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Activity Coefficients of Adsorbed Mixtures 

ORRAN TALU AND JIANMIN LI 
Department ofChemical Engineering, Cleveland State University, Cleveland, Ohio 44115 

ALAN L. MYERS 
Department ofChemical Engineering, University ofPennsylvania, Philadelphia, Pennsylvania 19104 

Abstract. Experimental and simulated data for adsorption ofgas mixtures on energetically heterogeneous surfaces 
like activated carbon and zeolites exhibit negative deviations from ideality. The deviations are large in some cases, 
with activity coefficients at infinite dilution equal to 0.1 or less. Similar molecules form ideal mixtures, but molecules 
of different size or polarity are nonideaI. Equations for bulk liquid mixtures (Wilson, Margules, etc.) do not apply 
to isobars for adsorbed mixtures. A two-constant equation for activity coefficients as a function of composition and 
spreading pressure is in good agreement with theory, simulation, and experiment. 

Keywords: adsorption, mixtures, activity coefficients, zeolites 

1 	 Introduction: Vapor-Liqnid Equilibrium (VLE) 

The "gamma/phi" approach is widely used (Van Ness 
and Abbott, 1982) to analyze and correlate experimen
tal VLE data as a function of temperature (T), pressure 
(P), and composition. In this paper, the gamma/phi 
approach is extended to vapor-adsorbed phase equilib
rium (VAE). 

The fundamental equation of VLE is the equality 
of the fugacities in the gas phase (fiG) and the liquid 
phase (fiL). For component no. i: 

fiG{T, P, y} f/{T, P, x} (1) 

y and x are the vectors of gas-phase and liquid-phase 
mole fractions, respectively. The {} notation repre
sents functionality. The gamma/phi approach is to write 
Eq. (1) as: 

YiP<p;{T, P, y} = xifisat{T, P}ydT, P, x} (2) 

fisa! is the fugacity ofpure i saturated liquid at the pres
sure and temperature of the mixture, <Pi is the fugacity 
coefficient of i in the vapor phase and Yi is the activity 
coefficient of i in the liquid phase. Yi and <Pi are cor
rection factors for deviations from ideal behavior; their 
usefulness stems from the following facts (Prausnitz, 
Lichtenthaler and Azevedo, 1986): 

1. 	The limiting value of <Pi at low pressure is unity; 
2. 	The value of fisat at low pressure is the vapor pres

sure of the pure liquid prt ; 

3. 	 Yi has a limit of unity as Xi --+ 1; 
4. 	 Yl and Y2 in a binary system are related by the 

Gibbs-Duhem equation; 
5. 	 Values of <Pi are calculated using gas-phase second 

virial coefficients at low to moderate pressure, and 
cubic equations-of-state at high pressure; 

6. 	 The system ofthermodynamic excess functions (ex
cess Gibbs free energy gex, excess enthalpy hex, 
etc.) provides a concise mathematical description 
of the dependence of activity coefficients upon the 
independent variables (T, P, x). 

7. 	 The effect of P on Yi is small enough to be ignored 
in many cases; 

Experimental activity coefficients for liquid mix
tures are routinely reported using the excess Gibbs free 
energy function: 

(3) 

In general gex{T, P, x}, but for low-pressure mea
surements the effect of pressure is insignificant. For 
an ideal solution (Raoult's law), Yi = 1 and gex = o. 
Solutions are classified as having positive or negative 
deviations from ideality depending upon the sign of 
gex. In general positive deviations (gex > 0) are asso
ciated with mixtures of molecules with different polar
ities or different structures (e.g. mixtures of aliphatic 
and aromatic hydrocarbons) while negative deviations 
are associated with weak chemical bonding of unlike 
molecules (e.g. chloroform and acetone). 
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The determination ofYi from experimental VLE data 
and the calculation of VLE diagrams from gex data are 
covered in thermodynamic textbooks (Smith and Van 
Ness, 1975). The purpose of the introduction is to sum
marize the gamma/phi approach to VLE in preparation 
for its extension to VAE. In the next section, the many 
similarities and major differences between VLE and 
VAE are summarized. 

Thermodynamic Equations for Vapor Adsorp
tion Equilibrium (VAE) 

For VAE (Talu and Zwiebel, 1986) the equivalent of 
Eq. (1) is: 

fiG is the gas-phase fugacity and fiA is the adsorbed
phase fugacity. n, which has the units of surface ten
sion (N/m), is the pressure ofthe adsorbed solution. For 
VLE the conditions of thermal and mechanical equi
librium are implicit in equal values of T and P in both 
phases. For VAE there is thermal equilibrium but me
chanical equilibrium is not attained because there is no 
movable wall separating the adsorbed phase from the 
gas phase. In fact the adsorbed phase has no volume 
according to the Gibbs definition of adsorption. This 
extra degree offreedom (n) for adsorption equilibrium 
is the essential difference between VLE and VAE. Ac
cording to the Gibbs phase rule, binary VLE has two 
degree of freedom and binary VAE has three degrees 
of freedom. 

For VAE, the gamma/phi approach analogous to Eq. 
(2) is (Myers and Prausnitz, 1965): 

YiPcfJdT, P, y} = xdt{T, n}ydT, n, x} (5) 

ft is the fugacity of pure i adsorbate at the temperature 
and spreading pressure of the mixture. 

Remarkably, there is no experimental method for 
direct measurement of n in microporous adsorbents. 
Moreover, except for flat surfaces, n cannot be deter
mined from molecular simulation by ensemble aver
ages or fluctuations. The only way to determine n is 
by integration of the Gibbs adsorption isotherm: 

A dn = RT I'>idlnfi (const. T) (6) 

ni is specific amount adsorbed (mol/kg) and fi :=: 

PYicfJi is the gas-phase fugacity. Equation (6) plays 
a central role in adsorption thermodynamics for: 

1. 	Calculation of spreading pressure from changes in 
bulk-phase properties; 

2. 	 Conversion of a surface-phase equation of state re
lating spreading pressure (n), molar area (a), and 
T into an adsorption isotherm; 

3. Assessment of thermodynamic consistency of ex
perimental data for adsorption of mixtures by inte
gration ofEq. (6) over any closed path. 

For adsorption of a pure gas, Eq. (6) simplifies to: 

Adn 
RT = n dlnf (const. T) (7) 

Using the reference state n = 0 at P 0: 

nA = {f ::"'df (const. T) (8)
RT 10 f 

Inversion of Eq. (8) provides the function .ft{T, n}, 
the standard-state fugacity in Eq. (5). If the pressure 
is near- or sub-atmospheric, the fugacity f in Eq. (8) 
may be replaced by the gas-phase pressure P: 

nA {p !!:...dP (const. T) (9)
RT 10 P 

The limit at zero coverage of the integrand in Eq. (9) is 
given by L'Hospital's rule: 

. n . dn 
hm - = hm - = H (10)p--->oP p--->odP 

The limiting slope H, called Henry's constant, is 
non-zero and finite. Some theoretical equations for the 
adsorption isotherm (e.g. the Freundlich equation and 
the Dubinin-Radushkevich equation) predict an infinite 
value of H; these equations are unsuitable for the calcu
lation of spreading pressure and other thermodynamic 
properties (Talu and Myers, 1988). Surface-phase 
properties at zero coverage are a function of the inter
action of a single adsorbate molecule with the surface 
of the adsorbent. The limit of zero surface coverage 
serves as the reference state for the properties of ad
sorbed solutions, in the same way that the perfect-gas 
state serves as the reference state for the configurational 
properties of bulk fluids. 

A major difference between VAE and VLE is the 
effect of pressure upon activity coefficients. For VLE 
measured at low pressure up to several atmospheres, 
pressure has a weak effect upon thermodynamic prop
eities of the liquid phase. For VAE, spreading pressure 
has a strong effect upon thermodynamic properties of 
the adsorbed phase such as activity coefficients. At the 
limit of zero coverage the molecules are too far apart to 
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interact and the activity coefficients are equal to unity: 
lim(n->o) Yi = 1. The degree of nonideality at higher 
coverage depends upon differences in polarity, size, 
and structure of the adsorbate molecules and upon the 
structure of the solid. 

Another difference between VAE and VLE is the 
standard state. For VLE, the standard state is the pure 
liquid at the temperature and pressure of the mixture. 
For low-pressure VLE measurements, the effect of 
pressure upon the standard-state fugacity is weak and is 
usually ignored. For VAE, the standard-state fugacity 
It is a strong function of TI. 

The excess area aex of an adsorbed solution is anal
ogous to the excess volume of a bulk solution: 

aex{T, TI, x} = a{T, TI, x} - I>ia~{T, TI} (11) 
i 

Excess Gibbs free energy and excess area are related by: 

a ex = (ageX/RT) (12) 
aTI T,x 

Since molar area a = AIn, it follows from Eq. (11) 
that the total amount adsorbed from a mixture n 

1 a(Xi) (13)--" - + 
ex 

n ~ n~ Ai I 

The set of Eqs. (4)-(13) provides the thermodynamic 
framework for isothermal VAE. Given the behavior of 
the pure adsorbates, multi component systems can be 
characterized by the functional form of gex{T, TI, x}. 

3 Theories of Mixed-Gas Adsorption 

The functionality of the excess properties for VAE are 
examined for two theories: (1) the two-dimensional 
approximation, and (2) partial exclusion of large 
molecules from small micropores. 

3.1 Two-Dimensional (2-d) Approximation 

The (2-d) approximation is that the surface of the ad
sorbent is flat and adsorbed molecules are trapped at 
the bottom of the gas-solid potential energy well, with 
their translational motion effectively restricted to two
dimensions parallel to the surface. The 2-d approxi
mation applies to sub-monolayer adsorption on planar 
surfaces for which the depth of the gas-solid potential 
energy well (-VIS/kT) ~ 10 or more. 

Henry's constant H in Eq. (10) is related to the 
adsorption second virial coefficient Bls by: 

BlsH=- (14)
RT 

Bis is a function of the gas-solid potential energy 
VIS (Steele, 1974) of a single adsorbate molecule (1) 
with the surface (S): 

= Iv [e-Uls/kT - IJ dV (15)Bls 

The integral is over the specific volume V (m3/kg) ac
cessible to the adsorbate molecule. If the temperature 
is high enough to ignore lateral variations in VIS: 

00 

= A 1 [e-Uls/kT 1] dx (16)BIS 

where A is the specific surface area (m2/kg) of the ad
sorbent and x is the distance from the surface. 

The 2-d compressibility factor z is defined by (Van 
Ness 1969): 

TIa 
z:=- (17)

RT 
The thermodynamic equation for the calculation of 
fugacity in a 2-d adsorbed mixture from a spread
ing pressure-explicit equation of state is (Hoory and 
Prausnitz, 1967): 

RTIi = ni [in * -1)dlnn--exp (Zi ] (18)
BiS 0 

where 

(19) 

The exponential term is the fugacity coefficient when 
the molar area is the independent variable, analogous 
to the fugacity coefficient of a bulk gas when the in
dependent variable is its molar volume. Equation (18) 
satisfies the Gibbs adsorption isotherm, Eq. (6). 

Equation (18) is for the case when the equation of 
state is explicit in the spreading pressure. In the case 
when the equation of state is explicit in the molar area: 

TIAx·I exp (20)Ii = __ [in (Zi - l)dln TI]
BiS 0 

where 

(21) 



which is the partial molar compressibility of compo
nent i. Surface-phase activity coefficients are calcu
lated from Eq. (5): 

J;
Yi=-- (22)

xif/ 

Equation (18) or (20) can be combined with a 2-d equa
tion of state to determine the functionality of surface
phase activity coefficients. The 2-d virial equation is 
chosen to study the asymptotic behavior of gex at low 
coverage (Morrison and Ross, 1973): 

Ila B BIl 
z = RT = 1 + a + ... = 1 + RT +... (23) 

Truncation after the 2-d second virial coefficient B for 
pairwise interactions is justified if the surface coverage 
is sufficiently low for molecular clustering in triplets 
to be highly improbable. (The 2-d second virial coeffi
cient B is to be distinguished from the gas-solid second 
virial coefficient B1S ). For a mixture: 

Bm = L LXiXjBij (24) 
j 

For a binary mixture Bm = xtBJ1 +2XIX2BI2 +xiB22. 
For virial coefficient Bij (Hill and Greenschlag, 1961, 
Ohand Kim, 1974): 

100 

Bij [1 - e-Uij/kT]:rrrdr (25) 

where Uij {r} is the interaction energy of molecules i 
and j as a function of their separation r. 

Substitution of Eqs. (23) and (24) into (20) yields 
the fugacity of the ith component of a mixture: 

f' 	 IlAxi [[(2I:/Xj Bii)-Bm )]IlJ
Ji = 	--exp (26)

BiS RT 

The standard-state fugacity for the pure adsorbate is: 

ft IlA exp [ Bii Il] (27)
Bis RT 

Substitution of (26) and (27) in (22) gives the activ
ity coefficient of component 1 in a binary mixture of 
components 1 and 2: 

012Il JYl 	 exp [---xi (28)
RT 

using 012 == (2B12 Bll - Bn). Similarly for compo
nent no. 2: 

012Il J[ xtY2 	 exp --- (29)
RT 

Finally, substitution ofEqs. (28) and (29) into (3) gives 
an asymptotic expression for gex: 

(30) 

Therefore from Eq. (12) the leading term for the excess 
area function is: 

(31) 

The excess area at the limit of zero coverage is finite 
and quadratic in composition. The value of 012 is usu
ally positive for bulk-gas mixtures; likewise positive 
deviations are the rule for adsorption on an energet
ically homogeneous surface. For adsorption on het
erogeneous surfaces like zeolites and activated carbon, 
deviations from ideal mixing are negative (Valenzuela, 
Myers, Talu and Zwiebel, 1988) as shown below by ex
periment and by molecular simulation. The point here 
is not the sign but the functional form of the excess 
properties at the limit of zero coverage: both the ex
cess Gibbs free energy and the excess area are quadratic 
in composition. 

The excess area does not vanish for real adsorbates at 
the limit ofzero amount adsorbed. This seems paradox
ical at first sight since adsorbate-adsorbate interactions 
are negligible and the solution is ideal (~gex = 0). 
Equation (13) shows that the excess area at the limit 
of zero coverage has the form (00 (0). Thus there 
is no inconsistency in defining an ideal solution as one 

exwith zero a , even though real adsorbed solutions have 
exfinite values of a at the limit of zero loading. 

3.2 	 Partial Exclusion ofLarge Molecules from Small 
Micropores 

The 2-d virial equation predicts that the excess proper
ties are quadratic in composition at the limit of zero 
coverage but the equation diverges at high surface 
coverage. The model of partial exclusion of large 
molecules from small micropores (Dunne and Myers, 
1994) is used to investigate the functionality ofthe ex
cess properties at high surface coverage. 

Molecules with effective diameters larger than the 
windows into microporous cavities cannot enter; the 
exclusion effect may be total or partial depending 
upon the pore-size distribution of the adsorbent. Con
sider adsorption of a binary mixture composed of large 
molecules (species no. 1) and small molecules (species 
no. 2) in a mixture oftwo adsorbents A (large, monodis
perse pores) and B (small, monodisperse pores). Both 
molecules can enter the cavities of adsorbent A but 
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molecules of species no. 1 are excluded from the mi
cropores of adsorbent B. 

The single-gas isotherms are: 

nl =nlA 
(32) 

n2 = n2A + n2B 

Mixtures compete for available adsorption space in 
adsorbent A but only the smaller molecule can adsorb 
in adsorbent B. 

Let the single-gas adsorption isotherms be repre
sented by the Langmuir equation: 

mCI 
n=--- (33)

1 +CI 
where m is the saturation capacity (mol/kg), C is 
the affinity for the adsorbate, and I is its gas-phase 
fugacity. 

The Langmuir parameters are m IA and CIA for the 
large molecule in adsorbent A, m2A and C2A for the 

1. Component 2: C = 0.1, m = 1.488. 

small molecule in adsorbent A, and m2B and C2B for 
the small molecule in adsorbent B. 

Mixture VAE were generated for the partial exclu
sion model by adding competitive, ideal adsorption in 
adsorbent A to the non-competitive adsorption in ad
sorbent B. VAE data were analyzed using Egs. (4)-
(13). The combined adsorbents were treated as a 
thermodynamic system, as ifthere were no information 
about the pore-size distribution of the adsorbent and the 
exc1usion of the larger molecule from the smaller pores. 
This is different from the mixed-gas Langmuir model, 
which predicts ideal behavior. These calculations yield 
overall activity coefficients for the thermodynamic sys
tem of two adsorbents. Although competitive adsorp
tion in adsorbent A is ideal, the exclusion of molecule 
1 from adsorbent B generates non-ideal behavior for 
the combined adsorbents A and B. 

Although the functionality of the excess Gibbs free 
energy cannot be expressed in analytical form at 
high coverage for the theory of partial exclusion, an 
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asymptotic expression for low coverage was derived: 

-X1X2( a1{l ) (34)
RT 2mlA 

where a = m2B/(m2A +m2B) is the fractional excluded 
volume and 1{1 ilA/RT. From Eq. (12): 

(35)
A 

Thus in the absence of adsorbent B which excludes the 
large molecules of species no. 1, a 0 and over
all competitive adsorption is ideal. Exclusion causes 
negative deviations from ideal mixing. 

Both the virial expansion, Eq. 30, and the partial 
exclusion model, Eq. 34, predict that the excess Gibbs 
free energy is quadratic in composition and linear in 
spreading pressure (and 1{1) at the limit ofzero coverage. 

Since there is no analytical expression for gex at high 
coverage, numerical calculations were performed for 

the following case: mlA = 1 mol/kg; m2A = 1.488 
mol/kg; m2B 0.912 mol/kg; CIA 1.0 atm-1; 

C2A = C2B 0.1 atm-I. The selectivity of adsor
bent A for component 1 relative to component 2 is 
CIA/C2A = 10 and the fraction of excluded volume 
a = 0.912/(1.488 + 0.912) = 0.38. The single-gas 
isotherms for these parameters are plotted on Fig. 1. 
Component 1 is preferentially adsorbed at low coverage 
but the smaller component 2 is preferentially adsorbed 
at high coverage. This type of behavior is typical for 
different-sized molecules of a homologous series of 
compounds. 

Activity coefficients at high coverage are shown for a 
constant pressure of 10 atm. on Fig. 2 and for constant 
1{1 = 2.22 mol/kg on Fig. 3. The curves on Figs. 2 
and 3 coincide at XI 0.5, where P 10 atm and 
1{1 = 2.22 mol/kg. The curves at constant 1{1 in Fig. 3 
are more symmetric in composition than the curves at 
constant P in Fig. 2. 
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The Gibbs-Duhem differential consistency test de
rived from Eq. (3) for activity coefficients at constant 
1fr is: 

8 In Yl 8 In Y2 
--=--- (36) 

8Xl 8Xl 

at the equimolar composition. The constant-1fr curves 
on Fig. 3 obey Eq. (36): 

C8 In yJ/8xj) = +0.713 

(8 In Y2/8xj) = -0.713 

The constant-P curves on Fig. 2 fail to obey Eq. (36): 

(8 In YI/8xl) = +0.566 

(8 In y2/8Xl) = -0.802 

Experimental data for adsorption of mixtures are mea
sured at constant P, not at constant 1fr. Activity co
efficients delived from isobaric data cannot be fit by 

any of the equations used for VLE (Wilson, Margules, 
etc.), regardless of the number of parameters. (Talu 
and Zwiebel, 1986) VLE data obey Eq. (36); isobaric 
VAE data do not obey Eq. (36). 

The constant-1fr activity coefficients in Fig. 3 are re
produced with an average error of 2% by the quadratic 
expression (gex / RT) = CXjX2, In Yj = Cx~, In Y2 = 
Cxf, with C = -0.66 at 1fr = 2.22 mol/kg. 

The excess Gibbs free energy at constant 1fr is exactly 
quadratic in composition at the limit of zero coverage 
and approximately quadratic in composition at high 
coverage. 

The excess Gibbs free energy function varies with 
1fr. The limiting slope at 1fr = 0 is given by Eq. (34): 

8[gex /(RT Xj X2)] a 0.38 --- =--- = -0.19 
81fr 2mlA 2(1.0) 

(37) 
The isothermal variation ofadsorbed-phase activity co
efficients with composition and spreading pressure is 



.......... .• ,'>  

o,-----------------------------------------------------~ 

-1 

0 

;;;. 
co 
~ -2~ 
d) 
d)  
d)  

~ 
CJ:l 
.0 
.0....... 


'!:s---30 
CJ:l 
CJ:l 
d) 	 !:; 
(.) 

&J  !:; 0 

0 

-4 

-5 ~------~--------~--------~------~--------~------~ 
o 	 5 10 15 20 25 30 

\jI, molecule/cavity 

Fig. 4. Excess Gibbs free energy function G gex / RTXlX2 versus 1fr from molecular simulation of mixtures i-C4HJO and C2~ in zeolite 
13X at 298.15 K. (0): P = 1 kPa; (~): P 10 kPa; (0): P = 70 kPa; (\7): P = 137 kPa. Solid line: Eq. (38) with C = -5.24, f3 = 0.084. 

given approximately by (Valenzuela and Myers, 1989): at 298.15 K were performed (Karavias and Myers, 
1991). The Lennard-Jones 12-6 potential was used 

-
gex 

= XIX2 C (1 - e-f3Vr ) (38) for gas-gas dispersion/repulsion interactions, and the 
RT Lennard-Jones Devonshire theory for gas-solid dis

For the above example, two constants C = 0.5 kg/mol persion/repulsion interactions. Isobutane was as
and f3 = -0.38 (kg/mol) reproduce the activity co sumed to be nonpolar and the ethylene molecule had 
efficients with a average error of 2% in the range a point quadrupole moment of 3.92 x 10-26 esu
o< 1/1 < 3 mollkg, which corresponds to 0 < P < 20. cm2 placed at its center. The electric field strength 

Activity coefficients are required to calculate the inside the 13X cavity was calculated from partial 
composition of the adsorbed phase; the total amount charges of 0.58 placed on the sodium ions. The 
adsorbed is obtained from Eq. (13) and the excess ion-quadrupole interaction between the sodium ions 
area. From Eqs. (12) and (38): of the zeolite and the quadrupole moment of ethy

lene generated electrostatic energy terms, and the 
(39) 	 interaction of the electric field with the polarizable 

adsorbate molecules generated induced electrostatic 
energy terms. Because of the approximate nature of 

4 Molecular Simulation 	 the molecular model, comparison of the simulation 
with the experimental single-gas adsorption isotherms 

Monte Carlo simulations of adsorption of binary showed systematic errors of 10% for isobutane and 
mixtures of isobutane and ethylene on zeolite 13X 25% for ethylene. 
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Activity coefficients were calculated from the sim
ulation results for binary adsorption of isobutane and 
ethylene. Figure 4 shows thatEq. (38) fits the data with 
an average absolute error of 4%. Some of the scatter 
in the data at high surface coverage is due to the weak 
dependence of gex / RTXl X2 on composition. Activity 
coefficients at infinite dilution at high coverage are as 
small as yoo = 0.2. This highly nonideal behavior is 
due primarily to the difference in polarities of isobu
tane and ethylene molecules in the strong electric field 
inside 13X cavity. 

Experiment 

Activity coefficients were measured by (Talu and 
Zwiebel, 1986) for binary mixtures of propane and hy
drogen sulfide on H-mordenite at 30°C. Excess Gibbs 
free energy as a function of 1/1 is shown on Fig. 5. The 

solid line is the fit of Eq. (38), which agrees with the 
data within an average absolute error of 2%. This is 
a highly nonideal solution, with activity coefficients at 
infinite dilution yoo < 0.1. Data contain both constant 
P and Y planes. As in the case of the molecular simula
tions, the scatter in the data at high surface coverage is 
partly ascribed to the weak dependence of gex / RTxtX2 
on composition. 

6 Conclusions 

Theory, molecular simulation, and experiment all show 
that the two-parameter Eq. (38) fits the excess free 
energy function over the entire range of surface cover
age with less than 5% error, which is sufficiently accu
rate for most engineering calculations. Two parameters 
provide a complete description of isothermal, binary 
adsorption equilibrium, from low to high coverage. 
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The quadratic dependence of the excess Gibbs free 
energy function on the composition of the adsorbed 
phase is exact at the limit of zero coverage, and ap
proximate at high coverage. 
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