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BLENDED BIOGEOGRAPHY-BASED OPTIMIZATION 
FOR CONSTRAINED OPTIMIZATION 

Haiping Ma, Shaoxing University 

Dan Simon, Cleveland State University 

ABSTRACT  

Biogeography-based optimization (BBO) is a new evolutionary optimization method that is based on 
the science of biogeography. We propose two extensions to BBO. First, we propose a blended migration 
operator. Benchmark results show that blended BRO outperforms standard BBO. Second, we employ 
blended BRO to solve constrained optimization problems. Constraints are handled by modifying the 
BRO immigration and emigration procedures. The approach that we use does not require any additional 
tuning parameters beyond those that are required for unconstrained problems. The constrained 
blended BRO algorithm is compared with solutions based on a stud genetic algorithm (SGA) and 
standard particle swarm optimization 2007 (SPSO 07). The numerical results demonstrate that 
constrained blended BBO outperforms SGA and performs similarly to SPSO 07 for constrained single-
objective optimization problems. 

1. Introduction 

Many optimization problems in science and engineering have 
constraints (Schwefel, 1995; Runarsson and Yao, 2000) which can 
be linear or nonlinear. Evolutionary algorithms (EAs) have been 
successful for a wide range of constrained optimization problems 
(Coello, 2002; Zbigniew and Marc, 1996). In the last few years, for 
example, evolutionary strategy (ES) (McTavish and Restrepo, 
2008; Mezura-Montes and Coello, 2005), genetic algorithms (GAs) 
(Deb, 2000; Eshelman and Schaffer, 1993; Yao et aI., 1999), 
differential evolution (DE) (Huang et aL, 2006; Mezura-Montes 
and Palomeque-Oritiz, 2009; Zielinske and Laur, 2006), and 
particle swarm optimization (PSO) (Clerc and Kennedy, 2002; 
Eberhart and Shi, 2004), have arisen as attractive optimization 
algorithms due to their competitive results. 

Biogeography-based optimization (BBO) (Simon, 2008) is a 
new evolutionary algorithm for global optimization that was 
introduced in 2008. It is modeled after the immigration and 
emigration of species between habitats. The application of this 
idea to optimization allows information sharing between candi-
date solutions. One distinctive feature of BBO is that the original 
population is not discarded after each generation. It is rather 
modified by migration. Another distinctive feature is that, for each 
generation, BBO uses the fitness of each solution to determine its 
immigration and emigration rate. BBO has demonstrated good 
performance on various unconstrained benchmark functions 
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(Du et aI., 2009; Ma et aI., 2009; Simon, 2008). It has also been 
applied to real-world optimization problems, including sensor 
selection (Simon, 2008), power system optimization (Rarick et aL, 
2009), groundwater detection (Kundra et aL, 2009), and satellite 
image classification (Panchal et aL, 2009). See Ref. Gardner and 
Simon (2009) for a web-based BBO graphical user interface. 

This paper proposes two extensions to BBO. First, we take the 
blended crossover operator of the GA (MOhlenbein and Schlier-
kamp-Voosen, 1993) and use it to derive a blended migration 
operator for BBO. We show that blended BBO generally outper-
forms standard BBO on a set of benchmark problems. Second, we 
generalize BBO to constrained optimization problems. BBO has 
been used for unconstrained optimization, but up to now there 
have not been any reports in the literature of its use for 
constrained optimization. In this paper blended BBO is used for 
the optimization of constrained benchmark problems. 

The most common approach to deal with constraints is the use 
of penalty functions. However, penalty functions have several 
limitations and problems which are difficult to deal with (Smith 
and Coit, 1997; Yeniay, 2005), including the difficulty of tuning 
the penalty parameters. We use a recently-developed method for 
constrained optimization, based on the superiority of feasible 
solutions over infeasible solutions, proposed by Deb (2000). Its 
performance has been demonstrated in Zielinske and Laur (2006) 
which deals with constraints in differential evolution. In this 
paper we handle the constraints by modifying the BBO migration 
procedure between solutions based on their feasibility. 

The remainder of this paper is organized as follows. Section 2 
reviews the BBO algorithm and proposes blended BBO. Section 3 
describes the constraint -handling method for single-objective 
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optimization problems and shows how it can be applied to BBO. 
Simulation results and performance analysis of the blended BBD 
algorithms are presented in Section 4, and conclusions and 
directions for future investigations are given in Section 5. A 
preliminary version of this paper was presented in (Ma and 
Simon, 2010). 

2. Blended biogeography-based optimization (8-B80) 

BBD is a new population-based global optimization algorithm 
(Simon, 2008). As its name implies, BBD is based on the study of the 
distribution of species over time and space. This study, which is a 
subset of biology, is called biogeography (Lomolino et al., 2009; 
Whittaker, 1998). Suppose that we have a global optimization 
problem and a population of candidate solutions (individuals). Each 
individual is considered to be analogous to a habitat and is 
characterized by a habitat suitability index (HSI). The value of HSI, 
which is the same as fitness in other population-based optimization 
algorithms, and which measures the goodness of the solution, 
depends on many features of the habitat. A habitat with a high HSI is 
a good solution, and a habitat with a low HSI is a poor solution. 
High-HSI solutions tend to share their features with low-HSI 
solutions by emigrating solution features to other habitats. Low-
HSI solutions accept a lot of new features from high-HSI solutions by 
immigration from other habitats. Immigration and emigration tend 
to improve the solutions and thus evolve a solution to the 
optimization problem. Namely, the BBO algorithm views the value 
of HSI as the objective function, and the evolutionary procedure of 
BBO is to determine the solutions which maximize the HSI by 
immigrating and emigrating features of the habitats. In BBO, there 
are two main operators: migration (which includes both emigration 
and immigration) and mutation. Several options can be used for 
migration and mutation, but one option for implementing migration 
is described in Section 2.1. We introduce a blended migration 
mechanism to BBO, which is called blended BBO. One option for 
implementing the mutation operator is described in Section 2.2. 

2.1. Blended migration 

In biogeography, migration is the movement of species 
between different habitats. In BBO, migration is a probabilistic 
operator that adjusts each solution Hi by sharing features between 
solutions. In the original BBO paper (Simon, 2008), the probability 
that the solution Hi is selected as the immigrating habitat is 
proportional to its immigration rate Ai, and the probability that 
the solution Hj is selected as the emigrating habitat is propor-
tional to the emigration rate flj. Migration can be expressed as 

(1) 

In biogeography, an SIV is a suitability index variable which 
characterizes the habitability of a habitat (Simon, 2008); that is, the 
HSI is determined by many SIVs. In BBO, an SIV is a solution feature, 
equivalent to a gene in a GA. In other words, an SIV is a search 
variable and the set of all possible SIVs is the search space from which 
an optimal solution will be detennined. Eq. (1) means that a solution 
feature of solution Hi is replaced by a feature from solution Hj • 

In BBO, each Hi has its own immigration rate Ai and emigration 
rate fli. A good solution has relatively high fl and low A, while the 
converse is true for a poor solution. The immigration rate and the 
emigration rate are functions of the fitness of the solution. They 
can be calculated as 

_E(k(i») (2)fll - n' 

where I is the maximum possible immigration rate; E is the 
maximum possible emigration rate; k(i) is the fitness rank of 
the ith individual (1 is worst and n is best); and n is the number of 
candidate solutions in the population. I and E are often set 
equal to 1, or slightly less than 1. Note that this migration 
function is a linear curve, but in general it might be a more 
complicated curve. 

We propose a new migration operator called blended migra-
tion, which is a generalization of the standard BBO migration 
operator, and which is motivated by blended crossover in GAs. 
Blended crossover is frequently used in GAs (Miihlenbein and 
Schlierkamp-Voosen, 1993). In blended crossover, instead of 
copying a parent's gene to a child chromosome, the offspring 
are obtained by combining parents' genes. In blended migration in 
BBO, a solution feature of solution Hi is not simply replaced by a 
feature from solution Hj • Instead, a new solution feature in a BBO 
solution is comprised of two components: the migration of a 
feature from another solution, and the migration of a feature from 
itself. Blended migration is defined as 

H,(SIV)~ aH,(SIV)+(1-a)H/SIV), (3) 

where ex is a real number between 0 and 1. It could be random, or 
deterministic, or it could be proportional to the relative fitness of 
the solutions Hi and Hj • Eq. (3) means that the new solution 
feature (SIV) of Hi comes from a combination of its own SIV and 
the emigrating solution's SIV. 

The core idea of the proposed blended migration operator is 
based on two considerations. First, the operator is easily used 
with continuous-domain optimization problems. Second, blended 
combination operators have been widely and successfully used 
in other population-based optimization algorithms. Blended 
migration is an attractive BBO modification from a couple of 
different viewpoints. On the one hand, good solutions will be 
less likely to be degraded due to migration. On the other hand, 
poor solutions can still accept a lot of new features from good 
solutions. That is, if solution Hi is much more fit than solution Hj , 

it would make sense to have ex close to 1; but if solution Hi is much 
less fit than the solution Hj , it would make sense to have ex close 
to o. Blended migration is similar to the blended crossover 
approach of the breeder GA (Miihlenbein and Schlierkamp-
Voosen, 1993) and ES (McTavish and Restrepo, 2008) in which 
both of the parents can contribute characteristics to a single 
feature of an offspring. 

2.2. Mutation 

Mutation is a probabilistic operator that randomly modifies a 
solution's SIV based on its a priori probability of existence. 
Namely, a randomly generated SIV replaces a selected SIV in the 
solution Hi according to a mutation probability. Although 
mutation is not the most important factor in BBO, the improve-
ment of solutions is obtained by perturbing the solution after the 
migration operation. For classic BBO, the mutation probability is 
inversely proportional to the solution probability (Simon, 2008), 
and is defined by 

(4) 

where mmax is the user-defined maximum mutation probability, 
Pmax = argmaxPi, i=l, ... ,n (n is population size), and g is the 
solution probability. For more details see Simon (2008). This 
mutation scheme tends to increase diversity among the population. 



Create a random set ofhabitats (population) HI. H" .... H.;  
Compute HSI values;  
While the halting criterion is not satisfied do  

Compute immigration rate A. and emigration rate 11 for each habitat based on HSI; 
For each habitat (solution) 

For each SIV (solution feature)  
Select habitat Hi with probability oc A;;  
IfHi is selected then  

Select Hj with probability oc 1-';; 
IfHj is selected then 

H.{SIV) <- txH,{SIV) + (1-a.)H;{SIV); 
End if 

End if 
Select ll;(SIV) based on mutation probability mi; 
IfH.{SIV) is selected then 

Replace H.{SIV) with a randomly generated SIV; 
End if  

Next for  
Recompute HSI values;  

Next for 
End while 

Fig. 1. BBG algorithm, where C1:=O for standard BBG, and c£ > 0 for blended BBG. 

The BBD algorithm, generalized for blended migration, is 
shown in Fig. 1. If cx= 0 in Fig. 1, then we have the standard BBD 
algorithm. If ex is random, or is proportional to relative solution 
fitnesses, then we have blended BBO. 

3. Constrained optimization 

Constrained optimization problems frequently arise in every 
field of science, engineering, and industry. Without loss of 
generality, the single-objective constrained optimization problem 
can be formalized as follows: 

find x to minimize f(x) 

such that gj(x):::;; 0 for i = 1,."", q 
and hj(x) = 0 for j = q+ 1,"" ",m 

where x=(xt, X2, """' xn) is the vector of decision variables and 
each Xi is bounded by lower and upper limits (Li:::;; Xi:::;; Ua. The set 
of all decision variables which satisfy the constraints of the 
problem is called the feasible region. q is the number of inequality 
constraints and m - q is the number of equality constraints. Note 
that constraints could be linear or nonlinear. The objective of an 
optimization algorithm is to minimize the cost functionltx), while 
at the same time satisfying the constraints gi(X) and hi(x). Among 
the various constraint-handling methods, the use of penalty 
functions is the most common technique (Smith and (oit, 1997). 
In this paper we incorporate into BBQ a method for constraint-
handling that is based on feasibility rules (Deb, 2000), which have 
demonstrated promising performance in dealing with constraints. 
We incorporate this constraint-handling technique into our 
blended BBQ algorithm as described below. 

During the migration procedure, each candidate solution has 
been modified. We then check each solution to see if it is better 
than the solution of its original version (i.e., its version before 
migration). The modified solution will enter the population of the 
next generation only if it is better than its previous version, 
otherwise the previous solution will enter the population of the 

next generation. Note that this is similar to a (,u+.:t) ES where the 
next generation comes from both parents and children. 

For constrained problems, when a candidate solution HI is 
compared to a candidate solution H 2 , solution HI is considered 
better if: 

1) both solutions are feasible, but HI has a cost that is less than or 
equal to that of H2 ; or, 

2) HI is feasible and H2 is not; or, 
3) both solutions are infeasible, but HI has a smaller overall 

constraint violation. 

Note that no additional tuning parameters beyond those 
that are required for unconstrained problems are needed for 
this constraint-handling technique. For unconstrained problems, 
this method is identical to the original unconstrained BBQ 
algorithm. 

4. Simulation results 

In this section we look at the performance of blended BBQ 
based on the constraint-handling approach discussed above. A 
representative set of benchmark functions with constraints, 
including linear, nonlinear, and polynomial constraints, have 
been used for performance verification of the proposed approach. 
These functions are briefly summarized in Table 1. A more 
detailed description of these functions can be found in the 
literature Liang et al. (2005). 

4.1. Blended BBD performance 

In our first experiment we compare the original BBQ with the 
blended BBQ (which we call B-BBQ) to solve the constrained 
benchmark functions. The aim of this experiment is to inves-
tigate how BBQ solves constrained problems and how blended 
migration affects BBQ optimization performance for constrained 



Table 1 
Benchmark problems. LI and NJ are the number of linear and nonlinear inequality 
constraints, LE and NE are the number of linear and nonlinear equality constraints, 
D is the number of dimensions, and A is the number of active constraints at the 
solution. 

Function D Function type L, N, L, N, A 

gOl 13 Quadratic 9 0 0 0 6 
g02 20 Nonlinear 0 2 0 0 
g03 10 Polynomial 0 0 0 
g04 5 Quadratic 0 6 0 0 2 
g05 4 Cubic 2 0 0 3 3 
g06 2 Cubic 0 2 0 0 2 
g07 10 Quadratic 3 5 0 0 6 
g08 2 Nonlinear 0 2 0 0 0 
g09 7 Polynomial 0 4 0 0 2 
g10 8 Linear 3 3 0 0 6 
g11 2 Quadratic 0 0 0 
g12 3 Quadratic 0 0 0 0 
g13 5 Nonlinear 0 0 0 3 3 
g14 10 Nonlinear 0 0 3 0 3 
g15 3 Quadratic 0 0 2 
g16 5 Nonlinear 4 34 0 0 4 
g17 6 Nonlinear 0 0 0 4 4 
g18 9 Quadratic 0 13 0 0 6 
g19 15 Nonlinear 0 5 0 0 0 
g20 24 Linear 0 6 2 12 16 
g21 7 Linear 0 0 5 6 
g22 22 Linear 0 8 11 19 
g23 9 Linear 0 2 3 6 
g24 2 Linear 0 2 0 0 2 

problems. For both BBD methods, the following parameters have 
to be examined: number of habitats (population size), maximum 
migration rates, mutation rate, and migration curve shapes. In Ma 
(2010) these parameters have been discussed in detailed, and we 
have obtained a reasonable set of tuning parameters. So we have 
not made any effort in finding the best parameter settings in this 
paper. For this experiment, the parameters used in the two 
methods are the same, which are recommended as follows: 
population size of 50, maximum immigration rate and maximum 
emigration rate of 1, and maximum mutation rate of 0.01. In 
addition, we use linear migration curves as suggested in Simon 
(200S). For maximum number of fitness function evaluations 
(Max_NFFEs), we use 50,000. 

Moreover, in our experiments, each function is optimized over 
25 independent runs. We also use the same set of 25 initial 
random populations to evaluate the algorithms, and we set the 
parameter ex=O, 0.5, or O.S in Eq. (3) to investigate its influence on 
B-BBO performance (when ex=O, B-BBO reduces to standard BBO). 
In addition, we mention that in the original BBO paper a discrete 
version of BBO was used to minimize benchmark functions. In this 
paper we adopt a continuous version of BBO. Beside the best, 
mean, and worst value of benchmark functions, two performance 
criteria are selected from the literature (Liang et al. , 2005) to 
evaluate the performance of the algorithms. 

1) Number of feasible runs (NF): The number of feasible runs is 
the number of runs during which at least one feasible solution 
is found before the Max_NFFEs condition terminates the run. 

2) Number of successful runs (NS): The number of successful runs 
is the number of runs during which the algorithm finds a 
feasible solution x satisfying f(x)-f(x*):::;;O.OOOl before the 
Ma~NFFEs condition terminates the run. 

In addition, in order to conclude that one method is "better" 
than another, we consider all three performance criteria. 

1) If the algorithm has a higher NS than another, then it is better. 
2) If two algorithms have the same NS, then the one with the 

higher NF is better. 
3) If two algorithms have the same NS and NF, then the one with 

mean objective function value closer to the best known 
solution is better. 

Tables 2 and 3 summarize the B-BBO performance on the 
constrained benchmark functions. We observe that, for most of 
the functions, B-BBO with three different values of ex gives good 
performance except function g20, g21, and g22, for which no 
feasible solution at all could be found. For 9 (gOl, g02, g03, g05, 
g06, g08, g09, g16, g17) of the 24 functions, B-BBO (a~0.5) has a 
higher NS than BBO (a~O) and B-BBO (a~0.8). For 3 functions 
(g10, g15, g23), the three algorithms have the same NS, but B-BBO 
(a~0.5) has the higher NF. For 3 functions (gll, g18, g24), they all 
have the same NS and NF, but B-BBO (ex=O.5) has the mean values 
closer to the best known solutions. 

In summary, B-BBO (ex=O.5) performs the best on 15 functions, 
B-BBO (a~0.8) performs the best on 3 functions (g07, g12, g19), 
and BBO (ex= 0) performs the best for 1 function (g13). For 
function g14, all three algorithms attain the global optimum every 
run, and for function g04, both B-BBO (a~O.5) and B-BBO (a~0.8) 
attain the global optimum every run. 

From Table 3 we also obtain statistically significant differences 
of two pairs of BBOs (BBO (a~O) vs. B-BBO (a~O.5), and BBO 
(ex=O) vs. B-BBO (ex=O.S)) based on the p value, which is the 
probability that the two sets of data come from the same 
distribution. From p value comparison between BBO (ex=O) vs. 
B-BBO (a~0.5), and BBO (a~O) vs. B-BBO (a~0.8), we find that 
there are fourteen p values smaller than 0.05 (which is often used 
as the significance level or critical p value) for BBO (ex=O) vs. B-BBO 
(ex=O.5), and there are thirteen p values smaller than 0.05 for 
BBO (ex=O) vs. B-BBO (ex=O.S). Based on this result, the probability 
that the results ofBBO (a~O), B-BBO (a~0.5), and B-BBO (a~0.8) 
are from the same distribution is low. It indicates that the value of 
ex is influential on BBO performance. B-BBO with ex > 0 generally 
outperforms BBO (ex=O), which means that blended migration can 
significantly improve the optimization ability of BBO. Also, B-BBO 
(ex=O.5) is better than B-BBO (ex=O.S) which indicates that when a 
new solution feature is contributed equally from itself and the 
selected emigrating solution, B-BBO performs best. Lastly, we note 
that the successfully optimized benchmark functions include 
quadratic, cubic, nonlinear, polynomial, and linear objective 
functions, thus the type of objective function is not of importance 
for successful optimization for B-BBO. 

4.2. Comparison between BBD and other EAs 

The next experiment compares BBO against other popular 
evolutionary algorithms. We choose to compare the proposed 
B-BBO with stud eA (which we call SeA) (Khatib and Fleming, 
1995) and standard PSO 2007. We compare with an SeA because 
the SeA is an improvement of the classic eA which uses the best 
individual at each generation for crossover. We compare with PSO 
because it often offers good performance and is itself a relatively 
new evolutionary algorithm. We use the current standard PSO 
(SPSO 07) (Bratton and Kennedy, 2007), obtainable from Particle 
Swarm Central (Particle Swarm Central). Here, the proposed 
constraint-handling method is adopted in an identical way, as 
described in Section 3, for B-BBO, SeA, and SPSO 07. 

The parameters used in B-BBO are the same as those described 
in the previous section, and ex=O.5. For the SeA we use real 
coding, roulette wheel selection, single point crossover with a 
crossover probability of 1, and random mutation with a mutation 



-------------------- --------------------

Table 2 
Constrained optimization results obtained by BBG (Ct:=O), B-BBO (Ct:=O.5), and B-BBO (Ct:=O.8) on 24 constrained functions over 25 independent runs. The table shows the 
best, mean, and worst values. Best results for each benchmark function are shown in boldface. 

Fun. Best known BED (a=O) B-BBO (a=O.5) B-BBO (a=O.8) 
solution 

Best Mean Worst Bes t Mean Worst Best Mean Worst 

gOl -15.000 -15.000 -14.982 -14.791 -15.000 -14.998 -14.991 -15.000 -14.987 -14.842  
g02 -0.803619 -0.803619 -0.792461 -0.783462 -0.803619 -0.802154 -0.801924 -0.803619 -0.798445 -0.781189  
g03 -1.0005 -1.0005 -1.0000 -0.9992 -1.0005 -1.0004 -1.0001 -1.0005 -1.0000 -0.9997  
g04 -30665.54 -30665.54 -30665.44 -30665.17 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54  
g05 5126.497 5126.497 5127.048 5129.993 5126.497 5127.046 5129.913 5126.497 5127.053 5129.391  
g06 -6961.814 -6961.814 -6957.078 -6942.652 -6961.814 -6961.005 -6960.874 -6961.814 -6959.034 -6957.391  
g07 24.306 26.272 30.547 34.119 24.306 27.051 35.574 24.306 26.011 28.562  
g08 -0.095825 -0.095825 -0.094256 -0.090063 -0.095825 -0.095825 -0.095825 -0.095825 -0.090836 -0.089174  
g09 680.630 680.630 688.637 699.758 680.630 680.677 681328 680.630 685.647 698.027  
g10 7049.248 7049.248 7236.683 7377.902 7049.248 7057.369 7139.645 7049.248 7084.763 7147.586  
gl1 0.74990 0.74990 0.74992 0.74994 0.74990 0.74990 0.74990 0.74990 0.74993 0.74997  
g12 -1.00000 -1.00000 -0.99514 -0.98725 -1.000 -0.99994 -0.99991 -1.00000 -1.00000 -1.00000  
g13 0.053942 0.053942 0.054264 0.054931 0.053942 0.055046 0.056891 0.053942 0.054802 0.055284  
g14 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765  
g15 961.715 961.715 968.648 972.114 961.715 962.627 965.736 961.715 963.683 967.728  
g16 -1.90516 -1.90516 -1.90264 -1.90017 -1.90516 -1.90511 -1.90508 -1.90516 -1.90443 -1.90382  
g17 8853.540 8853.540 8854.231 8855.703 8853.540 8853.600 8853.692 8853.540 8854.867 8855.376  
g18 -0.866025 -0.866025 -0.862067 -0.857428 -0.866025 -0.865521 -0.863036 -0.866025 -0.863358 -0.859545  
g19 32.656 32.656 32.661 32.678 32.656 32.659 32.665 32.656 32.656 32.656  
g20 0.204979  
g21 193.725  
g22 236.431  
g23 -400.055 -389.748 -381.794 -362.830 -396.034 -391.319 -384.183 -391.653 -378.407 -348.958  
g24 -5.508013 -5.508013 -5.508008 -5.508001 -5.508013 -5.508013 -5.508013 -5.508013 -5.508012 -5.508010  

Table 3 
Constrained optimization results obtained by BBO and B-BBO on 24 constrained functions over 25 independent runs. NF and NS, respectively, stand for number of feasible 
runs and number of successful runs. "1 vs. 2" means "BBO (Ct:=0) vs. B-BBO (Ct:=0.5)" and "1 vs. 3" means "BBO (Ct:=0) vs. B-BBO (Ct:=0.8)." P Values for each benchmark give 
the probability that the two sets of results came from the same distribution. Best results are shown in boldface. 

Fun. NF/NS 1 vs. 2 1 vs. 3 Fun. NF/NS 1 vs. 2 1 vs. 3 

BBO (Ct:=0) B-BBO (Ct:=0.5) B-BBO (Ct:=0.8) P value p value BBO (Ct:=0) B-BBO (Ct:=0.5) B-BBO (Ct:=0.8) P value p value 

gOl 25/14 25/20 25/18 5.23E-03 7.19E-03 g13 21/14 13/04 09/03 2.1E-03 9.5E-04 
g02 25/12 25/19 25/14 0.017 0.32 g14 25/25 25/25 25/25 0.66 0.58 
g03 25/10 25/20 25/13 0.34 0.35 g15 12/06 14/06 11/06 0.42 0.38 
g04 25/19 25/25 25/25 1.25E-05 4.89E-05 g16 25/12 25/24 25/21 2.9E-04 6.84E-04 
g05 17/06 20/14 12/02 0.17 0.19 g17 08/04 15/12 07/03 7.2E-03 0.31 
g06 20/08 25/14 25/12 1.34E-03 3.81E-03 g18 25/18 25/18 25/18 0.14 8.9E-03 
g07 04/00 08/02 09/05 0.06 0.05 g19 25/21 25/16 25/25 0.04 2.1E-03 
g08 25/11 25/25 25/15 4.72E-04 1.83E-03 g20 00/00 00/00 00/00 
g09 20/02 25/24 25/17 8.92E-05 3.87E-04 g21 00/00 00/00 00/00 
glO 05/03 09/03 07/03 4.31 E - 03 0.02 g22 00/00 00/00 00/00 
gl1 25/25 25/25 25/25 1.36E-05 1.03E-03 g23 07/00 12/00 08/00 0.28 0.31 
g12 25/20 25/25 25/25 3.78E-04 1.85E-04 g24 25/25 25/25 25/25 4.17E-04 7.52E-04 

probability of 0.01. For SPSO 07, we use an inertia weight of O.S, a 
cognitive constant of 0.5, a social constant for swarm interaction 
of 1.0, and a social constant for neighborhood interaction of 1.0. 
Each algorithm has a population size of 50, and a maximum 
number of fitness function evaluations (Max_NFFEs) of 50,000. 
The results of solving the 24 constrained benchmark functions are 
given in Tables 4 and 5. All numbers are computed from 25 
independent runs. 

Tables 4 and 5 show the performance comparison on 24 
constrained benchmark functions for B-BBO, SGA, and SPSO 07. 
We see that for functions gOS, gll, g14, and g24, all three 
algorithms attain the global optimum, but for functions g20, g21, 
and g22 no feasible solution could be found by any of 
the algorithms. According to Tables 4 and 5 and the criteria 
discussed in Section 4.1, B-BBO performs the best on 7 of the 24 
benchmark functions, SGA performs the best on 2 functions, 
and SPSO 07 performs the best on 7 functions. The algorithms 

tied on the rest of the functions. The results indicate that B-BBO 
is significantly better than SGA, and performs similarly to SPSO 
07. If we adopt more state-of-the-art PSO and GA, they could 
probably perform better than the results shown here (Clerc 
and Kennedy, 2002; Eberhart and Shi, 2004; Zielinske and Laur, 
2006). However, the same could be said for recently proposed 
improvements for BBO (Du et al., 2009; Ergezer et al., 2009), and 
the purpose of these comparisons is to show that BBO is a 
competitive algorithm for solving constrained optimization 
problems. 

In addition, according to Tables 4 and 5, we find that 4 of the 
functions (gOS, gll, g12, g24) for which all 25 runs found 
the minimum have a rather low dimensionality of 2 or 3, with the 
exception being g14, for which the dimensionality is 10. We also 
see that the dimensionality of 2 of the functions (g20 and g22) 
with no successful runs is large (D ~ 20). We see that high 
dimensionality presents difficulties for EAs. 
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Table 4  
Results obtained by B-BBO (cx=O.5), SGA, and SPSO 07 on 24 constrained benchmark functions over 25 independent runs. The table shows the best, mean and worst values.  
Best results for each benchmark function are shown in boldface.  

Fun. Best known B-BBO SGA SPSO 07  
solution  

Best Mean Worst Best Mean Worst Best Mean Worst  

gal -15.000 -15.000 -14.998 -14.991 -15.000 -14.372 -14.011 -15.000 -14.997 -14.990  
g02 -0.803619 -0.803619 -0.802154 -0.801924 -0.803619 -0.76341 -0.70378 -0.803619 -0.803619 -0.803619  
g03 -1.0005 -1.0005 -1.0004 -1.0001 -1.0005 -0.99346 -0.99017 -1.0005 -0.9525 -0.9167  
g04 -30665.54 -30665.54 -30665.54 -30665.54 -30602.16 -30322.57 -30106.44 -30665.54 -30641.13 -30637.18  
gaS 5126.497 5126.497 5127.046 5129.913 5126.497 5192.759 5230.718 5126.497 5135.693 5147.916  
g06 -6961.814 -6961.814 -6961.005 -6960.874 - 6961.814 -6944.947 -6912.362 -6961.814 -6961.811 -6961.793  
g07 24.306 24.306 27.051 35.574 24.306 30.046 32.157 24.306 26.035 28.472  
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825  
g09 680.630 680.630 680.677 681.328 680.630 683.274 693.361 680.630 680.630 680.630  
g10 7049.248 7049.248 7057.369 7139.645 7049.248 7049.248 7049.248 7104.802 7315.874 7542.567  
gl1 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499  
g12 -1.00000 -1.00000 -0.99994 -0.99991 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000  
g13 0.053942 0.053942 0.054418 0.056891 0.053942 0.057164 0.059821 0.053942 0.055046 0.058361  
g14 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765 -47.765  
g15 961.715 961.715 962.627 965.736 961.715 963.049 966.377 961.715 962.003 965.024  
g16 -1.90516 -1.90516 -1.90511 -1.90508 -1.90516 -1.90373 -1.90045 -1.90516 -1.90516 -1.90516  
g17 8853.540 8853.540 8853.600 8853.692 8853.540 8866.934 8879.824 8853.540 8854.276 8855.031  
g18 -0.866025 -0.866025 -0.865521 -0.863036 -0.866025 -0.866025 -0.866025 -0.866025 -0.865841 -0.864033  
g19 32.656 32.656 32.659 32.665 37.478 45.037 52.268 32.656 32.689 33.027  
g20 0.204979  
g21 193.725  
g22 236.431  
g23 -400.055 -396.034 -391.319 -384.183 -397.251 -395.432 -387.493 -400.055 -399.0157 -397393  
g24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013  

Table 5 
Results obtained by B-BBO (Ct:=0.5), SGA, and SPSO 07 on 24 constrained benchmark functions over 25 independent runs. NF and NS, respectively, stand for number of 
feasible runs and number of successful runs for B-BBO, SGA, and SPSO 07. Best results for each benchmark function are shown in boldface. 

Fun. NF/NS Fun. NF/NS Fun. NF/NS 

B-BBO SGA SPSO 07 B-BBO SGA SPSO 07 B-BBO SGA SPSO 07 

gal 25/20 25/14 25/18 g09 25/24 06/02 25/25 g17 15/12 13/04 10/08 
g02 25/19 25/11 25/25 glO 09/03 25/25 02/00 g18 25/22 25/25 25/21 
g03 25/20 25/12 25/12 gl1 25/25 25/25 25/25 g19 25/16 07/00 13/01 
g04 25/25 07/00 15/08 g12 25/25 25/25 25/25 g20 00/00 00/00 00/00 
gaS 20/14 17/10 18/12 g13 13/03 08/03 11/03 g21 00/00 00/00 00/00 
g06 25/14 09/03 25/22 g14 25/25 25/25 25/25 g22 00/00 00/00 00/00 
g07 08/05 06/06 12/08 g15 14/06 17/06 21/06 g23 12/00 07/00 25/07 
g08 25/25 25/25 25/25 g16 25/24 25/22 25/25 g24 25/25 25/25 25/25 

From Tables 4 and 5, we further find that the number of 
constraints for successfully optimized functions (g08, gll, g12, 
g14, g24) is mostly rather small, with the exception of g16, which 
contains 38 inequality constraints, and g18, which includes 13 
inequality constraints. Therefore, it appears that the number of 
inequality constraints does not create difficulties for EAs in 
general. 

For functions with a high number of equality constraints 
(g20 and g22) particularly bad results are obtained: neither a 
feasible run nor a successful run were accomplished for any of the 
three algorithms. The function with the next highest number of 
equality constraints is g21, for which neither a feasible run nor a 
successful run were accomplished. Therefore, it is concluded that 
a high number of equality constraints provides a challenge for the 
three algorithms. 

Based on the above results, it appears that the dimensionality 
of the function and the number of equality constraints create 
difficulties for EAs, at least for the three algorithms applied here. 
Average convergence graphs are shown in Fig. 2. We see that for 
most of the benchmark functions considered in this paper, B-BBO, 
SGA, and SPSO 07 all converge fast and obtain good performance. 

Note that for some of the graphs, we use a logarithmic scale for 
the x-axis or y-axis to distinguish the results of the three 
algorithms. 

5. Conclusion 

In this paper, we have generalized biogeography-based 
optimization (BBO) to handle single-objective optimization 
problems with multiple constraints. Instead of using penalty 
functions for constraint-handling, we used a method based on 
Deb's feasibility rules, which does not introduce any additional 
tuning parameters beyond those required for unconstrained 
optimization. In addition, we introduced a blended migration 
operator to BBO to obtain B-BBO, which is motivated by the 
blended crossover operator in GAs. The experiments that we 
performed: (1) verify that BBO is a competitive algorithm for 
solving constrained optimization problems; (2) show that 
blended migration further improves BBO's performance; (3) show 
that the parameter ex can affect B-BBO's optimization ability; and 
(4) show that BBO can solve constrained optimization problems 
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better than SeA and similar to SPSO 07 for the benchmark of BBD and other EAs will be the same since it will be dominated 
problems that we investigated. by the difficulty of the landscape of the constrained objective 

We do not consider computational cost in this paper. function. 
According to the literature (Mezura-Montes and Coello, 2005), In addition, in this paper we use feasibility rules, which 
3/4 of the computational cost of evolutionary search is typically make a clear distinction between feasible and infeasible solutions, 
consumed by the fitness function evaluation, and only 1/4 (often to solve the constrained problems. This approach indicates that a 
less) is consumed by the search process. The mechanism of BBD is feasible solution is always preferred over an infeasible solution. In 
simple, like that of GAs and PSG, therefore, the computational cost reality, a marginally infeasible solution with a good objective 
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Fig. 2. Convergence CUlves of B-BBO (cx=0.5), SGA, and SPSO 07 for 21 constrained benchmark functions (excluding functions g20, g21, and g22), averaged over 
25 independent runs. NFFEs denote the number of fitness function evaluations. 
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Fig. 2. (Continued) 

value could be preferred over a feasible solution with a poor 
function value (Wang et al., 2008). Solutions to contrained 
optimization problems are likely to lie on constraint boundaries, 
and hence preferring a marginally feasible solution could be 
beneficial. For future work, we will investigate the application of 
more advanced constrained solution methods in BBO, such as the 
adaptive tradeoff model (Wang et al., 2008), to balance feasible 
and infeasible solutions. 

BBO presents promising potential but still requires additional 
theoretical and empirical investigation. For future work, we can 
further tune the migration operator as inspired by other aspects of 
biogeography. For example, it has been shown that sigmoid 
migration curves like those found in nature, rather than the 
simple linear ones explored in this paper, generally give better 
BBO performance (Ma, 2010). It remains to be seen how this and 
other migration curve changes will affect constrained BBO 
performance. We intend to explore BBO for real-world con-
strained optimization problems. In this paper, 24 benchmark 
functions have been presented, including quadratic, cubic, non-
linear, polynomial, and linear functions. It is a challenge for any 
algorithm to scale to high-dimension problems, so the exploration 

of BBO for high-dimension real-world constrained optimization 
problems is an area for future work Another area for future work 
is the development of theoretical results relating to blended 
migration, and constrained BBO convergence. Some theoretical 
work for unconstrained BBO has been performed using Markov 
theory (Simon et al., 2009), but it remains to be seen if that 
approach, or if other approaches, can give fruitful theoretical 
results for B-BBO or for constrained BBO. The use of oppositional 
learning has been incorporated into unconstrained BBO to yield 
oppositional BBO (OBBO) (Ergezer et al., 2009). Future work could 
see how OBBO could be modified to solve constrained optimiza-
tion problems, or how oppositional learning could be incorpo-
rated into the BBO extensions proposed in this paper. 
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