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Computing arrival cost parameters in moving horizon estimation using 
sampling based filters 

Sridhar Ungarala · 
Dt>PIInmenr of Chemical ond Biomedi",1 Engineering. 2121 Euclid Avenue. Cleve/and SWle University, Cleveland. OH 44115. USA 

1. Introduction 

Consider the evolution of the state of a dynamic system mod­
eled as 

(1 ) 

where f. Rn _ Rn is generally a nonlinear vector function and 
Wt E R" is an independent identically distributed (iJ.d ) random 
noise vector distributed according to the Gaussian probability den­
sity function (pdf) Pw(Wk) = A'W, Q). The measurements are given 
by 

(2) 

where h : Rn 
-+ W' is a nonlinear vector function of the state and 

I't E RP is i.i.d random measurement noise vector distributed 
according to the pdf p,,(I'k) = .,V(O, R). It is commonly assumed that 
the initial pdf of the state vector is known as a Gaussian pdf 
p(xoJ = X(xo, Po ). conditioned on the fact that no measurements 

are available yet. The problem considered in this paper is intention­
ally restricted to additive noise terms to simplify the discussion and 
relate to existing MHE literature. It is possible to widen the scope to 
systems that are nonlinear in noise terms. such as I (Xk . w~ J and 
h(x., I'k ). provided I - I and h- 1 exist as vector functions of the 
respective noise terms. 

Given the set of noisy measurements Y = {YJ : j = 1, . " k }. it is 
desired to optimally estimate the states X = {Xj:j = 0, ... ,k ). All 
statistical information about the discrete state trajectory is embod­
ied in the joint pdf of the trajectory. conditioned on the measure­
ments. If it is possible to derive the joint conditional pdf up to a 
constant of proportionality or approximate it in closed-form. the 
state trajectory may be estimated by locati ng the mode via the fo l­
lowing optimization problem 

maxp(XIY) Vk. (3) , 
The optimizing state trajectory X is known as the modal trajectory. 
This problem Is also referred [Q as fullinformallon eSTimaTion [1.2 [. 
As new measurements are accumulated. the size of the discrete 
state sequence to be determined by optimization grows. The full 



information approach turns impractical very soon as the computa­
tional burden increases without bound. 

In order to avoid the unbounded growth of the measurement 
set and the accompanying optimization problem, only a fixed win­
dow or horizon of measurements are allowed to accumulate at the 
beginning. After the first batch, subsequent processing is limited to 
the same size of the batch by appending a new measurement to the 
batch and discarding the earliest measurement in the batch. This 
trimming of the full information estimator is referred to as the 
moving horizon estimator (MHE) [3,4]. For a fixed horizon 
m P 1, let Xm ¼ fxj : j ¼ k -m þ 1; . . . ; kg and Ym ¼ fyj : j ¼ k- 
m þ 1; . . . ; kg, then MHE is posed as maximizing the joint condi­
tional pdf of the states in the horizon with respect to Xm 

max pðXmjYmÞ 8k P m: ð4Þ 
Xm 

Similar to the given initial pdf pðx0Þ for the full information estima­
tor, it is assumed in MHE that the conditional pdf of the state just 
before the horizon pðxk-mjY1:k-mÞ is available, where Y1:k-m ¼ 
fyj : j ¼ 1; . . . ; k -mg. This conditional pdf, serving as a summary 
of the past information not included in the horizon, is used to ini­
tialize the predictions of the state pdf inside the horizon. The first 
prediction is the a priori pdf of the state at the beginning of the hori­
zon pðxk-mþ1 jY1:k-mÞ, from which a penalty term known as the arri­
val cost is formulated for the MHE objective function [5,6]. 
Initialization of MHE is equivalently understood as the formulation 
of the arrival cost term. 

The arrival cost information of a horizon may be propagated to 
the subsequent horizon by updating the conditional pdf 
pðxk-mjY1:k-mÞ, which is independent of the optimizing Xm. In gen­
eral, the formulation of arrival cost is an ad hoc procedure and 
the problem formulations in Eqs. (3) and (4) are not equivalent 
to each other because Xm may not lie on the modal trajectory X. 
Thus, the implementation of MHE incorporates a tradeoff. The 
MHE limits the optimization computational load, while requiring 
repeated initialization as the horizon moves forward. This entails 
a knowledge of the evolution of the conditional pdf 
pðxk-mjY1:k-mÞ, which is generally not possible to follow without 
approximations because a complete description of the conditional 
pdf is parameterized by all of its moments [7]. 

On one end of the tradeoff scale, the simplest way to approxi­
mate the conditional pdf is to assume it to be a uniform density, 
which means that MHE can use only the measurement information 
included in the most recent horizon and all the past information is 
ignored. In order to compensate for the lack of prior information, 
more information is needed in large horizons resulting in high 
computational cost. On the other end, if the conditional pdf is 
somehow determined by following its evolution in between mea­
surements and subsequent conditional update, the most sensible 
choice of horizon size for MHE is m ¼ 1, which is equivalent to 
working with the conditional pdf itself. As a compromise, one 
would seek to approximate the conditional pdf in terms of a finite 
number of parameters useful for the initialization of MHE and 
implement MHE in horizons small enough to allow for realtime 
computation. The horizon should also be large enough to compen­
sate for the under-parameterization of the conditional pdf. 

It is common in MHE implementations to assume that the con­
ditional pdf pðxk-mjY1:k-m Þ and the a priori pdf pðxk-mþ1 jY1:k-mÞ of 
the horizon are shape invariant multivariate Gaussian pdfs [1–6]. 
Approximate nonlinear filters are used to propagate and update 
only two parameters of the pdfs, the mean and the covariance. 
The most frequently used methods being the extended Kalman fil­
ter (EKF) and its variants such as higher order filters [4]. For hori­
zons larger than one, the inherent delay in the horizon allows the 
use of approximate nonlinear smoothers instead of filters [4,8]. 

The existing methods of recursively updating the arrival cost 
based on functional approximations of nonlinearities by truncated 
Taylor series can lead to unpredictable behavior. In many cases the 
covariance used to weight the arrival cost diverges even for higher 
order EKF implementations and fails to be a reliable measure of the 
quality of the knowledge of the state. Poorly formulated arrival 
cost forces large horizons, which pose hindrances for fast, realtime 
estimation [2]. The Gaussian assumptions also break down for 
many nonlinear systems because of the tendency to exhibit multi­
ple modes in both the a priori and conditional densities [9–11]. The 
initialization of MHE with the best choice of arrival cost term is an 
open issue, which also leaves the computational complexity of 
MHE implementation as an open challenge. It has been conjectured 
that, arrival cost can be based on uniform density if realtime global 
optimization can be implemented in large horizons, because 
Gaussian approximation of a multimodal pdf can produce distorted 
estimates for all future states [2,11]. It would constitute a brute 
force implementation on one end of the tradeoff scale mentioned 
before. 

Typically any nonlinear filter capable of propagating the condi­
tional mean and covariance may be used to compute the arrival 
cost in MHE [3]. However, sufficient motivation exists to investi­
gate novel methods to properly parameterize the arrival cost. Sam­
pling based nonlinear filters are a departure from the traditional 
approximate filters based on functional linearization of the nonlin­
earity such as the EKF and its variants. It is possible to address two 
concerns in the existing implementation of MHE based on EKF. 
First, the formulation of arrival cost based on Gaussian assumption 
can be retained but the moments can be obtained very accurately 
without resorting to linearization. Second, some sampling based 
filters can provide numerical approximations of the entire density 
rather than just the first two moments. Additional computation 
may be tolerated to find non-Gaussian closed-form approxima­
tions of the densities instead of allocating resources to large hori­
zons that are poorly initialized all the time. These two issues are 
explored in detail using simulation examples in this 
communication. 

In this paper, three distinct sampling based methods are sug­
gested for initializing or formulating the arrival cost for MHE. They 
include the deterministic sampling based unscented Kalman filter 
(UKF), the random sampling based class of nonlinear filters called 
particle filter (PF) and the aggregate Markov chain based cell filter 
(CF). The choice of these three methods is motivated by their rela­
tively small online computational demand compared to other non­
traditional filters such as the grid based approaches [9,12–14]. 

The UKF utilizes a minimal set of deterministically sampled 
support points called sigma points and associated weights to rep­
resent the state pdf, assumed Gaussian. The transformation of the 
sigma points through any nonlinearity yields the ensemble mean 
and covariance of the points accurately to the second order 
approximation of the nonlinearity [15]. Since linearization is 
avoided, the UKF is a Jacobian free Kalman filter for nonlinear sys­
tems. Significant performance gains have been demonstrated with 
UKF compared to EKF with about the same order of computational 
complexity [16–18]. 

The particle filter is a broad class of sequential Monte Carlo 
techniques that attempt to solve the recursive Bayesian inference 
problem without requiring simplifying assumptions about nonlin­
earity of the models or non-Gaussianity of the densities. A great 
deal of interest is generated by the utility of these simple, accurate 
and fast algorithms for the generally infinite dimensional nonlinear 
filter [2,10,19–22]. The central idea is to represent the non-Gauss­
ian densities by a large number of samples or particles distributed 
accordingly and update the samples and weights conditioned on 
measurement information according to Bayes rule. The sample 
mean and covariance converge independent of the state dimen­



sion, which can provide excellent statistics to formulate the arrival 
cost in MHE with Gaussian assumption. The samples can also be 
used in kernel density estimators [23] to formulate more relevant 
nonparametric arrival cost terms. 

Unlike the particle filter, the state pdf in the cell filter is 
approximated as a piecewise constant probability mass vector 
(pmv), which is similar to the point mass approach of the grid 
based methods. The main idea in CF is the development of an 
aggregate Markov chain for describing the temporal dynamics of 
the state pdf over a discretized state space comprising a finite 
number of cells [24–26]. The transition probability matrix is com­
puted offline using propagation of samples from the cells. While 
the grid methods perform expensive online propagation of grids 
and point masses, the main online task in the CF is limited to a lin­
ear transformation of the pmv. However, the CF shares the disad­
vantage of Bellman’s ‘‘curse of dimensionality” with the grid 
methods. Apart from accurately determining the moments, 
closed-form curve fits to the pmv can be used to formulate realis­
tic arrival cost terms. 

In the following sections, the probabilistic interpretation [4,5] 
and the initialization of moving horizon estimation is laid out first. 
Approximation of the arrival cost term using Gaussian assumption 
is then discussed. The use of unscented Kalman filter [27], particle 
filter and cell filter to provide the two summary statistics for arri­
val cost is described. A more flexible formulation of arrival cost 
based on numerical approximation of the state pdf provided by 
PF and CF is considered. Then, two simulation examples from the 
literature are included to demonstrate the benefits of sampling 
based initialization of MHE, followed by conclusions. 

2. Moving horizon estimation 

2.1. Probabilistic interpretation 

Using Bayes rule, the joint conditional density in a horizon is 
written up to a constant of proportionality as 

pðXmjYmÞ / pðYmjXmÞpðXmjY1:k-mÞ; ð5Þ 

where pðXmjY1:k-mÞ ¼ pð mþ1; . . . ; xkjy1 ; . . . ; yk- Þ, i.e., the a priori xk- m

joint pdf of the states in the horizon conditioned on the measure­
ments before the horizon and pðYmjXmÞ ¼ pðyk-mþ1; . . . ; ykjxk-mþ1 ; 
. . . ; xkÞ is the joint likelihood function. Assuming Xm is a first order 
Markovian sequence, the joint conditional density is 

k k-1 

pðXmjYmÞ ¼ c1 pðyjjxjÞ pðxjþ1jxjÞpðxk-mþ1 jY1:k-mÞ; ð6Þ 
j¼k-mþ1 j¼k-mþ1 

Y Y
where c1 is a constant and pðyjjxjÞ is the likelihood function due to 
each measurement in the horizon. The evolution of the state pdf in­
side the horizon is described by the state transition probability den­
sity function pðxjþ1jxjÞ and initialized by the a priori density of the 
state at the beginning of the horizon pðxk-mþ1jY1:k-mÞ. 

The state transition pdf is defined by p ðxkþ1 - f ðxk ÞÞ, which is w

given as Nð0; QÞ and the likelihood function is defined by 
p ðyk - hðxkÞÞ given as Nð0; RÞ. The restrictive assumption of addi­m
tive noise is useful here, but it is not necessary if the models are 
invertible and the Jacobians exist. Thus, the joint pdf up to a con­
stant of proportionality c2 is,     

2 k-1 2Yk -1
2ky -j hðxjÞk Y -1

2kxjþ1-f ðxjÞkR-1 Q-1pðXmjYmÞ ¼ c2 e e 
j¼k-mþ1 j¼k-mþ1 

 pðxk-mþ1 jY1:k-mÞ; ð7Þ 

where kak2 
A is the quadratic form aTAa. The negative logarithm of 

the joint density is the MHE cost function that is minimized for 
state estimates, 

k k-1X X
min kyj - hðxjÞk2 

R-1 þ kxjþ1 - f ðxj Þk2 
Q-1 

Xm j¼k-mþ1 j¼k-mþ1 

þ Cðxk-mþ1Þ: ð8Þ 

The terms in the two summations are collectively known as stage 
costs related to the uncertainties in the system model and measure­
ments respectively. The last term CðOÞ is called the initial penalty or 
the arrival cost related to the uncertainty in the a priori information 
at the beginning of the horizon based on the past measurements 

Cðxk-mþ1Þ ¼ - ln pðxk-mþ1jY1:k-mÞ; ð9Þ 

where the a priori density is required in closed-form up to a con­
stant of proportionality. 

One of the original motivations for posing the state estimation 
problem in the optimization framework is the ability to impose 
physically meaningful constraints on the variables. When consid­
ering physically meaningful support for the joint conditional den­
sity, state constraints are posed xk 2 Xk, which may not be 
necessarily convex 

uXk ¼ fxk : xl 
6 g1ðxk Þ 6 x g: ð10Þ 

Mass and energy balances and constitutive relationships can also 
impose multivariate algebraic equality constraints, 

g2ðxkÞ ¼ 0: ð11Þ 

If necessary, it is possible to consider lower and upper bounds on 
the noise variables by limiting to polyhedral convex sets [5]. 

2.2. Initialization of MHE 

The stage costs are completely specified by the system model, 
the measurement equation and the noise densities. On the other 
hand, the formulation of the arrival cost term Cðxk-mþ1Þ is typically 
a user-defined initialization step in the implementation of MHE. In 
order to formulate the arrival cost term CðOÞ, the a priori pdf 
pðxk-mþ1 jY1:k-mÞ at the beginning of the horizon is needed, which 
in turn must be predicted from a summary of the past information, 
i.e., the conditional pdf pðxk-mjY1:k-mÞ. 

• Prediction: The desired prediction for initializing MHE is 
achieved by making use of the fact that, Z 

pðxk-mþ1jY1:k-mÞ ¼  pðxk-mþ1jxk-mÞpðxk-mjY1:k-mÞdxk-m; ð12Þ 

which is the Chapman–Kolmogorov equation.The state transition 
pdf, with c3 a constant, is   

2-1
2kxk-mþ1-f ðxk- Þkpðxk-mþ1jxk-mÞ ¼ c3e 

m Q-1
: ð13Þ 

Unfortunately, the integration is generally not feasible without sim­
plifying assumptions in order to obtain a closed-form pðxk-mþ1j
Y1:k-mÞ. After the arrival cost at k -m þ 1 is initialized for the hori­
zon and the estimates are optimized, the horizon is moved forward 
to k -m þ 2. An update must be performed on the conditional pdf 
to summarize the past, which now includes k -m þ 1. 
• Update: The update uses Bayes rule to modify the previous pre­

diction in light of the measurement yk-mþ1 

pðyk-mþ1jxk-mþ1Þpðxk-mþ1jY1:k-mÞ pðxk-mþ1jyk-mþ1Þ ¼ R ; 
pðyk-mþ1jxk-mþ1 Þpðxk-mþ1jY1:k-m Þdxk-mþ1 

ð14Þ 

where the likelihood function, with c4 a constant, is   
1 2-2kyk-mþ1-hðxk-mþ1Þkpðyk-mþ1jxk-mþ1Þ ¼ c4e R-1

: ð15Þ 



    

Eqs. (12) and (14) together form the conceptual predictor–correc­
tor solution for a general Bayesian estimator that recursively deter­
mines the evolution of the conditional density. Closed-form 
solutions are generally possible only for linear systems and some 
scalar cases. It must be noted that the Bayesian estimator is also 
subject to all applicable constraints on the random variables, so 
that the support of the conditional pdf is meaningful. 

3. Approximation of arrival cost I 

For nonlinear systems, the a priori pdf pðxk-mþ1jY1:k-m Þ is gener­
ally infinite dimensional. Closed-form approximations may be 
written by making two practical assumptions, (1) the pdf is 
approximately represented by a fixed number of suitable parame­
ters, for example, a few moments or weighted samples or piece-
wise constant approximation and (2) the evolution of the pdf is 
followed by approximate prediction and conditional update of 
these parameters. 

One of the most common simplifying assumptions used in MHE 
implementations is that the a priori pdf at the beginning of the 
horizon is a multivariate Gaussian pðxk-mþ1jY1:k-mÞ ¼Nðx~k-mþ1; ePk-mþ1Þ, completely represented by the first two moments. By tak­
ing the negative logarithm of the a priori pdf, the arrival cost in Eq. 
(8) is now expressed as 

Cðxk-mþ1 Þ ¼ kxk-mþ1 - ~xk-mþ1k2 
-1 

: ð16ÞeP
k-mþ1 

Similarly, it may be assumed that the past information is also ade­
quately summarized by the mean vector and covariance matrix of 
the conditional pdf, implicitly assuming that it is a multivariate 
Gaussian pðxk-mjY1:k-m Þ ¼Nðx̂k-m; Pbk-mÞ. In this section, three dif­
ferent approaches containing different assumptions are considered 
to approximately implement the Bayesian estimation from Eqs. (12) 
and (14) and obtain the parameters of arrival cost for MHE. The tra­
ditional MHE initialization by EKF is also included for comparison 
with the deterministic sampling based unscented Kalman filter, 
the random sampling based particle filter and the aggregate Markov 
chain based cell filter. 

3.1. Arrival cost using extended Kalman filter 

All pdfs are represented by the mean vector and the covariance 
matrix and the dynamics of the moments are approximately real­
ized through first order Taylor series approximations of the system 
nonlinear function f and the measurement nonlinear function h 
about chosen reference trajectories. 

• Prediction: Given the summary of past information x̂k-m and 
Pbk-m , the a priori mean and covariance for arrival cost are com­
puted via propagation through the system model linearized 
about the reference trajectory x̂k-m, 

~ ^xk-mþ1 ¼ f ðxk-mÞ; ð17Þ 
Pek-mþ1 ¼ Fk- Pbk- FT þ Q ; ð18Þm m k-m 

where the Jacobian matrix is evaluated at the previous EKF estimate  
@f   Fk-m ¼ : ð19Þ @x x¼x̂k-m 

• Update: Using the measurement equation, linearized about 
~xk-mþ1, the time-varying filter gain Kk-mþ1 is computed 

-1 eKk-mþ1 ¼ Pek-mþ1Hk
T 
-mþ1 Hk-mþ1 Pk-mþ1Hk

T 
-mþ1 þ R ; ð20Þ 

where the Jacobian matrix is evaluated at the predicted mean  
 
Hk-mþ1 ¼
@h 

: ð21Þ @x ~x¼xk-mþ1 

The conditional mean and covariance are updated by   
^ ~xk-mþ1 ¼ ~xk-mþ1 þ Kk-mþ1 yk-mþ1 - hðxk-mþ1Þ ; ð22Þ b ePk-mþ1 ¼ Pek-mþ1 - Kk-mþ1 Hk-mþ1 Pk-mþ1: ð23Þ 

The recursive formulation of EKF is simple and computationally 
efficient. However, the EKF is prone to divergence because the esti­
mation covariance Pbk-mþ1 is generally not a reliable measure of the 
goodness of the estimate x̂k-mþ1. In many cases the covariance 
becomes too small, causing the EKF to place high confidence on 
the inaccurate estimate, which then continues to exacerbate the 
deviation of the estimates from the true states. Another disadvan­
tage of the EKF is the necessity for the Jacobians of the nonlinear 
function to exist, which may be difficult to compute even when 
existent. 

The updated EKF estimates can be adjusted to reconcile with 
simple linear equality constraints using methods based on La-
grange multipliers and projection methods [28,29]. More general 
state constraints may be imposed on the iterated form of the EKF 
implemented as a separate MHE in a horizon of one to formulate 
the arrival cost. 

3.2. Arrival cost using unscented Kalman filter 

The state pdf is implicitly assumed to be a Gaussian and it is 
represented by a fixed number of deterministically chosen samples 
or sigma points and the associated weights fvðiÞ; W ðiÞ : i ¼ 0; 
. . . ; 2ng, where n is the dimension of the state. The first two 
weighted moments of the sigma points exactly match the mean 
and covariance of the Gaussian density [16]. 

Given the summary of the past information x̂k-m and Pbk-m, 2n 
sigma points are defined symmetrically around the mean vector 
using the covariance matrix with the mean taken as ð2n þ 1Þth sig­
ma point, 

v̂ð0Þ ¼ x̂k-m; ð24Þk-m qffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffi bv̂ðiÞ ¼ x̂k-m þ n þ k Pk-m ; i ¼ 1; . . . ; n; ð25Þk-m qffiffiffiffiffiffiffiffiffiffiffi i 

pffiffiffiffiffiffiffiffiffiffiffi bv̂k
ði
-
Þ 

m ¼ x̂k-m - n þ k Pk-m ; i ¼ n þ 1; . . . ; 2n; ð26Þ 
i-nqffiffiffiffiffiffiffiffiffiffiffi  

where bPk-m is the ith column of the matrix square root, which 
i 

is typically computed using the Cholesky decomposition. The corre­
sponding set of weights are defined as follows [16] 

W ð0Þ 
a ¼ 

k 
n þ k 

; 

W ð0Þ 
c ¼ 

k 
n þ k 

þ 1 - a2 þ b; 

W ðiÞ 
a ¼W ðiÞ 

c ¼ 
1 

2ðn þ kÞ ; i ¼ 1; . . . ; 2n; 

ð27Þ 

ð28Þ 

ð29Þ 

where the subscript a denotes weights for computing the mean and 
c for computing the covariance. The constant k ¼ a2ðn þ jÞ - n is a 
scaling parameter and the positive constants a, b and j are tuning 
parameters. Typical values for the constants are a ¼ 0:5, b ¼ 2 and 
j ¼ 3 - n. 

• Prediction: All the sigma points are propagated through the sys­
tem model, with the system noise taken as its expected value, to 
obtain the transformed sigma points 

ðiÞ ðiÞv~ mþ1 ¼ f v̂ ; i ¼ 0; . . . ; 2n: ð30Þk- k-m 

The a priori mean for arrival cost is determined by the weighted 
mean of the sigma points. The a priori covariance matrix is the 



    

  

    

    

  

  

    

  

    

    

weighted covariance adjusted to account for the uncertainty intro­
duced by the system noise 

2nX
~xk-mþ1 ¼ W ðiÞv~ðiÞ mþ1; ð31Þa k-

i¼0
 

2nX T ðiÞ ðiÞPek-mþ1 ¼ Wc 
ðiÞ v~k-mþ1 - x~k-mþ1 v~k-mþ1 - ~xk-mþ1 þ Q : ð32Þ 

i¼0 

• Update: A new set of 2n þ 1 sigma points fv~ðiÞ mþ1 : i ¼ 0; . . . ; 2ngk-
are defined around the a priori mean x~k-mþ1 using Pek-mþ1. Each 
sigma point is used as the argument in the measurement equa­
tion, with the measurement noise taken as its expected value, 

ðiÞ ðiÞ c~k-mþ1 ¼ h v~k-mþ1 ; i ¼ 0; . . . ; 2n: ð33Þ 

The expected value of the output y~k-mþ1 and the covariance matrix 
Sk-mþ1 are obtained from the sample statistics of the points c~k

ði
-
Þ 

mþ1 

2nX
~ mþ1 ¼ Wa 

ðiÞ~ð
k
i
-
Þ 

mþ1; ð34Þyk- c 
i¼0 

2n
 
ðiÞ ðiÞ
 X T 

Sk-mþ1 ¼ W ð
c
iÞ c~k-mþ1 - ~yk-mþ1 c~k-mþ1 - y~k-mþ1 þ R: ð35Þ 

i¼0 

The cross-covariance between v~ðiÞ and c~ðiÞ is 

2nX TðiÞ ðiÞTk-mþ1 ¼ Wc 
ðiÞ v~k-mþ1 - ~xk-mþ1 c~k-mþ1 - y~k-mþ1 : ð36Þ 

i¼0 

The time-varying filter gain is defined as 

1 
mþ1S- mþ1:Kk-mþ1 ¼ Tk- k- ð37Þ 

Finally, the conditional mean and covariance are updated similar to 
the EKF update equations 

^ ~ - ~ ð38Þxk-mþ1 ¼ xk-mþ1 þ Kk-mþ1 ðyk-mþ1 yk-mþ1Þ; bPk-mþ1 ¼ Pek-mþ1 - Kk-mþ1Sk-mþ1KT 
k-mþ1: ð39Þ 

The nonlinear functions are more effectively handled through sta­
tistical linearization instead of functional approximation using 
Taylor series. When the sigma points are transformed through a 
nonlinearity, the transformed mean and covariance are captured 
with accuracy to the second order Taylor series expansion of the 
nonlinear function [16]. The advantages of UKF over EKF include 
more accurate error propagation and the absence of Jacobian 
computations. 

Inequality constraints on the states can be used to alter the def­
inition of sigma points and adjust the weights accordingly. Each 
time the sigma points are redefined, the sigma points located out­
side the constraints are projected to the constraint boundary [18]. 
A similar approach to constraints handling was used by Vachhani 
and coworkers [30]. However, their constrained optimization ap­
proach to update the sigma points is incorrect because the user-de­
fined sigma points are functions of the state estimate and 
optimality of the sigma points may not be defined independently 
[31]. Equality constraints are not so straightforward to handle be­
cause the sigma points are generally not subject to multivariate 
relationships. Constraints on the noise variables and systems that 
are nonlinear in the noise terms can be handled by the augmented 
form of the UKF described next. 

3.3. Arrival cost using augmented unscented Kalman filter 

In the augmented form of the unscented Kalman filter (aUKF) 
the augmented state vector and covariance matrix are defined as 

Tx̂k- ¼ x̂ ; 0; 0J T 
; ð40Þm k-m 

Pbk-m ¼ diagðPbk-m; Q ; RÞ: ð41Þ 

Recall that the system noise vector has the same dimension n as the 
state vector and the measurement noise vector dimension is p. Let 
n ¼ 2n þ p be the dimension of the augmented state vector and de­
fine 2n þ 1 sigma points Xb ðiÞ using the mean vector x̂k-m and the k-m 

covariance matrix Pbk-m. The corresponding weights W ð
a
iÞ and W ð

c
iÞ 

are defined using n. 

• Prediction: The sigma points are propagated through the sys­
tem model for i ¼ 1; . . . ; 2n 

Xe ðiÞ mþ1ð1 : nÞ ¼ f Xb ðiÞ ð1 : nÞ þ Xb ðiÞ ðn þ 1 : 2nÞ; ð42Þk- k-m k-m

XðiÞwhere b k-mð1 : nÞ are the elements of sigma point corresponding to 
the state while the elements Xb ðiÞ ðn þ 1 : 2nÞ are from the system k-m 

noise. Clearly it is possible to use system models that are nonlinear 
in noise terms. If the noise is subject to boxed constraints, the sigma 
points from the infeasible region are projected to the constraint 
boundary before using in the model. The a priori mean vector and 
covariance matrix for arrival cost are 

2nX
~ mþ1 ¼ W ðiÞXe ðiÞ ð43Þxk- a k-mþ1ð1 : nÞ; 

i¼0 

2nX T 
Pek-mþ1 ¼ Wc 

ðiÞ Xe k
ði
-
Þ 

mþ1 ð1 : nÞ- x~k-mþ1 Xe ðiÞ mþ1ð1 : nÞ- x~k-mþ1 :k-
i¼0
 

ð44Þ 

• Update: The previously transformed sigma points are then re-
transformed through the measurement equation for 
i ¼ 1; . . . ; 2n 

Ye ðiÞ mþ1 ¼ h Xe ðiÞ ð1 : nÞ þ Xe ðiÞ ð2n þ 1 : nÞ; ð45Þk- k-m k-m

where Xe ðiÞ ð2n þ 1 : nÞ are the elements corresponding to the mea­k-m 

surement noise. Again it is possible to use measurement equations 
that are nonlinear in the noise and incorporate boxed constraints on 
noise. The expected value of the output y~k-mþ1 is the weighted mean 

YðiÞof e as in UKF and the covariance is k-mþ1 

2nX T 
W ðiÞ Ye ðiÞ Ye ðiÞSk-mþ1 ¼ c k-mþ1 - y~k-mþ1 k-mþ1 - y~k-mþ1 ; ð46Þ 

i¼0 

and the cross-covariance is 
2nX

W ðiÞ Xe ðiÞ Ye ðiÞ T 
Tk-mþ1 ¼ c k-mþ1ð1 : nÞ - ~xk-mþ1 k-mþ1 - y~k-mþ1 : 

i¼0 

ð47Þ 
The remaining equations for the filter gain and the update of the 
conditional mean and covariance are the same as those shown for 
UKF. 

3.4. Particle filter 

3.4.1. Importance sampling 
Let the set fxðiÞ : i ¼ 1; . . . ; Ng denote random samples of the 

state vector distributed according to the state pdf pðxÞ. The ex­
pected value of a real function of the state /ðxÞ can be approxi­
mately evaluated by the sample mean of the function values, Z X
E½/ðxÞJ ¼ /ðxÞpðxÞdx � 1 N 

/ðxðiÞÞ: ð48Þ
N 

i¼1 

This Monte Carlo sampling based approach to compute the mo­
ments of a multidimensional pdf is practically appealing because 



�

    

  

the convergence of the sample mean to the expected value is inde­
pendent of the dimension of the state vector. However, if the state 
pdf is not amenable to generate the samples or particles, this con­
venient Monte Carlo approach becomes impractical. 

Let qðxÞ be a pdf that is similar to the state pdf pðxÞ, such that 
they have the same support. Suppose it is possible to generate 
the samples fxðiÞ : i ¼ 1; . . . ; Ng distributed according to the pdf 
qðxÞ instead, then the desired expectation can be computed as 

N
 
ðiÞÞ ðiÞ


X
E½/ðxÞJ /ðx u ; ð49Þ 

i¼1 

where the normalized weights are defined as 

xðiÞÞ xðiÞÞpð =qððiÞ ¼u : ð50ÞPN 
i¼1pðxðiÞÞ=qðxðiÞÞ 

The pdf qðxÞ is known as the importance or proposal density and uðiÞ 

are the importance weights. Sequential Importance Sampling (SIS) 
is a general Monte Carlo algorithm for approximately implementing 
the conceptual solution for recursive Bayesian estimation outlined 
in Eqs. (12) and (14). No assumptions are made about the shape 
of the conditional pdf, which is approximately represented by a fi­
nite set of random samples and associated weights. The moments 
necessary to draw the state estimates are then computed based 
on the samples and weights. 

The SIS algorithm for state estimation is also known by the gen­
eric name of particle filter. Its various versions differ from each 
other in the choice of the importance density and the task of when 
and how resampling is implemented. The resampling task essen­
tially discards the particles with very low weights in favor of 
enriching the ones with significant weights. The particular SIS var­
iant called Sampling Importance Resampling (SIR), also known as 
the ‘‘bootstrap” filter, is a seminal and intuitively simple imple­
mentation of the particle filter [19]. Since then, many improved 
choices of the importance density and resampling methods have 
been introduced. The SIR is considered here for discussion only 
due to its simplicity. The reader is advised to explore alternate 
implementations of the particle filter as well [10,32]. 

3.4.2. Arrival cost using particle filter 

• Prediction: Given the samples or particles fx̂ðiÞ : i ¼ 1; . . . ; Ngk-m 

distributed according to the conditional density pðxk-mjY1:k-m Þ, 
it is desired to generate the samples of the a priori density 
pðxk-mþ1jY1:k-mÞ. Such samples f~x ðiÞ mþ1 : i ¼ 1; . . . ; Ng are gener­k-
ated by first sampling the noise vectors fw ðiÞ : i ¼ 1; . . . ; Ngk-m 

from the system noise pdf pwðwk-mÞ ¼Nð0; QÞ and then propa­
gating the conditional samples through the system model 

ðiÞ ðiÞ ðiÞ ~xk-mþ1 ¼ f ðx̂k-mÞ þwk-m; i ¼ 1; . . . ; N: ð51Þ 

It is obvious that systems that are nonlinear in noise terms, non-
Gaussian noise and constraints are readily handled. 
In the SIR algorithm, the importance density is conveniently chosen 
as the a priori density pðxk-mþ1jY1:k-mÞ because its support includes 
that of the conditional density, which is more narrowly supported. 
Also in SIR, resampling is performed at every time instance, as a 
consequence of which the importance weights are fixed as 
fu ðiÞ ¼ 1=N : i ¼ 1; . . . ; Ng. The mean and covariance for formulat­k-m 

ing the arrival cost are determined as 

N
1 X ðiÞ
 ~ ~xk-mþ1 ¼ xk-mþ1; ð52Þ
N 

i¼1 

X T1 N 
ðiÞ ðiÞePk-mþ1 ¼ ~xk-mþ1 - x~k-mþ1 x~k-mþ1 - x~k-mþ1 : ð53Þ

N 
i¼0 

• Update: For the particular choice of the a priori density as the 
importance density, Bayes rule yields the updated weights as, 

ðiÞ~xðiÞ pðyk-mþ1j k-mþ1Þ u ; i ¼ 1; . . . ; N; ð54Þk-mþ1 ¼PN ðiÞ ~
i¼1 pðyk-mþ1jx mþ1 Þk-

where the likelihood function is evaluated at each sample by 

ðiÞ 
ðiÞ 2kyk-mþ1 k-mþ1 R-1 

1 2 - -hð~x Þk
pðyk-mþ1j~x mþ1Þ ¼ c4e : ð55Þk-

The resampling procedure generates the conditional samples of the 
ðiÞ ðiÞ ðjÞ ðjÞstate fx̂ mþ1 : i ¼ 1; . . . ; Ng such that Pr½x̂ x

fu mþ1 ¼ 1=N : i ¼ 1; . . . ; Ng after resampling. The updated condi­

k- k-mþ1 ¼ ~
k-mþ1J ¼ uk-mþ1. 

The corresponding weights are reset to 
ðiÞ 
k-

tional pdf is approximately represented as 

X1 N 
ðiÞ pðxk-mþ1 jyk-mþ1Þ� dðxk-mþ1 - x̂ mþ1Þ ð56Þ

N
i¼1 

k-

It is not necessary to compute the conditional moments because 
the entire sample set is stored and the prediction step is revisited 
at the next time instance. The advantages of the SIR algorithm are, 
it is not necessary to propagate the importance weights because 
after resampling they are always fixed at 1/N. The computation 
of the updated importance weights is simple because they are pro­
portional to the likelihood function. In the prediction stage, the 
particles can be propagated in parallel via a single vectorized func­
tion call to the system model. Additional screening steps can be 
incorporated to impose constraints on the particles [21]. The disad­
vantages are, the SIR filter requires more samples because the 
importance density is unaware of the measurement information 
and the frequent resampling can lead to rapid collapse of the sam­
ples into a few values, a phenomenon known as degeneracy [19]. 

3.5. Cell filter 

3.5.1. Aggregate Markov chain 
According to the constraints imposed on the state vector, the 

temporal dynamics of system are confined to X. Let all the state 
space outside the constraints X ¼ Rn -X be a single sink cell zð0Þ , 
where the state trajectories are terminated. Let each state variable 
in X be discretized into a collection of intervals, such that N indi­
visible n-dimensional cells are formed in the state space. Together 
with the sink cell the state cell space is defined by the collection of 
numbered cells Z ¼ fzðiÞ : i ¼ 0; 1; . . . ; Ng, where z corresponds to 
an n-tuple position identifier at the center of the cell. 

Let the probability density supported over X be coarsely repre­
sented by a piece-wise constant function or probability mass vec­
tor (pmv) over Z 

N T X
ð0Þ ð1Þ ðNÞpðzÞ ¼  m ; m ; . . . ; m ; mð0Þ ¼ 0 and mðiÞ ¼ 1: ð57Þ 

i¼0 

The point-to-point dynamics of the system in state space are coar­
sely represented as transitions in cell space between cells contain­
ing the points. The probabilistic behavior of the cell transitions can 
be associated with a stationary Markov chain. Transition to the sink 
cell are considered to be terminal. Let pðijÞ for i; j ¼ 0; 1; . . . ; N, be the 
probabilities of transition to cell zðiÞ from cell zðjÞ , such that an 
ðN þ 1Þ ðN þ 1Þ stochastic matrix P is defined. 

By definition pð0;0Þ ¼ 1 and pð0jÞ ¼ pði0Þ ¼ 0 for i; j ¼ 1; . . . ; N. The 
other transition probabilities are determined by random simula­
tions in the cell space via a procedure known as Generalized Cell 
Mapping [33]. In each cell zðjÞ, a number of uniformly sampled ini­
tial conditions are chosen, xðsÞ , s ¼ 1; . . . ; S, while the same number 
of random numbers are sampled as wðsÞ from the process noise 



 
 

  

density Nð0; QÞ. The initial conditions and the random noise sam­
ples are transformed through the model to locate image points xðrÞ 

ð ð ðsÞx rÞ ¼ f ðx sÞÞ þw : ð58Þ 

The image points will be scattered among several image cells close 
to zj. The probability of transition from cell zðjÞ to cell zðiÞ is 

ðijÞ ¼p
r 
; i; j ¼ 1 . . . ; N; ð59Þ 

s 

where r are the number of image points located in the image cell zi . 
Sampling of N s initial conditions over the entire cell space can be 
performed in one step and the N s simulations can be carried out 
efficiently in parallel by a single vectorized function call to the sys­
tem model. It is a one time computational burden to model the sys­
tem as a stationary aggregate Markov chain. The evolution of state 
density is approximately realized through the linear transformation 

pðzkþ1Þ ¼ PpðzkÞ; ð60Þ 

which is a discretized version of the Chapman–Kolmogorov equa­
tion. P is the ðN þ 1Þ ðN þ 1Þ cell transition probability matrix. 

3.5.2. Arrival cost using cell filter 

• Prediction: Given the conditional pmv pðzk-mjY1:k-mÞ as a piece-
wise constant approximation of the conditional pdf 
pðxk-mjY1:k-mÞ, the a priori pmv is computed by the 
transformation 

pðzk-mþ1 jY1:k-mÞ ¼ Ppðzk-m jY1:k-mÞ: ð61Þ 

The mean and covariance for arrival cost are obtained as 

N
 
ðiÞ ðiÞ


X
~xk-mþ1 ¼ mk-mþ1jk-mz ; ð62Þ 

i¼0 

N e ðiÞ ðiÞ ðiÞ T
X

Pk-mþ1 ¼ mk-mþ1jk-m ðz - x~k-mþ1Þðz - x~k-mþ1 Þ ; ð63Þ 
i¼0 

where zðiÞ indicates the coordinates of the center of the cell. 
• Update: The likelihood function pðyk-mþ1jxk-mþ1 Þ is approxi­

mated by the piecewise constant likelihood mass vector (lmv) as 

1 2 -2kyk-mþ1 -hðzðiÞÞk 1lðyk-mþ1 jzk-mþ1Þ ¼ c4e R- ; i ¼ 1; . . . ; N; ð64Þ 

with lðyk-mþ1jz ð0Þ mþ1Þ ¼ 0. The a posteriori conditional pmv is up-k-
dated using Bayes rule 

lðyk-mþ1jzk-mþ1 Þ � pðzk-mþ1jY1:k-mÞ pðzk-mþ1 jY1:k-mþ1Þ ¼PN 
; ð65Þ ðiÞ ðiÞ z zi¼0 lðyk-mþ1 j k-mþ1Þpð k-mþ1jY1:k-mÞ 

where � is the Haddamard product. 

It is not necessary to compute the moments of the conditional 
pmv because the entire pmv is used at the next prediction step 
for assigning the arrival cost. Constraints on the states are easily 
handled by limiting the cells to constraint surfaces and noise con­
straints are imposed during cell mapping [25]. The obvious disad­
vantage of the cell filter approach is the explosion of the cell 
numbers with dimension. Although the online computational cost 
is mostly limited to the linear transformation of the pmv, limita­
tions on memory and storage make the CF unsuitable for uncon­
strained and high dimensional systems. 

4. Approximation of arrival cost II 

The approximation of the a priori density pðxk-mþ1jY1:k-mÞ out­
lined at the beginning of Section 3 may be considered as parametric 
estimation of the density. It is presumed that prior knowledge of 

the system enabled the user to specify a Gaussian structure to 
the pdf. One may, of course, choose this structure simply as a mat­
ter of convenience and familiarity to handle it. Emphasis is then 
placed on finding good estimates of the mean vector ~xk-mþ1 and ethe covariance matrix Pk-mþ1 via prediction by various nonlinear 
filters. The UKF propagation of these parameters through nonlin­
earity are accurate to the second order Taylor series approxima­
tion, which is a clear improvement over EKF. However, since the 
conditional update in UKF is performed only on two moments, 
the conditional pdf may not be adequately described. On the other 
hand, the estimates of ~xk-mþ1 and Pek-mþ1 by PF and CF are inspired 
by the diversity of the particles and the spread of probability mass 
points respectively. Hence, the estimates can be expected to be clo­
ser to the true mean and covariance of the non-Gaussian a priori 
pdf. Furthermore, the conditional update of PF and CF reveals 
approximations of the entire pdf rather than just two moments. 
The results of PF and CF point to the possibility of more realistic, 
admittedly more ambitious due to increased computational de­
mands, attempts to approximate the arrival cost term. 

It is more likely for the a priori pdf to be non-Gaussian than the 
conditional density because the measurement information typi­
cally narrows the support and suppresses unlikely modes, espe­
cially with linear measurement equations. In this section, 
consider that pðxk-mþ1jY1:k-m Þ exhibits sufficient non-Gaussian 
characteristics such as lack of symmetry and multiple modes, and 
consequently the first two moments make inadequate representa­
tion of the pdf even when they are accurately estimated by UKF, 
PF or CF. By relaxing the rigid specification of a Gaussian structure 
to pðxk-mþ1jY1:k-mÞ, one can consider broader nonparametric estima­
tion of the entire density, therefore formulating nonparametric ar­
rival cost. The EKF and UKF are clearly not suitable for the task. 

Consider the samples available from the particle filter after pre­
diction fx~ðiÞ mþ1 : i ¼ 1; . . . ; Ng. The most commonly utilized non-k-
parametric density estimation technique is the kernel density 
estimator [23]. The basic form of the estimator applied to the a pri­
ori density is ! X ~1 N x - x ðiÞ k-mþ1pðxk-mþ1jY1:k-mÞ� K ; ð66Þ 

NbN 
i¼1 

b

where b is called the bandwidth or smoothing parameter and KðxÞ is 
the kernel function. Typically the kernel function is chosen as a 
symmetric unimodal pdf such as the multivariate Gaussian density 
Nð0; 1Þ, i.e, 

1 ð-2x xÞKðxÞ ¼  n=2 
e 

1 T 
: ð67Þ 

ð2pÞ

The kernel density estimate is a summation series of bell curves 
centered at the samples. The width of the curves is adjusted with 
the bandwidth parameter b. If  b is too small, then spuriously sharp 
peaks will arise in the density estimate at the samples and if b is too 
large, legitimately sharp features such as multiple modes will get 
smoothed over. The proper choice of b is important to capture the 
non-Gaussian features of the underlying density. An optimum 
bandwidth b is frequently chosen by searching for the one that min­
imizes the integrated square error of the kernel estimate [23]. 

The typical size of the sample set employed in PF in most appli­
cations is not inordinately large because the motivation for PF is to 
compute the conditional mean efficiently. It is known that the mo­
ments converge independently of the dimension of the state 
according to the law of large numbers, allowing for reasonably 
sized sample sets. On the contrary, the motivation for kernel den­
sity estimation can be entirely different. Silverman [23] showed 
that the necessary size of the sample set grows exponentially with 
dimension if the intent is to ensure that the density at any point is 
obtained within a small relative mean error. Nearly a million 



 

samples are required in ten dimensions even for estimating a 
smooth unimodal pdf using Gaussian kernels. It is not clear if mea­
sures such as point accuracy or reproduction of long tails in the 
density are the appropriate measures for the purpose of nonpara­
metric arrival cost. If important features in the shape of the density 
such as peaks and asymmetry are identified, that alone is a signif­
icant improvement over the Gaussian assumption. The cautious 
user of kernel density estimator will weigh the computational cost 
of the kernel estimator to keep the MHE horizon small against the 
computational cost incurred in larger horizons based on simple 
two parameter arrival cost. Detailed studies of the computational 
tradeoff are necessary. 

The direct formula in Eq. (66) for kernel estimate is computa­
tionally inefficient and rarely used as such. For high dimensional 
and large sample sets, calls to the exponential function of the 
Gaussian kernel can easily get out of hand while searching for opti­
mum bandwidth. The kernel density estimation is a convolution of 
the samples with the kernel, hence in practice, it is performed 
using the Fourier transform via the far more efficient FFT. The Fou­
rier transform methods also allow for extremely fast search for the 
best possible bandwidth. Interested reader should consider the 
optimal choices of b, several adaptive methods, alternate kernel 
functions and other density estimators in the monograph by Silver-
man [23]. 

The prediction from the cell filter produces a piece-wise con­
stant approximation of pðxk-mþ1jY1:k-m Þ as the pmv pðzk-mþ1 jyk- Þ. 
A closed-form approximation of the pdf is necessary to formulate 
the nonparametric arrival cost. One way is to generate samples dis­
tributed according to the discrete density and then use the kernel 
density estimation approach. Another way is to find a curve or sur­
face fit of the discrete probability mass points as a continuous 
function over the state space. The additional computational de­
mand can quickly turn prohibitive for surface fitting over high 
dimensional state spaces. It must be noted though that for low 
dimensional nonlinear systems where the arrival cost is more real­
istically formulated by nonparametric means, the performance 
gains can justify the additional complexity and computational cost 
of kernel estimator or surface fit of the discrete density as illus­
trated in a simulation example in the next section. 

m

5. Simulation examples 

Two simulation examples are presented in this section to dem­
onstrate the use of sampling based nonlinear filters to initialize 
MHE. The first example is a two dimensional nonlinear system 
with constrained noise where the arrival cost is formulated para­
metrically with bivariate Gaussians. The second example is a 
benchmark univariate nonlinear system with a time-varying 
parameter for which no assumption about the shape of the state 
pdfs is used and the arrival cost is formulated nonparametrically. 
For performance comparison among various methods, the estima­
tion accuracy is measured by the mean squared error (MSE), 

K n1 XX
2MSE ¼ ðxkðiÞ -  xk ðiÞÞ ; ð68Þ

Kn 
k¼1 i¼1 

where K is the number of measurements and n is the length of the 
state vector. When appropriate, plots of a typical sample path are 
used in discussion, but the MSE shown in tables are based on aver­
ages of 100 realizations implemented in MATLAB on 3.2 GHz Intel 
Xeon processor running 64-bit Linux. 

5.1. Example 1 

Consider the following two dimensional discrete-time nonlin­
ear system [6], 

xkþ1ð1Þ ¼ 0:99xkð1Þ þ 0:2xk ð2Þ; ð69Þ 
axkð2Þ xkþ1ð2Þ ¼ -0:1xkð1Þ þ  þwk; ð70Þ

b þ x2 
k ð2Þ

where wk ¼ jnkjwith nk �Nð0; 1Þ and the constants are a ¼ 0:5 and 
b ¼ 1. A single linear measurement is available as 

yk ¼ xkð1Þ - 3xkð2Þ þ mk; ð71Þ 

where mk �Nð0; 0:12Þ. The initial state of the system is x0 ¼ ½1; 0JT. 
Process noise in the implementations of EKF and UKF is as­

sumed as zero mean with unit variance, hence the non-negativity 
constraint is ignored. During the aUKF prediction step the sigma 
points of process noise are constrained by moving the negative va­
lue to the constraint boundary at zero. In PF and CF the system is 
simulated with random input as absolute values of samples with 
zero mean and unit variance. For all the filters, the state estimate 
is taken as the mean of the conditional pdf, although it is possible 
for PF and CF to provide the mode. 

The particle filter is implemented with a 1000 samples. For the 
cell filter, state space containing xð1Þ 2 ½0; 8J and xð2Þ 2 ½-1; 3J is 
arbitrarily chosen to define 100 50 cells. The bounds are artificial 
because there are no constraints on the state variables. The transi­
tion probability matrix is computed with 500 samples per cell, i.e., 
2.5 million initial conditions are mapped forward once using a sin­
gle vectorized function call to the system model. The computation 
time for the transition probability matrix P is about 15 s. 

Moving horizon estimation is implemented in horizons of 
m ¼ 3; 6 and 12, with the weighting parameters Q ¼ 1 and 
R ¼ 0:12. The initial state pdf is assumed to be a bivariate Gaussian, 
and the a priori mean ~xk-mþ1 and covariance Pek-mþ1 provided by the 
nonlinear filters are used to formulate the arrival cost. It is a rea­
sonable assumption for this example because the pdfs display only 
one peak and some asymmetry due to the one sided process noise. 

Case 1: Good prior. Information about the initial condition is as­
sumed to be a Gaussian pdf with mean vector x̂0 ¼ ½1; 0JT, the same 
as the true initial condition, and covariance matrix Pb0 ¼ In, the 
identity matrix. The predicted mean by each filter is shown as dot­
ted lines in Figs. 1 and 2, with the error bars indicating the stan­
dard deviation. The dashed lines are the conditionally updated 
mean estimates by the filters and the solid line is the true state. 

Ideally when the predicted mean is close to the true state, the 
variance should be small and vice versa. It is reasonable to require 
the spread of three standard deviations to straddle the true state. 
The EKF predicted mean is unsatisfactory because for x(1) the 

Fig. 1. Case 1: Good prior. Arrival cost parameters by filters for the state x(1).
 
Dotted lines with error bars indicate the predicted mean and standard deviation.
 



Fig. 2. Case 1: Good prior. Arrival cost parameters by filters for the state x(2). 
Dotted lines with error bars indicate the predicted mean and standard deviation. 

mean is biased and erratic, while for x(2) it remained mostly close 
to zero. The arrival cost is significantly deficient because the small 
predicted variance placed high confidence in the mean while 
assigning insignificant probability near the true state. 

The UKF predicted mean is biased but followed the true trend to 
some extent and the larger variance shows lowered confidence. It 
is an indication that the moments are propagated more accurately 
through nonlinearity by the unscented transform compared to Tay­
lor series approximation in EKF. The use of the non-negativity con­
straint on the system noise helped the aUKF predicted mean to 
move closer to the true state, while the variance is also reduced. 
The predicted means by both PF and CF are slightly improved com­
pared to aUKF, but the variances are considerably smaller. The mo­
ments computed by PF and CF are without the Gaussian 
assumption, whereas accuracy to second order approximation by 
the unscented transformation is guaranteed only for a Gaussian 
density. It is evident that all three sampling based methods pro­
vided vastly superior formulation of the arrival cost than EKF. 
The computational cost for processing one set of measurements 
by MHE is 6.6 CPU sec with EKF, 6.6 CPU sec with UKF, 7.6 CPU 
sec with the augmented form of UKF, 7.2 CPU sec with PF and 
7.2 CPU sec with CF. In this example, while the code is not opti­
mized for computation, it is evident that the sampling based filters 
add only a small amount of computational load to the MHE optimi­
zation load. 

The average MSE results of all the estimators are summarized in 
Table 1, where the standard deviation of MSE is shown in paren­
thesis. MHE initialization method is indicated in the column head­
ings and the first row is the MSE of the filter estimates. Although 

Table 1 
Case 1: Good prior. Average mean squared error of 100 realizations with the standard 
deviation shown in parenthesis. 

Initialization method Average MSE 

EKF UKF aUKF PF CF 

Filter, mean estimate 

MHE, m ¼ 3 

MHE, m ¼ 6 

MHE, m ¼ 12 

4.9 
(0.7) 
2.0 

(0.3) 
1.1 

(0.2) 
0.61 

(0.13) 

3.2 
(0.5) 
1.2 

(0.3) 
0.27 

(0.10) 
0.07 

(0.05) 

0.67 
(0.33) 
0.55 

(0.21) 
0.25 

(0.10) 
0.07 

(0.05) 

0.15 
(0.11) 
0.13 

(0.10) 
0.11 

(0.07) 
0.06 

(0.04) 

0.06 
(0.05) 
0.08 

(0.05) 
0.06 

(0.04) 
0.04 

(0.03) 

the error comparison is not relevant between the filters and MHE 
because the former are mean estimates and the latter is mode esti­
mate, they can be close in this case due to the unimodal condi­
tional pdfs. Initialization by EKF required increasing horizons 
with rapidly increasing computational demand. The results with 
sampling based methods indicate that much smaller horizons 
can be used effectively. In this example, these filters by themselves 
provided fairly accurate estimates, i.e., the conditional pdfs are 
well approximated. Operating close to one end of the tradeoff 
scale, no dramatic improvement in performance is seen by MHE. 
However, a case is made for using MHE in the next two simulation 
case studies. 

Case 2: Poor prior. The initial condition is assumed to be 
x̂0 ¼ ½4; 3JT, away from the true initial condition x0 ¼ ½1; 0JT. The 
covariance matrix is chosen as bP0 ¼ 0:52In, which results in little 
probability near the true state. Estimates of the arrival cost param­
eters are displayed in Figs. 3 and 4. The unscented filter predictions 
are slow to converge but the uncertainty spread is acceptable. The 
CF recovered from the poor prior information with the fastest con­
vergence. The PF predictions diverged considerably and the small 
variance placed insignificant probability near the true state result-

Fig. 3. Case 2: Poor prior. Arrival cost parameters by filters for the state x(1). Dotted 
lines with error bars indicate the predicted mean and standard deviation. 

Fig. 4. Case 2: Poor prior. Arrival cost parameters by filters for the state x(2). Dotted 
lines with error bars indicate the predicted mean and standard deviation. 



Table 2 
Case 2: Poor prior. Average mean squared error of 100 realizations with the standard 
deviation shown in parenthesis. 

Initialization method average MSE 

EKF UKF aUKF PF CF 

Filter, mean estimate 

MHE, m ¼ 3 

MHE, m ¼ 6 

MHE, m ¼ 12 

5.0 
(0.7) 
2.1 

(0.4) 
1.1 

(0.2) 
0.62 

(0.13) 

3.8 
(0.5) 
1.4 

(0.3) 
0.28 

(0.10) 
0.07 

(0.05) 

1.01 
(0.22) 
0.65 

(0.18) 
0.27 

(0.10) 
0.07 

(0.05) 

15.1 
(12.4) 
15.2 

(14.2) 
14.4 

(13.2) 
14.3 

(14.2) 

0.37 
(0.10) 
0.23 

(0.08) 
0.10 

(0.04) 
0.04 

(0.03) 

ing in poor arrival cost. Implementations of SIR particle filters often 
struggle to converge when the prior information is poor [20]. 

Table 2 is a summary of the estimation performance. Even when 
large horizons are used, initialization by PF failed due to the diver­
gence of the predicted mean and very small variance for x(1). The 
MHE results indicate that estimation in horizons converged far 
more quickly, whereas the filters are slower to converge. Horizons 
initialized by CF are about half the size of the horizons initialized 
by UKF and aUKF for similar MSE values. 

Case 3: Plant-model mismatch. The filters and MHE are provided 
with a modified model containing the parameters a ¼ -1 and 
b ¼ 0:5. This model’s predictions for x(2) have increased mean 
and variance compared to the plant signal. See Figs. 5 and 6 for 
the predicted mean and standard deviation and Table 3 for the 
MSE summary. Plant-model mismatch is tolerated well by estima­
tion in large horizons, whereas the filters showed poor perfor­
mance. The CF typically yields the best approximation of the 
state pdf, however the high fidelity to the model is detrimental 
in this case. Initialization by CF of large horizons did not improve 
the MSE appreciably because the predicted variance is often too 
small for x(1) with little probability near the true state, which 
weighed down the MHE. 

5.2. Example 2 

The second illustrative example is a more challenging bench 
mark problem in nonlinear estimation research [10,19,24]. The dy-

Fig. 5. Case 3: Plant-model mismatch. Arrival cost parameters by filters for the 
state x(1). Dotted lines with error bars indicate the predicted mean and standard 
deviation. 

Fig. 6. Case 3: Plant-model mismatch. Arrival cost parameters by filters for the 
state x(2). Dotted lines with error bars indicate the predicted mean and standard 
deviation. 

Table 3 
Case 3: Plant-model mismatch. Average mean squared error of 100 realizations with 
the standard deviation shown in parenthesis. 

Initialization method MSE 

EKF UKF aUKF PF CF 

Filter, mean estimate 

MHE, m ¼ 3 

MHE, m ¼ 6 

MHE, m ¼ 12 

8.0 
(0.9) 
2.5 

(0.3) 
1.7 

(0.2) 
1.2 

(0.2) 

2.8 
(0.4) 
1.1 

(0.2) 
0.39 

(0.12) 
0.14 

(0.07) 

1.9 
(0.6) 
0.80 

(0.28) 
0.32 

(0.12) 
0.14 

(0.07) 

1.37 
(0.62) 
0.83 

(0.46) 
0.35 

(0.19) 
0.14 

(0.08) 

0.42 
(0.29) 
0.52 

(0.34) 
0.41 

(0.40) 
0.23 

(0.13) 

namic model and measurement equation of a univariate time-
varying nonlinear system are 

xk 25xk xkþ1 ¼ þ þ 8 cosð1:2kÞ þwk ; ð72Þ
2 1 þ x2 

k 

x2 

yk ¼ k þ mk; ð73Þ
20 

where wk �Nð0; 10Þ and mk �Nð0; 1Þ. Both the a priori and condi­
tional densities of this system tend to be bimodal most of the time. 
The nonlinear measurement equation leads to a symmetric bimodal 
likelihood function for yk > 0, which is the case more frequently. It 
is gross simplification to assume that the mean and variance can 
adequately describe the shape of the state pdf at any given time. 
The two parameter form of arrival cost is not advisable for initializ­
ing MHE for this system even in large horizons. Therefore, EKF and 
UKF are not suitable for MHE initialization. 

The SIR particle filter and the cell filter are initialized with 
x̂0 ¼ 1, the same as the true initial condition and bP0 ¼ 1. One thou­
sand samples are used for the particle filter. The cell space is de­
fined by 300 cells uniformly split over x 2 ½-30; 30J. The 
transition probability matrix is computed using 400 samples per 
cell in about 0.04 s. P is recomputed at every sampling time be­
cause the system contains a time-varying parameter. 

The a priori pdf of the initial state of a horizon is expressed in 
the form of a polynomial of arbitrary degree J, 

JX
pðxk-mþ1 jY1:k-mÞ� wðxk-mþ1 Þ ¼  ajx

j
k-mþ1 ; ð74Þ 

j¼0 



with the requirement that wðxk-mþ1Þ P 0. The value of this polyno­
mial at the center of each cell z 2 Z is available from the cell filter 
prediction as the discrete density or pmv pðzk-mþ1 jyk-mÞ. The poly­
nomial coefficients fajg are determined by least squares polynomial 
fit using MATLAB polyfit function. The best fit is automatically 
chosen as the one with the smallest error among the fits for 
J ¼ 1; . . . ; 50. Such a large number may not be necessary for fitting 
bimodal functions, but polynomials exhibit poor point accuracy 
where the function is flat towards the ends of the defining interval. 
In addition to the least squares criterion, the fit is also subjected to 
non-negativity condition over the chosen support of x for the pdf 

The predicted samples from the particle filter f~xk
ði
-
Þ 

mþ1g are used 
for kernel density estimation by MATLAB ksdensity function, 
which is fast because it uses a bandwidth parameter in terms of 
the number of samples, not necessarily an optimal choice. The re­
sult is a discrete density sampled over the range of the particles. 
Hence, a polynomial fit is again used to approximate the a priori 
density in closed-form from the discrete density representing the 
samples. 

The two filters are first used to estimate the conditional mean 
and also the conditional mode by maximizing the conditional 
pmv in the cell filter and the discrete kernel density estimate in 
PF. On the average, the mean estimates are closer to the true state 
than the mode estimates [24] as indicated by the average MSE in 
the bar chart in Fig. 7. MHE in a horizon of m ¼ 1 is implemented 
by initializing with the polynomial fit for pðxk-mþ1jY1:k-mÞ provided 
by the cell filter. Not surprisingly, the MSE in Fig. 7 indicates that 
the MHE mode estimates are very close to the cell filter mode esti­
mates, verifying that MHE in m ¼ 1 is the conditional density when 
accurately initialized. The same result is obtained by initializing 
MHE with the polynomial fit provided by the particle filter. 

The pitfalls of mode estimates from the filters are highlighted in 
the sample path in Fig. 8, where arrows mark several occasions 
when the mode estimates are of the opposite sign implying that 
the wrong mode is chosen. Closer inspection of the densities in 
one occurrence, at k ¼ 60 shown in Fig. 9, reveals the difficulty of 
choice. The top panels show that (a) the a priori density has a stron­
ger mode to the left of zero, (b) the symmetric bimodal likelihood 
function can narrow the support under the predicted modes but 
cannot alter the relative strengths of the peaks and (c) the condi­
tional density has a strong mode to the left of zero while the true 
state is to the right. The measurement information is not enough to 
significantly improve the mode prediction. Therefore, the error of 

Fig. 8. Arrows mark the states for which the mode estimates by filters are of the 
opposite sign. 

the mean estimate will be smaller. The bottom panels show the sit­
uation at k ¼ 61, where the likelihood function suppressed multi­
ple modes and the conditional density is unimodal resulting in a 
good estimate. Note that unlike traditional filters, the task of 
choosing a point estimate from the conditional pdf has no influ­
ence on the behavior of density based filters such as PF and CF. 

Since the filter mode estimates are frequently inaccurate for 
this system, the question arises if MHE is suitable because MHE 
in m ¼ 1 yields similar results. The situation looks more encourag­
ing for MHE implemented in m ¼ 2. Consider the horizon contain­
ing k ¼ 60 and 61, the top panels in Fig. 10 display (a) a polynomial 
fit of the a priori density pðx60jy59Þ of the horizon and (b) the tran­
sition probability density pðx61jx60Þ formed like an S-shaped hill 
and the bottom panels display (c) the symmetric bimodal bivariate 
likelihood function and (c) the joint conditional density with a sin­
gle mode located on the right side of zero for x60 and around zero 
for x61. The benefits of drawing modes estimates from such joint 
densities are clearly evident in the sample path shown in Fig. 11, 
where most of the erroneous mode estimates from MHE in m ¼ 1 

Fig. 9. At k ¼ 60, (a) density estimate from PF and pmv from CF of a priori density, 
Fig. 7. Average mean squared error and standard deviation for the mean and mode (b) likelihood function and (c) density estimate and pmv of conditional density. At 
estimates by filters and MHE mode estimates in horizons m = 1 and 2. k ¼ 61, (d) a priori density (e) likelihood and (f) conditional density. 



Fig. 10. In a horizon containing k ¼ 60 and 61 (a) polynomial fit of a priori density 
pðx60jy59Þ, (b) transition probability density pðx61 jx60 Þ, (c) product of likelihood 
functions pðy60jx60 Þpðy61 jx61Þand (d) joint conditional density pðx60; x61 jy60; y61Þ. 

Fig. 11. Mode estimates using MHE in horizons m = 1 and 2. 

are corrected by MHE in m ¼ 2. This situation only illustrated the 
ease of drawing point estimates from the joint density, the condi­
tioning of the joint density still refers to the filtering problem and 
not the smoothing problem. The average MSE and its variance re­
duced dramatically for MHE in m ¼ 2 compared to the filters in 
the bar chart of Fig. 7. To the best of this author’s knowledge such 
performance improvement has not been reported previously for 
this system using any nonlinear filter. 

6. Conclusions 

Initialization of moving horizon estimation by formulating the 
arrival cost accurately is a critical step for realtime implementation 
of MHE in small horizons. Traditionally, the EKF has been used to 
recursively update the arrival cost parameters. The drawbacks of 
EKF continue to keep the arrival cost as an open issue in MHE re­
search. In this paper it is suggested that recent advances in sam­
pling based or density based nonlinear filters can effectively 

address some of the issues. It is shown that the arrival cost param­
eters can be very accurately computed and updated by sampling 
based methods without using functional linearization. This paper 
discussed the unscented Kalman filter, the particle filter and the 
cell filter as alternatives to the EKF approach to initialize MHE. 
The ease of implementation of these filters is also a strong motiva­
tion not to use EKF for arrival cost. The arrival cost can be more 
realistically formulated by avoiding the Gaussian assumption if 
nonparametric methods are used to find closed-form approxima­
tion of the a priori density. Kernel density estimation and curve fit­
ting are discussed in this paper. The simulation examples clearly 
showed the superior performance of the sampling based methods 
over EKF. More detailed studies are needed to weigh the computa­
tional demands of nonparametric arrival cost against simply 
increasing the horizon length when poorly initialized. 
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