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tolerance (Stephanou et al., 1983; Velazquez and Lind-
quist, 1984; McColl et al., 1996; Krebs and Feder,
1997b; DiIorio et al., 1996), and between the decline of
Hsps, mRNA for heat-shock proteins, and recovery of
normal protein synthesis in Drosophila cells
(DiDomenico et al., 1982a, b). Genetic engineering,
which enabled investigators to vary Hsp expression
against a constant genetic background, established an
unambiguous qualitative relationship between Hsp70
level and inducible thermotolerance in insect cells in cul-
ture (Li et al., 1991; Solomon et al., 1991; Li and Dun-
can, 1995) and in whole insects, after insertion of
additional hsp70 gene copies into Drosophila lines
(Welte et al., 1993). Continued research on the extra-
copy and their transcript-excised control lines indicated
that higher Hsp70 expression can lengthen survival to
heat stress at specifi points in development (Feder et
al., 1996). Also, removal of Hsp70 by introduction of
anti-Hsp70 antibodies disrupts transcription (Moreau et
al., 1994) and the development of tolerance to heat
(Riabowol et al., 1988; Solomon et al., 1991; Lee et
al., 1993).
We may now expand on earlier work, which com-

pared effects of Hsp70 over-expression primarily under
those conditions that maximized Hsp70 concentrations
within flie (Feder et al., 1996; Krebs and Feder, 1997a),
and manipulate Hsp70 expression quantitatively (1) to
elucidate the relevance of Hsp expression to natural
populations, which encounter diverse temperatures and
rates of thermal increase, (2) to characterize the physi-
ology of Hsp expression in different tissues (e.g. Krebs
and Feder, 1997c) and (3) to provide insight to the evol-
ution of regulatory control (e.g., Lindquist, 1993) of Hsp
concentrations via putative trade-offs between the bene-
fit and costs of high expression. First, Drosophilalarvae
and pupae can encounter quite severe thermal stress in
nature (Feder et al., 1997) but clearly not all larvae and
pupae encounter such stress. Hsp expression, moreover,
is not instantaneous, and some time must elapse between
a mild Hsp-inducing stress and severe stress for Hsp
expression to promote tolerance. Accordingly, questions
arise as to how mild and how brief an Hsp-inducing
stress can be and still benefi an insect, and whether natu-
ral levels of Hsps are sufficien for inducible thermotol-
erance. Second, despite the compendious literature on
Hsps (e.g., Lindquist, 1986; Gething and Sambrook,
1992; Morimoto et al., 1994), exactly how the proteins
cause entire organs and organisms to become thermotol-
erant is not well understood. Underlying mechanisms
can become obvious by comparing organs and individ-
uals that differ in the kinetics of Hsp expression. The
larval midgut and gastric caeca, for example, are
especially vulnerable to heat and exhibit slow kinetics
of Hsp70 expression and recovery (Krebs and Feder,
1997c). Finally, as intimated above, Hsp70 can be neu-
tral or beneficia at intermediate concentrations but

harmful at high concentrations or when it is expressed
constitutively (Feder et al., 1992; Krebs and Feder,
1997a). Contrasting benefit and costs may limit
expression and influenc the evolution of regulatory con-
trols (Krebs and Feder, 1997b). If so, manipulating
Hsp70 concentrations may elucidate costs, benefits and
any resultant trade-off.

2. Materials and methods

2.1. Strain origin

We characterized effects of varying conditioning
treatments (pretreatment) on larval thermotolerance in a
pair of strains engineered to vary in hsp70copy number
and, consequently, expression of Hsp70. Welte et al.
(1993) described the construction of the transgenic
strains via unequal homologous recombination. The
extra-copy strain contains a pair of transgene constructs,
each a composite of three hsp70genes, an eye color
marker, whs, and flankin yeast recombination targets
and P-elements. The excision strain shares the same
chromosomal site of transgene integration and flankin
elements, but lacks the hsp70transgenes and eye color
marker. The procedure that duplicates the initial insert
in one chromatid simultaneously deletes the insert in
another, thereby producing two strains varying in copy
number but possessing similar genetic backgrounds
(details in Feder et al., 1996; Krebs and Feder, 1997a).
One member of the pair, the extra-copy strain, has 12
hsp70transgenes in addition to its 10 natural copies (Ish-
Horowicz et al., 1979a, b). The other member, the exci-
sion strain, has only the 10 natural copies but shares the
transgene integration site with the extra-copy strain, and
thus is a control for insertional mutagenesis. For the
strains used here, the site of transgene integration
mapped to chromosome II.

2.2. Pretreatment and heat shock

Before analyses of Hsp70, larval fitnes and tissue
damage, we exposed larvae to one of a graded series of
Hsp70-inducing pretreatments, heat shock and/or recov-
ery at 25°C. The heat shock was 60 min at 39.2°C for
1st-instar larvae or 60 min at 38.5°C for 3rd-instar lar-
vae, which are less thermotolerant than 1st-instars
(Krebs and Feder, 1997a). Pretreatments for Hsp70 and
fitnes analyses were for 10, 30 and 60 min at 36°C and
then 60 min at 25°C, or at 32, 33, 34, 35, and 36°C for
60 min and then 60 min at 25°C. Samples were pre-
served in liquid N2 or at -80°C either after the pretreat-
ment or after heat shock. Pretreatment of 3rd-instar lar-
vae was for 12 min or 60 min at 36°C and then 60 min
at 25°C, with individuals either scored immediately or
allowed 21 h recovery.



2.3. Hsp70 determination

Hsp70 concentration was determined by enzyme
linked immunosorbent assay (ELISA), which has been
detailed elsewhere (Welte et al., 1993; Feder et al., 1996;
Krebs and Feder, 1997b). Results were expressed as a
percent of a standard, expression in S2 Drosophilacells
treated at 36.5°C for 60 min and 60 min at 25°C. Treat-
ment and handling of larvae used in Hsp70 quantificatio
varied according to developmental stage. First-instar lar-
vae were collected from the medium surface and 3rd-
instar larvae were separated from the medium according
to Ashburner (1989). Hsp70 determination required 40
larvae in the 1st-instar stage, collected 4–12 hours after
hatching, to obtain sufficien protein levels, or three 3rd-
instar larvae, collected 6 days after laying. First-instar
larvae were placed in microfuge tubes with 10 ml phos-
phate-buffered saline (PBS), submerged in thermostatted
water baths and then frozen in liquid N2. Hsp70 is not
present in the absence of heat shock (Velazquez et al.,
1984; Feder et al., 1996), nor do larvae produce Hsp70 >
2% of the standard at 39.2°C or higher unless they
receive pretreatment (Krebs and Feder, 1997c). For heat
treatment of 3rd-instar larvae, we transferred larvae to
5 cm petri dishes that contained medium, sealed them
with Parafil , and immersed them in a water bath at
the required temperature.
Because gut tissue is especially sensitive to heat shock

and damage is correlated with chronic elevation of
Hsp70 expression (Krebs and Feder, 1997c), we also
determined Hsp70 concentration in pooled midguts
(including caeca). To collect tissue, we peeled away epi-
dermis and muscle to expose the body cavity, and
removed the midgut between the proventriculus and the
Malpighian tubules. For each sample, we dissected 5
midguts in ice-cold PBS, which required 6–9 minutes
before freezing in liquid N2.

2.4. Larval fitness

To determine larva-to-adult survival and developmen-
tal time, 40 first-insta larvae per replicate were trans-
ferred to glass vials containing 8 ml of a yeast-cornmeal-
molasses-agar medium. When not undergoing treatment,
all larvae developed in these food vials within a large
humidifie container at 25°C. Each day we collected the
adults that emerged from vials. Thermotolerance was
estimated as the survival proportion after a 39.2°C heat
shock, standardized to the proportion emerging at 25°C
for each line. These standardized survival data
underwent arcsine square-root transformation before
statistical analysis. Mean developmental time per vial
was the average of that for males and females, each
determined as log−1 of the log day-of-emergence per
individual.

2.5. Trypan Blue staining

Assays of tissue damage utilized Trypan Blue, which
is excluded from healthy cells but readily enters dead or
damaged cells (Krebs and Feder, 1997c), marking alter-
ation in membrane structure (Bowler and Manning,
1994, p. 197). Heat-treated larvae were placed in PBS
at room temperature, the cuticle and muscle tissue peeled
from the body cavity, the internal tissues immersed in
0.2 mg ml−1 Trypan Blue in PBS, and then rotated for
30 min at room temperature (23°C) to bring all tissues
in contact with dye. After staining, larvae were rinsed
three times in PBS, washed for 30 min in PBS, and each
larva was immediately scored for Trypan Blue content
in tissues and cells: no color, 0; any blue, 1; darkly
stained nuclei, 2; large patches of darkly stained cells,
3; or complete staining of most cells in the tissue, 4. As
these data are sequential categories, differences due to
strain (extra-copy vs. excision), treatment effects
(pretreated vs. no pretreat, short pretreatment vs. long
pretreatment) and recovery time (within 2 h after heat
shock vs. 21 h after heat shock) were tested by Mann-
Whitney U-tests.

3. Results

3.1. 1st-instar larvae — Hsp70

Pretreatment duration and intensity affected Hsp70
concentration (Fig. 1A, Fig. 2A). After pretreatment at
36°C, Hsp70 concentrations increased during the 39.2°C
heat shock, a change that did not occur without pretreat-
ment. At all pretreatment durations and temperatures,
extra-copy larvae produced more Hsp70 than did exci-
sion larvae (P , 0.001).

3.2. 1st-instar larvae — mortality and developmental
time

Lengthening pretreatment duration at 36°C generally
increased larval thermotolerance (Fig. 1B, F2,90 = 52, P
, 0.001). Extra-copy larvae were more thermotolerant
than excision larvae in the absence of pretreatment and
with a short (10 min) pretreatment. Excision larvae,
however, were more thermotolerant where larvae
received 30 min pretreatments (strain × pretreatment
duration interaction, F2,90 = 3.3, P , 0.05). Thus, Hsp70
level before heat shock and tolerance to the heat shock
were correlated at low to moderate Hsp70 concen-
trations, but inversely related at high Hsp70 concen-
trations.
We also manipulated Hsp70 level by varying pretreat-

ment temperature at a constant duration (Fig. 2A, F4,30
= 8.0, P , 0.001). Increasing pretreatment temperature
increased thermotolerance (Fig. 2B, F4,30 = 8.0, P ,



Fig. 1. Effect of pretreatment duration on Hsp70 accumulation and
thermotolerance of 1st-instar larvae. A shows temperatures during pre-
treatment and heat shock and Hsp70 levels following each of the three
pretreatment durations at 36°C. Each point represents the mean of 4
samples each of 40 larvae. B shows larva-to-adult survival after larvae
underwent the temperature regimes depicted, with survival stan-
dardized to control levels (that at continuous 25°C). Sample sizes were
640 larvae per treatment group, 40 in each of 16 vials. We measured
Hsp70 levels by ELISA in whole-body lysates using a monoclonal
antibody specifi for Hsp70. Results are expressed relative to the signal
obtained with a standard derived from heat-shocked Drosophila tissue
culture cells (see Materials and Methods).

0.001), as did changes in pretreatment duration. Extra-
copy larvae were more thermotolerant than excision lar-
vae after pretreatment at 35°C or less. After 1 h at 36°C,
the concentration of Hsp70 exceeded that possible in the
excision line, which has normal gene-copy numbers
(Fig. 2A), and thermotolerance of these excision larvae
exceeded that of extra-copy larvae (strain × temperature,
F4,30 = 2.9, P , 0.05).
Heat shock delayed development of larvae relative to

25°C controls if they received no pretreatment (Fig. 3A)
or pretreatment at 32°C (Fig. 3B). Pretreatments of 36°C
for > 10 min or 60 min at 33°C or higher prevented the
delay in development. Therefore, developmental time
varied little due to pretreatment duration (F3,71 = 2.5, P
, 0.1) and temperature (F5,41 = 2.0, P , 0.1).

Fig. 2. Effect of pretreatment temperature on Hsp70 accumulation
and thermotolerance of 1st-instar larvae. A shows Hsp70 levels follow-
ing a 60 min exposure to different temperatures and 60 min at 25°C
(sample sizes of 4 replicates each of 40 larvae). B shows larva-to-adult
survival after a 60 min heat shock at 39.2°C for larvae pretreated
60 min at the indicated temperature followed by 60 min at 25°C. Sur-
vival was standardized to control levels (that at continuous 25°C), and
sample sizes were 160 larvae per treatment group, 40 in each of 4
vials).

3.3. 3rd-instar larvae — Hsp70

As in 1st-instar larvae, increasing pretreatment dur-
ation at 36°C in 3rd-instar larvae increased Hsp70 con-
centrations both before heat shock (Fig. 4A, P , 0.001)
and after a subsequent 38.5°C heat shock (P , 0.001).
The increase in extra-copy larvae exceeded that in exci-
sion larvae (P , 0.001), and the relative response during
heat shock by extra-copy and excision larvae differed
depending on pretreatment duration. After a 12 min pre-
treatment, extra copy larvae produced more Hsp70 dur-
ing heat shock than after a 60 min pretreatment, while
excision larvae produced more Hsp70 after the 60 min
than after the 12 min pretreatment (strain × pretreatment
duration × heat shock, P , 0.05).



Fig. 3. Effect of pretreatment duration and temperature on time from
1st-instar larva to adult. Except for controls reared at 25°C, larvae were
pretreated and heat shocked for 60 min at 39.2°C. A shows larvae used
in Fig. 1, which were pretreated at 36°C for varying lengths of time
followed by 60 min at 25°C before heat shock. B shows larvae used
in Fig. 2, which were pretreated by 60 min exposure at different tem-
peratures also followed by 60 min at 25°C before heat shock.

Higher Hsp70 levels before heat shock correlated
inversely with levels of Hsp70 a day after this treatment
(Fig. 4A). Hsp70 levels 21 h after heat shock were high-
est in larvae not pretreated before heat shock, intermedi-
ate in larvae pretreated 12 min before heat shock, and
lowest in larvae pretreated 60 min before the heat shock.
This relationship between Hsp70 concentration before
and after heat shock held for both strains. Although
Hsp70 concentrations typically are higher in extra-copy
larvae immediately after pretreatment and heat shock,
levels 21 h after heat shock in excision larvae exceeded
those in the extra-copy larvae.
Concentrations of Hsp70 in midgut and whole-body

lysates differed, but strain differences and temporal vari-
ation in expression followed similar patterns in both
analyses (Fig. 4). Midguts contained lower Hsp70 con-
centrations after pretreatment than did whole body lys-
ates, and levels after 21 h in this tissue exceeded those
in whole larvae. Extra-copy larvae expressed more
Hsp70 in the gut immediately after pretreatment than did
excision larvae (F1,17 = 4.0, P , 0.05), but strain differ-
ences were small a day later both in the absence of pre-
treatment and after the 60 min pretreatment. Because
midgut produces Hsp70 slowly, concentrations in midgut
after the 12 min pretreatment were very low, but were
higher in extra-copy larvae than in excision larvae. Exci-

Fig. 4. Hsp70 accumulation in whole 3rd-instar larvae (A) and
specificall midgut (B) from the extra-copy (fille symbols) and exci-
sion (open symbols) strains after either a 36°C pretreatment and/or a
38.5°C heat shock. Hsp70 level in the absence of any heat treatment
or 21 h after pretreatment only is negligible (results not shown). Each
point represents the mean of 4–6 samples each including either 2–3
whole larvae or 5 gut dissections.

sion larvae subsequently had the higher concentrations
21 h after heat shock (strain × pretreatment duration,
F2,20 = 3.74, P , 0.05). Thus in a single tissue, pre-heat
shock concentrations of Hsp70 and concentrations 21 h
after heat shock are inversely related, as in whole larvae.

3.4. 3rd instar larvae — Trypan Blue

We directly assessed the amount of Trypan Blue
incorporated by cells after heat shock; healthy cells
exclude this dye. Control larvae and those pretreated for
60 min at 36°C stained little (data not shown). Heat
shock, by contrast, increased staining in all tissues above
that of controls, both , 2 h after heat shock (hereafter
“acutely”) and after a 21 h recovery (Table 1). Gut
tissues, particularly the caeca and midgut, stained far
more than did other tissues (Fig. 5; and see Krebs and
Feder, 1997c, Figure 7).
Pretreatment failed to ameliorate acute heat-induced

damage. Heat-shocked larvae stained similarly regard-
less of whether they received a 60 min pretreatment at
36°C or no pretreatment (Table 1), and neither did the
excision or extra-copy strains vary in Trypan Blue stain-
ing , 2 h after heat shock (Fig. 5).



Table 1
Quantificatio of Trypan Blue staining after heat shock in various tissues of 3rd-instar extra-copy and excision larvae

Recovery Trypan Blue scoring
Tissue type Strain Time Trt N 0 1 2 3 4

Brain Excision 2 h NP 29 0.90 0.07 0.03 0.00 0.00
P60 29 0.97 0.03 0.00 0.00 0.00

21 h NP 33 1.00 0.00 0.00 0.00 0.00
P12 44 1.00 0.00 0.00 0.00 0.00
P60 26 0.96 0.04 0.00 0.00 0.00

Extra copy 2 h NP 28 0.96 0.04 0.00 0.00 0.00
P60 33 0.94 0.06 0.00 0.00 0.00

21 h NP 43 0.91 0.07 0.02 0.00 0.00
P12 58 0.98 0.02 0.00 0.00 0.00
P60 25 0.96 0.00 0.04 0.00 0.00

Salivary glands Excision 2 h NP 24 0.71 0.04 0.17 0.04 0.04
P60 21 0.76 0.05 0.14 0.05 0.00

21 h NP 28 0.82 0.00 0.18 0.00 0.00
P12 38 0.79 0.05 0.16 0.00 0.00
P60 23 0.65 0.13 0.17 0.04 0.00

Extra copy 2 h NP 19 0.74 0.11 0.11 0.05 0.00
P60 33 0.67 0.21 0.12 0.00 0.00

21 h NP 37 0.65 0.11 0.22 0.03 0.00
P12 51 0.76 0.02 0.22 0.00 0.00
P60 31 0.71 0.14 0.10 0.05 0.00

Proventricules Excision 2 h NP 28 0.82 0.07 0.11 0.00 0.00
P60 30 0.93 0.03 0.03 0.00 0.00

21 h NP 32 0.72 0.03 0.22 0.03 0.00
P12 44 0.95 0.00 0.05 0.00 0.00
P60 27 0.96 0.00 0.04 0.00 0.00

Extra copy 2 h NP 26 0.84 0.04 0.12 0.00 0.00
P60 35 0.89 0.03 0.09 0.00 0.00

21 h NP 42 0.74 0.07 0.19 0.00 0.00
P12 58 0.97 0.00 0.03 0.00 0.00
P60 23 0.87 0.09 0.04 0.00 0.00

Hindgut Excision 2 h NP 30 0.57 0.03 0.40 0.00 0.00
P60 30 0.73 0.20 0.07 0.00 0.00

21 h NP 33 1.00 0.00 0.00 0.00 0.00
P12 44 0.93 0.02 0.05 0.00 0.00
P60 27 0.74 0.11 0.15 0.00 0.00

Extra copy 2 h NP 25 0.52 0.04 0.44 0.00 0.00
P60 35 0.74 0.11 0.14 0.00 0.00

21 h NP 41 0.80 0.07 0.12 0.00 0.00
P12 58 0.84 0.07 0.09 0.00 0.00
P60 25 0.80 0.08 0.12 0.00 0.00

Malpigian tubules Excision 2 h NP 30 0.70 0.13 0.17 0.00 0.00
P60 30 0.73 0.17 0.10 0.00 0.00

21 h NP 33 0.52 0.24 0.24 0.00 0.00
P12 44 0.95 0.02 0.02 0.00 0.00
P60 27 0.74 0.07 0.11 0.07 0.00

Extra copy 2 h NP 28 0.89 0.11 0.00 0.00 0.00
P60 35 0.69 0.20 0.11 0.00 0.00

21 h NP 43 0.63 0.23 0.14 0.00 0.00
P12 58 0.84 0.07 0.09 0.00 0.00
P60 25 0.76 0.20 0.04 0.00 0.00

Fat bodies Excision 2 h NP 30 0.40 0.27 0.30 0.03 0.00
P60 30 0.60 0.20 0.13 0.07 0.00

21 h NP 33 0.70 0.09 0.21 0.00 0.00
P12 44 0.80 0.09 0.07 0.05 0.00
P60 27 0.81 0.11 0.07 0.00 0.00

Extra copy 2 h NP 28 0.61 0.18 0.33 0.00 0.00
P60 35 0.74 0.23 0.03 0.00 0.00

21 h NP 43 0.70 0.12 0.14 0.05 0.00
P12 58 0.78 0.07 0.12 0.03 0.00
P60 25 0.76 0.12 0.12 0.00 0.00

NP, No pretreatment before 38.5°C heat shock; P12, 12 min at 36°C and 60 min at 25°C before heat shock; P60, 60 min at 36°C and 60 min at
25°C before heat shock. Scoring of larval tissues occurred either within 2 h of heat shock or after a recovery of 21 h at 25°C: (0) no color; (1)
any blue; (2) darkly stained nuclei; (3) large patches of darkly stained cells; (4) complete staining of most cells in the tissue. Reported are the
number of individuals measured for each tissue and the frequency in each staining class.



Fig. 5. Quantificatio of Trypan Blue staining within 2 h of heat shock in gastric caeca (A, B) and midgut (C,D) of 3rd-instar extra-copy (fille
circles) and excision larvae (open circles). Pretreatment was at 36°C followed by a 60 min recovery period at 25°C, and heat shock was 60 min
at 38.5°C. Scoring of tissues was: (0) no color; (1) any blue; (2) darkly stained nuclei; (3) large patches of darkly stained cells; (4) complete
staining of most cells in the tissue. The number of individuals scored was for A and C, 29 excision and 27 extra-copy larvae and for B and D,
30 excision and 35 extra-copy larvae.

By 21 h after heat shock, staining increased in the
caeca and midgut (comparing Fig. 5A, Fig. 5C and Fig.
6A, Fig. 6D, P , 0.01 for both tissues and strains) in
larvae lacking pretreatment. Other tissues showed little
increase in staining (Table 1), and the hindgut stained
much less 21 h after heat shock than immediately after
heat shock (P , 0.01 for both the excision and extra-
copy strains). The excision and extra-copy larvae stained
similarly in the absence of pretreatment.
By contrast, pretreated larvae stained less 21 h after

heat shock than immediately afterwards, and the largest
responses occurred in caeca and midgut (Fig. 6). After
the long pretreatment, several tissues stained less than if
not pretreated: caeca (P , 0.001, both strains), midgut
(excision strain, P , 0.001; extra-copy strain, P , 0.1),
and to a lesser extent, Malpighian tubules (Table 1). The
short pretreatment likewise reduced staining in caeca of
both strains (P , 0.001 in both strains) and in midgut
of the extra-copy strain (P , 0.001). Midguts of excision
larvae benefite little from a short pretreatment and,
therefore, stained more than those of extra-copy larvae

after a short pretreatment and heat shock (Fig. 6E, P
, 0.05).

4. Discussion

In nature, Drosophila larvae inhabit necrotic fruit.
Particularly within sun-exposed fruit, temperatures may
rise sufficientl to induce expression of Hsp70 and/or to
kill larvae (Feder et al., 1997). Because fruit tempera-
tures may increase rapidly (Feder et al., 1997), the rate
at which larvae become thermotolerant affects their
probability to survive natural thermal stress.
Laboratory manipulation can quantify how the level of

Hsp70 affects acclimation and survival. Under controlled
conditions, inducible thermotolerance correlates closely
with concentrations of Hsp70 (Fig. 7). At least some
component of inducible thermotolerance is due to
changes in Hsp70 levels, either directly through their
effect on denatured proteins or by an interaction with
other cellular components, because the extra-copy and



Fig. 6. Quantificatio of Trypan Blue staining 21 h after heat shock in gastric caeca (A–C) and midgut (D–F) of 3rd-instar extra-copy (fille
circles) and excision larvae (open circles). Pretreatment was at 36°C followed by a 60 min recovery period at 25°C, and heat shock was 60 min
at 38.5°C. Scoring of tissues was: (0) no color; (1) any blue; (2) darkly stained nuclei; (3) large patches of darkly stained cells; (4) complete
staining of most cells in the tissue. The number of individuals scored was for A and D, 33 excision and 43 extra-copy larvae, B and E, 44 excision
and 58 extra-copy larvae, and C and F, 27 excision and 25 extra-copy larvae.

excision strains vary primarily in this one protein and in
inducible thermotolerance (Welte et al., 1993). Indeed,
denatured proteins alone may induce Hsp expression
(Wolfe et al., 1986). In both strains, larval thermotoler-
ance increased rapidly after pretreatment, but shorter
pretreatments increased thermotolerance more in the
extra-copy strain, the strain that produced Hsp70 faster
(Feder et al., 1996). A low level induction of Hsp70,
such as that induced by a short or low intensity pretreat-
ment, produced a disproportionate increase in thermotol-
erance. Long and intense pretreatments induced higher

concentrations of Hsp70 but improved survival only
marginally more than did a short pretreatment. Thus the
relationship between changes in Hsp70 and thermotoler-
ance was not linear. In any event, even relatively brief
or mild pretreatments, which larvae may frequently
encounter in necrotic fruit in nature, are clearly sufficien
to induce both Hsp70 expression (Feder et al., 1997;
present study) and thermotolerance. Whether these
inducible events affect fitnes in nature depend upon any
ensuing heat shock, which can match the induced therm-
otolerance or be so severe that no tolerance mechanism



Fig. 7. Effect of Hsp70 level before heat shock on the induced
increase in thermotolerance above basal levels in 1st-instar larvae,
which was quantifie by the proportion of pretreated larvae surviving
heat shock minus the survival proportion of unpretreated larvae. Hsp70
level before heat shock was manipulated by exposing engineered extra-
copy and excision-control larvae to pretreatments varying in duration
(10–30 min at 36°) and intensity (32°–36°C for 60 min). Hsp70 is
expressed as a percentage of a standard. Heat shock varied among
strains (39.2°C in the chromosome II strains utilized in this study, and
38.5°C in the chromosome III strains used in Krebs and Feder, 1997b),
but both treatments resulted in approximately 15% survival in unpre-
treated larvae. The data were fitte to a polynomial regression ( ±
1 SE): The increase in tolerance = 0.31 ± 0.06 + (0.007 ± 0.002 ×
Hsp70)–(0.00004 ± 0.00001 × Hsp702), R2 = 0.45, P = 0.02; linear
regression is not significan (R2 = 0.02; P = 0.57).

will ensure survival (Krebs and Loeschcke, 1994; Feder
et al., 1997; Feder, 1997).
The cause of greater proportional benefit at low con-

centrations may be that Hsp70 protects its own
expression at potentially lethal temperatures. Above
38°C, non-pretreated individuals either do not express
Hsp70 or express Hsp70 very slowly (Krebs and Feder,
1997c), but once cells produce some Hsp70, additional
expression ensues. Therefore, Hsp70 concentration may
vary more after pretreatment alone than after pretreat-
ment and heat shock, reducing differences in thermotol-
erance at intermediate concentrations of Hsp70 (Fig. 7).
The temporal patterns of Hsp70 expression provide

insight to the mechanisms responsible for benefit in
thermotolerance. One pattern is the rapid response to
stress in some but not all tissues of D. melanogaster
(Krebs and Feder, 1997c). Heat stress damages the larval
gut more than almost any other tissue, and this damage
may kill larvae slowly, potentially from desiccation or
loss of nutrients (Krebs and Feder, 1997c). Pretreatment
failed to block Trypan Blue staining in midgut, but it
facilitated recovery from this heat damage. Pretreatment
also reduced the chronic levels of Hsp70 in midgut,
which may indicate lesser concentrations of denatured
proteins (Hofmann and Somero, 1995). This relationship

between pretreatment duration and repair (i.e. dimin-
ution in both Hsp70 level and Trypan Blue staining) sug-
gests that Hsp70 contributes to repair of cell damage
after heat shock. This, then, is consistent with a define
role for Hsp70 in the protection of a specifi tissue
against thermal damage, as is the preliminary findin
that gut specifi expression of Hsp70 off of a heterolog-
ous promoter is sufficien to protect feeding against ther-
mal inhibition in larval Drosophila (Feder and Krebs,
1997b). Extra hsp70copies reduced staining after a short
pretreatment but provided no benefi either in the
absence of pretreatment, where neither strain possessed
Hsp70 before heat shock, or after an intense pretreat-
ment, where the strains differed in Hsp70 due to
expression above natural levels (Krebs and Feder,
1997b, and Krebs, Feder and Lee, unpublished) in the
extra-copy strain. That benefit to organismal survival
and midgut staining coincide only after a short pretreat-
ment suggests that these phenotypes are linked, but,
because high Hsp70 concentrations benefite survival
much more than repair of this tissue, the predominant
gain from extra Hsp70 may lie elsewhere in the larva.
While Hsp70 may provide benefit away from the gut,

so too may costs from very high Hsp70 concentrations
lie elsewhere. Too much Hsp70 has costs, even for ther-
motolerance (Fig. 7); after high concentrations of Hsp70
or constitutive expression, larval survival declines both
in the presently analyzed strains and another extra-
copy/excision pair (Krebs and Feder, 1997a), and cell
growth slows (Feder et al., 1992). Overexpression
increased neither Trypan Blue staining nor chronic
Hsp70 expression in any tissue. Evidence on the timing
of mortality in the extra-copy and excision lines suggests
that larvae die more rapidly from overexpression of
Hsp70 after pretreatment and heat shock than from direct
heat damage (Krebs and Feder, 1997a).
Perhaps because variation in Hsp70 has diverse conse-

quences, D. melanogastertightly regulates its expression
(Lindquist, 1993). Regulatory controls can evolve
through trade-offs between positive and negative effects
on cell and organismal function, as follows: Individuals
should regulate expression to produce moderate (but not
too high) concentrations of Hsp70 immediately after
exposure to heat and other stresses, to eliminate
expression in the absence of stress (Solomon et al.,
1991), and to eliminate Hsp70 as soon as recovery is
complete (DiDomenico et al., 1982a), but to prevent
concentrations from exceeding a critical level. Hsp70
mRNA transcripts destabilize on return of Drosophila
cells from stress conditions (DiDomenico et al., 1982b),
which should reduce further Hsp70 synthesis. Benefit
and costs of different regulatory patterns, however, may
vary in different environments. Environments where
stress is not common may favor individuals that produce
Hsp70 slowly because they will rarely overexpress this
protein or express it unnecessarily. Conversely, stressful



environments may favor individuals that express Hsp70
very rapidly, because they select for a more extreme
response to heat. Hsp70 obviously cannot explain all of
inducible stress tolerance. Induced thermotolerance may
persist long after Hsp70 concentrations in Drosophila
become undetectable (Krebs and Loeschcke, 1994, 1995;
Krebs and Feder, 1997a). Increased concentrations of
osmolytes are one of several alternative mechanism that
provide thermotolerance (Clegg and Jackson, 1992).
Nonetheless, raising Hsp70 concentration may be the
most rapid response to thermal stress in Drosophila.
Consequently, two aspects of the environment, the prob-
ability that a larva will encounter high temperature and
the rate at which temperatures rise, may affect how
Hsp70 expression evolves within natural populations.
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