Cleveland State University EngagedScholarship@CSU

Undergraduate Research Posters 2014

Undergraduate Research Posters

9-4-2014

Modeling and Parameter Estimation of an Actuator for Prosthetic Joints

Bartholomew J. Brown Cleveland State University

Katherine Florek *Cleveland State University*

Hanz Richter Cleveland State University, h.richter@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2014 Part of the Engineering Commons How does access to this work benefit you? Let us know!

Recommended Citation

Brown, Bartholomew J.; Florek, Katherine; and Richter, Hanz, "Modeling and Parameter Estimation of an Actuator for Prosthetic Joints" (2014). *Undergraduate Research Posters* 2014. 6. https://engagedscholarship.csuohio.edu/u_poster_2014/6

This Article is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2014 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

This digital edition was prepared by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University.

Modeling and Parameter Estimation of an Actuator for Prosthetic Joints

Washkewicz College of Engineering

Student Researchers: Bartholomew J. Brown and Katherine Florek

Faculty Advisor: Hanz Richter

<u>Abstract</u>

A mathematical model was developed for a linear actuator to be used in a powered leg prosthesis. The model consists of a differential equation relating motor voltage, external force and velocity. All model parameters were known from manufacturer's data, except inertia and friction. A numerical simulation was prepared to estimate these parameters from experimental data. Experiments were conducted and a numerical search was performed to arrive at parameter values that closely fit the data. The mathematical model will be used in subsequent control development work.