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Reduced Enzyme Activity Following Hsp70
Overexpression in Drosophila melanogaster

Robert A. Krebs1,2 and Sari H. Holbrook1

Acclimation to environmental change can impose costs to organisms. One poten-
tial cost is the change in cell metabolism that follows a physiological response,
e.g., high expression of heat shock proteins may alter specifi activity of impor-
tant enzymes. We examined the significanc of this cost in a pair of Drosophila
melanogasterlines transformed with additional copies of a gene that encodes the
heat shock protein, Hsp70. Heat shock induces Hsp70 expression in all lines, but
lines with extra copies produce much more Hsp70 than do excision control strains.
The consequence of this supranormal Hsp70 expression is to reduce specifi activ-
ity of both enzymes analyzed, adult alcohol dehydrogenase (ADH), which is heat
sensitive, and lactate dehydrogenase, which is not. Strain differences were most
pronounced under those conditions where Hsp70 expression was maximized, and
not where the heat stress denatured proteins. That result supported the idea that
Hsp70 expression is constrained evolutionarily by its tendency to bind nascent
peptides when overabundant within the cell.

KEY WORDS: enzyme activity; Hsp70;Drosophila melanogaster; heat shock; metabolism; stress;
trade-offs.

INTRODUCTION

Individuals of many species respond physiologically when they encounter a novel
thermal environment. Such change, termed thermal acclimation, may enable an
organism to survive a stress that might otherwise be lethal. However, thermal
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acclimation is sometimes neutral or even deleterious with respect to fitness
(Bennett and Lenski, 1997). Two possible mechanisms may explain such non-
adaptive outcomes from expression of a new thermal phenotype (Feder, 1996):
one is metabolic, where a response consumes too much energy or nutrients and
thereby jeopardizes other cellular functions; the second is biochemical, because
the defense proteins interfere with enzymatic processes within the cell.

Almost all organisms respond to heat stress by producing high concentrations
of heat shock proteins (Hsp’s). InDrosophila, Hsp’s can be virtually absent from
the cell before heat stress and suddenly undergo 10,000-fold increases in expres-
sion (Lindquist, 1993). These proteins may accumulate to account for 10–15%
of the soluble protein in a cell (Loomis and Wheeler, 1982; Palteret al., 1986),
displacing routine protein synthesis. The negative consequences of this intense
protein expression for performance and fitness can be profound:Drosophila cells
that express Hsp’s at benign temperatures grow more slowly than normal cells
(Federet al., 1992), a yeast strain that cannot express Hsp104 grows faster than
its wild-type counterpart on some media (Sanchezet al., 1992), fecundity declines
in adultD. melanogaster treated to induce the heat shock response (Krebs and
Loeschcke, 1994), and overexpression of Hsp70 reduces the larva-to-adult sur-
vival ofD. melanogaster (Krebs and Feder, 1997a). Heckathornet al. (1996a) also
found that, when nitrogen availability is limiting in corn, other proteins may be ca-
tabolized to provide amino acids for stress protein production. Consequently, loci
such as those that code for Hsp’s face antagonistic selection, as the costs of stress
tolerance potentially cancel out the benefits of acclimation (Calow, 1991; Coleman
et al., 1995; Hoffmann, 1995; Krebs and Loeschcke, 1996; Parsons, 1996).

Negative outcomes of thermal acclimation are consistent with the hypothesis
that Hsp’s are toxic at very high concentrations (Krebs and Feder, 1997a). To ex-
amine this toxicity, we exploitedDrosophila that had been genetically engineered
to overexpress the Hsp, Hsp70 (Welteet al., 1993). Even without this transgene,
Drosophila larvae express Hsp’s massively in response to a mild heat shock, such
as those that may occur in nature (Junge-Berberovic, 1996; Feder, 1996; Feder
et al., 1997). With the transgene, the extra-copy strain produces at least twice as
much Hsp70 as does its control, a strain in which the transgene was excised but
which maintains an insert at an identical point in the genome. Two pairs of each
strain were available for study.

Here we compared how overexpression of Hsp70 interacts with the function of
other enzymes by measuring the specific activity of lactate dehydrogenase (LDH)
and adult alcohol dehydrogenase (ADH) following exposure to stress. These en-
zymes were chosen because LDH is known to be important in thermal adaptation
in fish (Powers and Schulte, 1998), and it is thermally stable, while ADH denatures
at temperatures within the survival range of flies (Feder and Krebs, 1998). Specific
activity was measured for each strain in the absence of stress, after exposure to the
temperature that maximally induces Hsp70 in adults (1 hr at 36◦C), after exposure
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to a near-lethal temperature (1 hr at 38.5◦C), and where flies were first pretreated
at 36◦C, rested for 1 hr, and then exposed to the higher stress.

METHODS

We characterized the effects of varying Hsp70 expression and heat treatments on
adults in a pair of strains engineered to vary inhsp70 copy number and, conse-
quently, expression of Hsp70. Welteet al. (1993) described the construction of the
transgenic strains via unequal homologous recombination. The extra-copy strain
contains a pair of transgene constructs, each a composite of threehsp70 genes, an
eye color marker,whs , and flanking yeast recombination targets and P-elements.
The excision strain shares the same chromosomal site of transgene integration
and flanking elements but lacks thehsp70 transgenes and eye color marker. The
procedure that duplicates the initial insert in one chromatid simultaneously deletes
the insert in another, thereby producing two strains varying in copy number but
possessing similar genetic backgrounds (details given by Federet al., 1996). One
member of the pair, the extra-copy strain, has 12hsp70 transgenes in addition to
its 10 natural copies (Ish-Horowiczet al., 1979). The other member, the excision
strain, has only the 10 natural copies but shares the transgene integration site with
the extra-copy strain and, thus, is a control for insertional mutagenesis. For the
strains used here, the site of transgene integration mapped to chromosome II in
one strain and to chromosome III in the other.

Preliminary assays verified that the lines containing the insertedhsp70 gene
copies (strains TraII and TraIII) still produced two to three times as much Hsp70
as did lines where the genes were excised (CisII and CisIII). Pairs of flies were
transferred to microtubes with 10µl phosphate-buffered saline and treated for 1 hr
at 36◦C and 1 hr at 25◦C, which induces maximal levels of expression of Hsp70 in
D. melanogaster (Krebs and Feder, 1997a; Krebs, 1999). All flies were first frozen
in liquid nitrogen and stored at−80◦C prior to the ELISAs. Six or seven pairs per
line were analyzed by an enzyme linked immunosorbent assay (ELISA), which
has been described elsewhere (Welteet al., 1993; Federet al., 1996; Krebs and
Feder, 1997a).

The enzymes assayed for specific activity were lactate dehydrogenase (LDH),
which catalyzes pyruvate to lactate in a reaction that recovers NAD from NADH,
and adult alcohol dehydrogenase (ADH), which catalyzes ethanol to acetaldehyde
while reducing NAD. Before analysis of the specific activity for LDH and ADH,
we exposed adults to one of a series of temperature treatments: either no treatment,
pretreatment only (1 hr at 36◦C and 1 hr of recovery at 25◦C), heat shock only
(1 hr at 38.5◦C), or pretreatment followed by heat shock. For the ADH study,
the recovery time after stress was also varied among groups as 1, 2, or 3 hr. All
treatments were performed in water baths accurate to 0.1◦C, with flies housed in
inverted glass vials under saturated humidity. Subsequent to treatment, pairs of flies
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were transferred to 1.5-ml cryotubes, quick-frozen in liquid nitrogen, and stored
at−80◦C. Assays of specific activity of LDH and ADH were made for pairs of
flies.

For LDH determination, flies were homogenized in a 320-µl grinding buffer
(100 mMHepes, 10 mM KCl, 5 mM EGTA, 0.1 mM DTT) on ice and then cen-
trifuged for 10 min at 13,000 rpm and 4◦C. In triplicate, 60 ml of this homogenate
was mixed with 10µl of assay buffer (100 mMHepes, 10 mM KCl, 5 mMMgCl2,
3.8 mMADP), 20µl of 0.4 mMNADH, and 10µl of 15 mM pyruvate (Pierce and
Crawford, 1994). For ADH, flies were ground in 320µl of 0.1 M Tris–HCl, and
60µl of the homogenate was mixed with 30µl of 4 mM NAD+ and 10µl of 1M
ethanol, also in triplicate. The reaction was run at 30◦C for 30 min (McKechnie
and Geer, 1984). Specific activity was recorded asVmax by recording the change
in absorbance in a Molecular Devices thermomax plate reader at 340 nm and is
expressed as mOD340 ·min−1.

RESULTS

The transgenic manipulation to increase Hsp70 expression did not affect LDH or
ADH concentrations in the absence of stress. Also, when a heat stress was ap-
plied (1 hr at 38.5◦C), specific activity levels of LDH remained similar to those of
untreated individuals in all strains (Fig. 1). Thus heat did not denature the LDH.
However, specific activity declined in extra-copy individuals exposed to pretreat-
ment alone, which is a mild stress that induces high Hsp expression. Strain dif-
ferences were significant where individuals received no further stress (P < 0.05,
as analyzed by strain× treatment interactions in ANOVA or byt tests comparing
differences between each group).

Stress exposures produced a different picture when a heat-sensitive enzyme
was analyzed; ADH levels fell after the heat shock, exposure to 38.5◦C for 1 hr,
and this effect predominated in females, in which the specific activity was always
much lower than in males (Fig. 2). Like the results for LDH, the high Hsp70
levels induced by pretreatment further reduced the specific activity of ADH in
females, but in contrast, enzyme activity in the males changed little (strain×
gender interaction,P < 0.001). Specific activity in females dropped by a third
after heat shock and then largely recovered over a 3-hr period in the excision
lines but not in the extra-copy lines (for expression 3 hr after heat shock: effect of
gender,P < 0.001; strain×gender,P < 0.05). Both males and females recovered
activity faster if pretreated than if exposed directly to 38.5◦C without pretreatment,
even though the decline in activity from pretreatment and heat shock exceeded the
loss from heat shock alone. Females of the extra-copy strain failed to return ADH
activity to control levels within the short duration of the study, whether pretreated
(P < 0.05) or not (P < 0.01). ADH activity of males after 3 hr, however, did not
differ significantly from untreated levels.
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Fig. 1. The specific activity of lactate dehydrogenase (LDH) inD.melanogasteradults from the
extra-hsp70-copy strains and the strains from which the inserted copies were excised. Activity
of LDH declined only when flies of the extra-copy strain were treated to induce maximal
Hsp70 expression (after pretreatment) without any subsequent heat shock. Variation among
lines in other treatment groups, including increased heat, was not significant. Sample sizes are
indicated above each bar (±1 SE).

DISCUSSION

Thermal stress causes many physiological changes (Huey and Bennett, 1990;
Feder, 1996), of which one is expression of chaperones like Hsp70 that assist cells
to repair damage after protein denaturation and aggregation. Organisms require
this additional Hsp70 expression to survive stress, but the amount produced must
balance the beneficial and negative consequences that occur when these binding
proteins occur in high concentrations (Krebs and Feder, 1998a). Here we found that
overexpression of Hsp70 can reduce the specific activity of normal cell enzymes
like ADH and LDH.
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Fig. 2. The specific activity of alcohol dehydrogenase (ADH) inD.melanogastermales (A) and
females (B) from the extra-hsp70-copy strains and the strains from which the added copies were
excised. Assays are shown for a time course of treatments: flies that were untreated (controls),
pretreated at 36◦C to induce high Hsp70 expression, and heat-shocked at 38.5◦C for 1 hr, either
not pretreated or pretreated and then heat-shocked before they were allowed to recover at 25◦C
for 1, 2, or 3 hr. Almost all standard errors were small and ranged between 1 and 2 mOD/min;
the exception was males pretreated and heat-shocked without recovery. On average, each of the
36 means was derived from about 10 replicates: range,N = 5 to 22 across each combination
of gender, strain, and treatment.



P1: FRS/FZI P2: FVI/FGG QC: FPX

Biochemical Genetics [bigi] PPO49-291728 April 12, 2001 18:27 Style file version Nov. 19th, 1999

Previously, costs were found at a phenotypic level, as changes in cell growth or
survival: high concentrations of Hsp70 and other 70-kD family members are suffi-
cient to raise mortality (Federet al., 1992; Krebs and Feder, 1997a), inhibit protein
secretion (Dorneret al., 1988, 1992), and promote protein aggregationin vitro,
(M. J. Borrelli and J. Lepock, personal communication). Therefore, while raising
Hsp70 levels improves stress tolerance (Federet al., 1996; Hightoweret al., 1999),
these fitness benefits after stress may trade off with costs in its absence (Krebs and
Feder, 1997b). As a consequence, some natural populations from polluted envi-
ronments may express lesser amounts of Hsp’s than will individuals from clean
habitats, such as snails (Tomanek and Somero, 1999) and soil arthropods (Köhler
et al., 2000).

Evidence for a mechanism, however, is weak, although two hypotheses can
explain fitness decline where a protein is overexpressed. First is an increase in
energetic expenditure (Koehn and Bayne, 1989; Koehn, 1991; Hawkins, 1991).
Predictions generated from this hypothesis of metabolic cost, for example, lower
fitness when an organism overexpresses a benign protein, are not supported for
Drosophila (Krebs and Feder, 1998b). The second hypothesis is for an interference
model, a biochemical cost; high concentrations of Hsp70 may preferentially bind
denatured proteins, but when none are available, binding may occur with nascent
peptides in the cell. If true, the specific activity of randomly assayed enzymes from
homogenates will be lower in the presence of high quantities of Hsp70 than when
Hsp70 is at normal or lower levels. This prediction, although an indirect test of
binding, was met.

Support for an interference model of costs with Hsp70 overexpression derives
from a second predicted effect. Given that pretreatment alone reduces the activity
of a heat-tolerant enzyme, a strong stress that can denature some cellular proteins
should return the activity of this enzyme to normal levels. After exposure to the
higher stress, LDH activity returned to normal levels even in extra-copy flies.
Direct exposure to a high stress alone, however, should not reduce enzyme activity,
because Hsp70 inD. melanogaster is poorly induced at temperatures above 37◦C
(Krebs and Feder, 1997a).

Two other studies obtained results that also are consistent with biochemical
costs from Hsp expression. First, Suet al. (1999) observed a reduced release of
LDH in heart myoblasts that overexpress Hsc70, a protein similar to Hsp70 in
structure, but it is not stress regulated. Second, Heckathornet al. (1996a,b) pro-
posed that allocation of resources under stress sets a conflict between amino acids
required for Hsp’s and other protein synthesis when nutrients are especially lim-
iting. When assaying corn over many hours, they found that rubisco and pepcase
levels fell after heat shock and that the effects increased under low nitrogen. How-
ever, these results can occur either because the cell actively degraded protein to
satisfy nutrient need, the explanation proposed, or because the protein was initially,
and possibly inappropriately, bound by the Hsp’s and was consequently degraded.



P1: FRS/FZI P2: FVI/FGG QC: FPX

Biochemical Genetics [bigi] PPO49-291728 April 12, 2001 18:27 Style file version Nov. 19th, 1999

One function of Hsp’s is to target damaged proteins for the ubiquitin degradation
pathway (Niedzwiecki and Fleming, 1993; Luderset al., 2000).

Because Hsp’s can affect cells in different ways, definitively identifying the
predominant mechanism that explains the recovery of enzyme activity is difficult
in whole organisms. We suggest that Hsp70, when superabundant, reduces the
specific activity of LDH and ADH directly by binding them, because activity
usually recovers rapidly in lines where expression is normal. Activity recovered
fully after a severe stress in all groups except for ADH in females of the extra-
copy lines. No explanation for this exception is apparent. However, in all groups
including this one, activity for flies pretreated and stressed equaled or exceeded
that of flies heat-shocked without pretreatment, confirming the requirement for
the heat shock response to protect enzyme activity and cell function. New enzyme
synthesis cannot explain this recovery, because a coordinate depression in the
synthesis of proteins other than Hsp’s occurs during heat shock inDrosophila.
Recovery of synthesis requires 2–3 hrs after a stress abates (DiDomenicoet al.,
1982; Solomonet al., 1991).

In summary, our results add to the growing work on the evolutionary conse-
quences of variation in Hsp70 and inducible thermotolerance by providing addi-
tional evidence that the heat shock response has costs, and suggests that excessive
Hsp70 levels can interfere with normal cell function. Raising Hsp70 levels is an
important part of thermotolerance, but fitness benefits after stress may trade off
with costs of induction when stress levels are low.
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