhat smaller than that used in the set of ex-
periments reported by Gupta and Feke (1998). This results 

in a less effective capture, and consequently, only the trailing 
edge of the S-shaped curve seen in Figs. 3–5 is evident. 
Here too, the correspondence between the experimental and 
simulation results is quite good. 

5. Summary and conclusions 

Using results from a single-collector trajectoryanaly sis, 
a macroscopic transport model was derived in order to pre-
dict the performance of the ultrasonicallyenhanced mesh 
filtration process. This overall model was used to predict the 
exit concentration versus time for experiments previously 
reported in the literature. The model predicts well the gen-
eral features of the experimental data. The time to break-
through predicted bythe model was verynear to that seen 
in the experiments, and also scaled properlywith respect to 
changes in flow rate and feed concentration. Slight discrep-
ancies between the model predictions and experimental re-
sults can be attributed to imperfections in the experimental 
apparatus. However, adjustment of model parameters could 
be performed in order to yield a better correspondence of 
predictions to experimental data. 
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