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ABSTRACT
Most freshwater mussel species in the Great Lakes colonized the region from the Mississippi River basin and 

few appear to have colonized from Atlantic coast rivers. The Eastern Pondmussel, Ligumia nasuta, is widespread  
along the Atlantic coast but occurs elsewhere only in the Great Lakes, suggesting that it is one of the few Great 
Lakes species of Atlantic origin. Great Lakes populations are now imperiled following invasion of the lakes by  
dreissenid mussels. We examined patterns of diversity in the mitochondrial CO1 and ND1 genes in L. nasuta  
populations in the Great Lakes and in Atlantic coast rivers. Genetic diversity was low in Great Lakes populations and 
included only one CO1 and two ND1 haplotypes, all of which were also found in Atlantic coast populations. Genetic  
diversity was higher in Atlantic coast populations and included four CO1 and six ND1 haplotypes. Pairwise  
ФST revealed significant genetic differentiation for both genes between Atlantic coast and Great Lakes populations 
but not within Great Lakes populations. These results suggest that all populations of L. nasuta in the Great Lakes 
are derived from a single, small founder group that colonized from an Atlantic coast river. As such, Great Lakes 
populations may be considered a single management unit and conservation efforts based on propagation or trans-
location should be limited to use of Great Lakes source stock to prevent introduction of non-native haplotypes. 

KEY WORDS Endangered mussels, genetic variation, Laurentian Great Lakes, phylogeography, glaciation,  
Atlantic coast

INTRODUCTION
The diverse mussel fauna of the Laurentian Great 

Lakes upstream of Niagara Falls (referred to here as the 
upper Great Lakes) is a result of dispersal into the re-
gion following the end of the Wisconsin glaciation about 
11,000 years ago. Most species (about 40) colonized the 
region from the Mississippi River basin (van der Schalie, 
1963; Graf, 2002) and genetic evidence suggests that 
there were multiple colonization routes (Elderkin et al., 
2007, 2008). Only two species are thought to have colo-
nized the region from Atlantic coast river systems: the 
Eastern Pondmussel, Ligumia nasuta (Say, 1817) and 
Eastern Elliptio, Elliptio complanata (Lightfoot, 1786). 
The dearth of Atlantic coast species is a result of the 
long-standing barrier of Niagara Falls and the limited 
number of post-glacial colonization routes between 
Atlantic coast rivers and the upper Great Lakes (Man-

drak & Crossman, 1992; Strayer & Jirka, 1997; Larson 
& Schaetzl, 2001; Lewis et al., 2012). In contrast, Lake 
Ontario and the St. Lawrence River system downstream 
of Niagara Falls have a higher proportion of Atlantic 
coast mussel species, suggesting that this region has 
had more exchange with other Atlantic coast rivers 
(Haag, 2012).  

Ligumia nasuta is widely distributed in Atlantic 
coast rivers from South Carolina to Maine (Nedeau et al., 
2000; Price, 2005). In the upper Great Lakes, L. nasuta 
was locally common but restricted mainly to the Lake 
Erie and Lake St. Clair watersheds and a small portion 
of the Lake Huron and Lake Michigan watersheds, and 
it was widely distributed downstream of Niagara Falls 
(COSEWIC, 2007; Watters et al., 2009). The distribu-
tion and abundance of L. nasuta in the Great Lakes 



was greatly reduced after introduction of invasive dreis-
senid mussels (Dreissena spp.) (Nalepa et al., 1991; 
Schloesser et al., 1996; Zanatta et al., in press), and the 
species is in danger of extirpation from the region. Be-
cause it remains widely distributed in Atlantic coast riv-
ers, L. nasuta is considered “apparently secure” globally 
(NatureServe, 2013). However, the genetic relationship 
of surviving Great Lakes populations to those on the At-
lantic coast is unknown. 

We examined DNA sequence variation in the mito-
chondrial COI and ND1 genes in populations of L. nasuta  
in the Great Lakes and Atlantic coast rivers. We use these  

data to 1) examine the colonization history of the species 
in the Great Lakes, and 2) provide information neces-
sary for management and conservation of the species.  

METHODS
A total of 64 individuals were collected in 2011 and 

2012 from 17 sites within five major watersheds or geo-
graphical regions: northern Michigan (Lake Michigan 
and Huron drainages), Lake St. Clair, Lake Erie, Lake 
Ontario (including the St. Lawrence River system), and 
Atlantic coast rivers (Fig. 1; Table 1). Mussels were col-

FIGURE 1
Sampling sites and haplotype frequencies for L. nasuta. The size of circles (CO1) and rectangles (ND1) indicates the rela-

tive sample sizes (number of individuals) for each gene. CO1 haplotype circles are centered over the sampling location area they 
represent. Note that CO1 and ND1 mtDNA sequences were not resolved at some sites and these sites lack the corresponding 
symbol. Some closely adjacent sample sites are represented by a single symbol representing pooled results for those sites (e.g., 
Presque Isle); Table 1 provides a complete list of sample sites



TABLE 1
Sampling sites for Ligumia nasuta. Sites were pooled by region for statistical analysis (see text). Sites were pooled by 

population for depiction of haplotype frequencies on Fig. 1.Table 1.  Sampling sites for Ligumia nasuta.  Sites were pooled by region for statistical analysis 1	
  
(see text).  Sites were pooled by population for depiction of haplotype frequencies on Fig. 1. 2	
  
Region Population Site 
Northern Michigan Douglas Lake and Paradise 

Lake 
Douglas Lake, Cheboygan 
Co., Michigan 

  Paradise Lake, Emmet and 
Cheboygan Co., Michigan 
 

Lake St. Clair Lake St. Clair Big Muscamoot Bay, St. Clair 
Co., Michigan 

  Goose Bay, St. Clair Co., 
Michigan 

  Little Muscamoot Bay, St. 
Clair Co., Michigan 

  Bass Bay, Walpole Island 
First Nation, Ontario, Canada 
 

Lake Erie Cuyahoga River Cuyahoga River, Geauga Co., 
Portage Co., Ohio 

 Presque Isle Thompson Bay, Erie Co., 
Pennsylvania 

  Presque Isle Bay, Erie Co., 
Pennsylvania 

  Duck Pond, Erie Co., 
Pennsylvania 

 Spicer Creek (Niagara River) Spicer Creek, Grand Island, 
Erie Co., New York 
 

Lake Ontario Lynde Creek (Lake Ontario) Lynde Creek, Durham Region, 
Ontario, Canada 

 Lyn Creek (St. Lawrence 
River) 

Lyn Creek, Leeds and 
Grenville Co., Ontario, 
Canada 
 

Atlantic coast Willow Grove Lake (Maurice 
River) 

Willow Grove Lake, Salem 
Co., New Jersey 

 Potomac River Potomac River, Montgomery 
Co., Maryland 

 Nottaway and Blackwater 
rivers 

Nottaway River, Southampton 
Co., Virginia 

  Blackwater River, Franklin, 
Virginia 

 3	
  
 4	
  



lected with clam rakes or by hand with SCUBA and snor-
keling. Two methods were used to collect DNA: a swab 
of mucus from the foot, which was stored in sterile lysis 
buffer (Henley et al., 2006); or a clip of mantle tissue 
stored in 95% ethanol (Berg et al., 1995). The collection 
method depended on permit restrictions for rare species  
in each state or province. Each mussel was gently 
opened along the ventral margin <1 cm to obtain the 
sample, after which the mussel was returned to the  
substrate. All samples were stored at -20°C in the 
laboratory. Only female lineage mtDNA was sampled  
because methods required to obtain gonadal tissue  
for male lineage mtDNA are typically lethal.

 DNA was extracted from samples using an  
overnight digestion with proteinase K. The alcohol  
extraction method of Sambrook et al. (1989) was used 
for mucus samples and Qiagen DNeasy extraction kits 
were used for mantle clips. Genomic DNA was stained 
with SYBR Green (or Ethidium Bromide) and electro-
phoresed in a 1.5% agarose gel to confirm presence. 
Two mtDNA regions were amplified, the mitochondrial  
cytochrome c oxidase subunit 1 (CO1) and the NADH 
dehydrogenase subunit 1 (ND1) using primers described 
in Campbell et al. (2005). Samples from the Cuyahoga 
River were run at Cleveland State University in 25 µL 
volumes consisting of 10 µL of deionized water, 5.5 µL 
of a 5X buffer, 2.75 µL of 2.5 mM dNTPs, 2.75 µL of 
each primer at 2.5 mM, 2.75 µL of 0.25 mM MgCl2, and 
0.15 µL Taq polymerase. All other samples were run at  
Central Michigan University in 10 µL volumes, made 
of the mixture of 1 µL 10X Buffer, 1 µL bovine serum  
albumin, 0.3 µL of forward primer, 0.3 of reverse primer,  
0.2 µL of dNTP, 5.15 µL of deionized water, and  
0.05 µL Taq polymerase per sample. To each assay 1 µL  
extracted DNA was added. If the initial PCR reaction 
did not work, an additional 0.2 µL of MgCl2 replaced an 
equal amount of water. The thermocycler amplification  
conditions for both mtDNA regions were as follows:  
denaturation at 92-94°C for 2 minutes; five cycles of  
92-94°C for 40 seconds; 40°C for 40 seconds; 72°C for 
90 seconds; 25 cycles of 92°C for 40 seconds; 50°C 
for 40 seconds (or 49°C for all cycles), and 72°C for 
90 seconds. Completed reactions were held at 4°C 
and then placed in the freezer. Primers were removed 
from amplified samples using a QIAquick© PCR Purifi-
cation Kit or an Exonuclease I (Amersham Biosciences 
cat# E70073X, 10 U.ml) and shrimp alkaline phospha-
tase (SAP) (Amersham Biosciences cat# E70092X 
1U.ml) (78 ml ddH2O, 2 ml ExoI, 20 ml SAP) reaction 
to denature enzymes, and incubation at 37oC for 40 min  
followed by 80oC for 20 min. Amplified samples were  
sequenced on an ABI 3730 (Applied Biosystems). 

The sequences of the two mtDNA regions were  
aligned and edited using BIOEDIT (Hall, 1999) and MAC-

CLADE (Maddison and Maddison, 1997) software. Hap-
lotypes were identified using COLLAPSE v.1.2 software  
(Posada 2011). A haplotype network for both mtDNA 
regions was constructed using TCS v.1.21 software 
(Clement et al., 2000). Due to limited sample sizes at 
many sites, we pooled sites within the five watersheds or 
geographical regions described previously (see Table 1)  
to examine large-scale patterns of genetic diversity. Dif-
ferences among these regions in haplotype differentiation  
(ФST), gene diversity, nucleotide diversity, and the number  
of haplotypes per group were examined using analysis 
of molecular variance (AMOVA) implemented in ARLE-
QUIN (Schneider et al., 2000). CO1 and ND1 mtDNA 
sections were analyzed separately because sequencing 
was not successful for both genes in all individuals. 

RESULTS
The CO1 sequencing provided a 453 bp fragment 

from 64 individuals and the ND1 sequencing gave a 511 
bp fragment from 61 individuals (Genbank Accession 
numbers KM656075-KM656083). Both mtDNA gene 
segments exhibited little variation within the Great Lakes 
including Lake Ontario and the St. Lawrence River. 
Only one CO1 haplotype and two ND1 haplotypes were 
found in these populations (Fig. 1; Table 2). In contrast, 
four CO1 and six ND1 haplotypes were recovered in  
Atlantic coast populations. All Great Lakes haplotypes 
were present in and among the most common haplo-
types in Atlantic coast populations even though sample 
numbers were generally low across all of the Atlantic 
coast populations sampled. All haplotypes in all regions 
differed by just one or two point mutations from the most 
common type (Fig. 2). Gene diversity and nucleotide  
diversity for both genes also were low in Great Lakes 
populations; CO1 was invariant and ND1 showed 
very low diversity except in Lake Ontario where it was  
invariant (Table 2). Gene diversity and nucleotide diver-
sity for both genes were substantially higher in Atlantic 
coast populations than in the Great Lakes (Table 2).    

The percentage of variation explained by partitioning  
among the five regions was 38% (P < 0.0001) for CO1 
and 10% for ND1 (P = 0.0128), and more variation was 
present within Atlantic coast populations than within 
all of the Great Lakes samples combined (Table 2).  
Pairwise ФST revealed significant genetic differentiation 
for both genes only between the Atlantic coast popula-
tions and each of the four Great Lakes regions and there 
were no differences within the Great Lakes (Table 3).

DISCUSSION
Genetic variation in Ligumia nasuta was low in all 

Great Lakes populations compared to Atlantic coast 



TABLE 2
Variation in the mitochondrial CO1 and ND1 genes of Ligumia nasuta among five regions. N is the number of individuals sampled.

FIGURE 2
Spanning network of mtDNA haplotypes at the CO1 and ND1 loci for L. nasuta. The connecting lines represent a single 

base pair difference between adjoined haplotypes. The relative size of the circles represents the frequency of the haplotypes in 
all samples. Haplotype numbers are referenced on Fig. 1.

Table 2. Variation in the mitochondrial CO1 and ND1 genes of Ligumia nasuta among five 1	
  
regions.  N is the number of individuals sampled.   2	
  

Region CO1 

N Gene Diversity Nucleotide Diversity No. of Haplotypes 

Northern Michigan 12 0.0000 0.0000 1 
Lake St. Clair 14 0.0000 0.0000 1 
Lake Erie 21 0.0000 0.0000 1 
Lake Ontario 7 0.0000 0.0000 1 
Atlantic coast 9 0.7778 0.0030 4 
 ND1 
Northern Michigan 12 0.1667 0.0003 2 
Lake St. Clair 15 0.4190 0.0008 2 
Lake Erie 17 0.3824 0.0007 2 
Lake Ontario 7 0.0000 0.0000 1 
Atlantic coast 10 0.8889 0.0023 6 
 3	
  



populations where limited sampling revealed numer-
ous haplotypes and much higher overall genetic diver-
sity. Together with the common occurrence of all Great 
Lakes haplotypes in Atlantic coast populations, these re-
sults suggest that Great Lakes populations were estab-
lished by a single, small founder group from an Atlantic 
coast river system or a larger group from a single source 
population with low genetic variation.  Either scenario is 
consistent with the hypotheses that 1) L. nasuta is one 
of the few upper Great Lakes species to have colonized 
the region from Atlantic coast rivers, and 2) there were 
few opportunities for such exchanges.  An unexpected 
result was the low genetic diversity of Great Lake popu-
lations downstream of Niagara Falls.  Our sample sizes 
were lowest in this region, but these results suggest 
that there also have been few opportunities for faunal 
exchange between the St. Lawrence River system and 
other Atlantic coast river systems. 

The low genetic diversity of Great Lakes popula-
tions of L. nasuta is in contrast to other species that 
colonized the region from the Mississippi River basin. In 
the Lake Erie watershed alone, Amblema plicata (Say, 
1817) had at least six CO1 haplotypes out of 36 known 
haplotypes across its range (Elderkin et al., 2007), and 
Pyganodon grandis (Say, 1829) had 34 CO1 haplotypes 
out of 45 haplotypes across the northern portion of its 
range (Krebs et al., in press). Across the Great Lakes 
region, Elliptio dilatata (Rafinesque, 1820) had four to 
seven haplotypes per site out of 38 haplotypes across 
its range, and Actinonaias ligamentina (Lamarck, 1819) 
had six to eleven haplotypes per site out of 73 haplo-
types across its range (Elderkin et al., 2008). These  
results are consistent with the idea that some Missis-
sippi River basin species reached the Great Lakes via 
multiple routes.

Other Mississippian species in the Great Lakes 
have lower genetic diversity comparable to that seen 

in L. nasuta. Fusconaia flava (Rafinesque, 1820),  
had only three CO1 haplotypes in the Lake Erie  
watershed compared to 13 found across its range 
(Burdick & White, 2007), and Epioblasma torulosa  
rangiana (Lea, 1839) in the Sydenham River (Lake St. 
Clair watershed) had two CO1 haplotypes out of 10 
haplotypes found across its range (Zanatta & Murphy, 
2007). Venustaconcha ellipsiformis (Conrad, 1836) in 
the Lake Huron and Lake Michigan watersheds had 
three CO1 haplotypes and one ND1 haplotype out of 13 
haplotypes found in the Mississippi River basin (Zanatta  
& Harris, 2013). These mixed results highlight the  
diverse and complex history of post-glacial dispersal 
into the Great Lakes from the Mississippi River basin 
(see Graf, 2002) as opposed to the apparently more  
limited dispersal from Atlantic coast rivers.

The genetic similarity among L. nasuta popula-
tions throughout the Great Lakes suggests that they  
can be treated as a single management unit. However, 
the Great Lakes management unit clearly is genetically  
distinctive from the Atlantic coast populations we  
sampled. Until more information becomes available,  
recovery efforts in the Great Lakes based on  
captive propagation or translocation should be limited 
to use of Great Lakes source stock to avoid introduction 
of non-native haplotypes. Sampling from populations 
in additional Atlantic coast rivers, particularly those in  
previously glaciated regions (e.g., Hudson and Mohawk 
rivers), may reveal other suitable source populations for 
conservation efforts and may refine our understanding 
of the evolutionary history of Great Lakes populations 
of L. nasuta.   
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 Northern 
Michigan 

Lake St. 
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Lake 
Erie 

Lake 
Ontario 
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coast  
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Lake Erie 0.000 0.000 - 0.089 0.172* 
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Atlantic coast  0.386* 0.415* 0.498* 0.290* - 
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