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Robust Controller Design for an Electrostatic 
Micromechanical Actuator  

Lili Dong1,*, Jason Edwards2 

1Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH 44115, USA 
2Nasa Glenn Research Center, Cleveland, OH 44135, USA 

 

Abstract  In this paper, a  robust feedback controller is developed on an electrostatic micromechanical actuator to extend 
the travel range of it beyond pull-in limit. The actuator system is linearized at multip le operating points, and the controller is 
constructed based on the linearized model. Two kinds of controller designs are developed for set-point tracking of the 
actuator despite the presences of sensor noise and external d isturbance. One of them is a regular fourth order Active 
Disturbance Rejection Controller (ADRC) and is able to achieve 97% of the maximum travel range. And the other one is a 
novel multi-loop controller with a second order ADRC in an inner loop and a PI controller in an  outer loop. The mult i-loop 
controller can achieve 99% of the maximum travel range. Transfer function representations of both controller designs are 
developed.  The controllers are successfully applied and simulated on a parallel-plate electrostatic actuator model.  The 
simulation results and frequency domain analyses verified the effectiveness of the controllers in extending the travel range of 
the actuator, in disturbance rejection, and in noise attenuation. 
Keywords  Electrostatic Micromechanical Actuator, Active Disturbance Reject ion Controller, Sensor Noise, Set-point 
tracking, Pull-in limit  

 

1. Introduction 
Electrostatic actuation of micro-electro-mechanical 

systems (MEMS) makes use of the attractive electrostatic 
force between two charged capacitor plates to perform 
physical movements. With the advancement of MEMS 
technology, electrostatic (or micro-mechanical) actuators 
have been broadly used in micro-resonators, switches, 
micro -mirrors, accelerometers, and so on[1]. They are 
simple in structure, flexib le in  operation, and can be batch 
fabricated from standard semi-conductor materials such as 
silicon and poly-silicon[2].  

The s implest elect rostat ic  actuato r has one degree of 
freedom and consists of one movable and one fixed  capacitor 
plates  in  an  electric  field. When  the movable p late is 
displaced from its original position, the capacitance formed 
between the two  p lates is changed . Therefore, one can 
change the displacement o f the movable p late th rough a 
voltage control of the gap between both plates. However, as 
the gap is decreased to two  thirds of the orig inal gap, a 
pull-in (or snap-down) phenomenon will cause the instability 
of the system. As a result, the movable plate is dragged to the 
fixed p late, immediately  reducing the gap to zero [1]. Thus  
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extending the travelling range of the movable plate beyond 
the pull-in limit  has been attractive to more and more 
researchers. In addition, the imperfections in fabrication and 
packaging technology introduce system uncertainties, 
external d isturbance and noise to the actuator system. So  a 
controller that can stabilize the actuator system and is robust 
against system uncertainties, disturbance, and noise is 
essential for improving the performance of electrostatic 
actuators.  

Since 1980’s, both open-loop and closed-loop controllers 
have been applied to electrostatic actuators. Open-loop 
controllers have the advantages of simple structure and easy 
implementation. Therefore the majority of MEMS actuators 
are driven in open-loop mode[2]. In order to overcome 
pull-in limit, the most straightforward open-loop solution is 
to design the gap so large that the actuator is stable over the 
desired operating range[3]. The drawback of this approach is 
that the maximum gap is determined by the fabrication 
technology and cannot be changed by the designer. Leverage 
bending[4] and strain stiffening[4] are another two 
approaches which are used to improve the dynamic 
behaviour of electrostatic actuators through structure design 
enhancements. It is shown in[4] that both approaches extend 
the travel distance of the actuator to about 60% of the fu ll gap. 
In addition to the structural modifications for the mechanical 
part of MEMS actuators, alteration of the control voltages in 
the electrical part has been used. Introduction of complex 
actuating signals to the electrostatic actuator has resulted in 
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so-called “pre-shaped control”[5], for which the dynamic 
model of the actuator is used to construct a pre-shaped input 
signal to improve the performance of it. The pre-shaped 
driving technique can extend the travel range of an 
electrostatic actuator to about 80% of its fu ll gap. However, 
like other open-loop solutions, the pre-shaped control 
method is not robust against system uncertainties and 
external d isturbance. The lack of accurate models, 
compounded by special requirements on the dynamic 
behaviour of actuators, has opened the possibility of 
closed-loop applications[5].  

For closed-loop control strategies, utilizing a voltage 
source with a capacitor in series with the electrostatic 
actuator has proven successful[6, 7]. The technique shows 
stable operations of the actuator at 30%, 60%, and 90% of 
its full gap. The downside to this approach is that system 
uncertainties can degrade the control performance. Another 
disadvantage of it is that a large actuation voltage is 
required for the voltage source. This requirement 
significantly limits its feasibility. In [8, 9], a linear 
time-invariant (LTI) proportional gain controller is 
developed utilizing quantitative feedback theory (QFT). In 
the current literature, the LTI controller reported in[8, 9] is 
the only closed-loop controller that is implemented on a real 
MEMS actuator, and is able to extend the travelling range 
of it to 60% of the full gap. However a large loop gain of 
the LTI control system results in large noise amplification. 
Hence the controller cannot attenuate high-frequency input 
noises. More recently, nonlinear controls are applied to 
MEMS actuators[10]. In[11, 12], two robust nonlinear 
controllers are constructed based on input-to-state 
stabilization and back-stepping state feedback design 
respectively. Simulat ion results show that the nonlinear 
controllers can drive the actuator to reach full-gap traversal 
albeit with a large actuation voltage. But the usage of the 
controllers in[11, 12] is offset by their mathematical 
complexity and their lack of noise attenuation.  

In this paper, a linear, robust, closed-loop voltage control 
method is developed on a parallel-p late electrostatic 
actuator. The controller is based on an active disturbance 
rejection concept. The active disturbance rejection 
controller (ADRC) handles unknown system dynamics 
effectively  by treating  them as an unknown disturbance and 
cancelling them out in control law. In addit ion, it  is robust 
against external d isturbance and noise. A classic ADRC 
consists of an extended state observer (ESO), which is used 
to estimate internal dynamics and external d isturbance, and 
a PD controller, which is used to drive the system output to 
a reference signal. It  only has three tuning parameters that 
are controller and observer bandwidths and controller gain. 
The simple configuration and easy-to-tune feature make 
ADRC successful in multip le applications. The classic 
ADRC has ever been employed to MEMS gyroscopes[13], 
power systems[14], automobile systems[15], and web 
tensions regulation[16]. In this paper, we apply both classic 
ADRC and a novel multiple-loop ADRC to the electrostatic 
actuator respectively. For classic ADRC design, the 

displacement of the movable plate of an actuator is assumed 
available. For mult iple-loop ADRC design, both 
displacement and charge outputs of the actuator are 
assumed measurable. The multi-loop design employs an 
ADRC for the inner loop to control the charge output, along 
with a PI controller in the outer loop to control the 
displacement output. Simulation results show that the 
classic ADRC design can drive the movable p late of an 
actuator to 97% of its full gap while the mult i-loop design 
can achieve the traversal of 99% of the full gap. The 
multi-loop design also shows better noise attenuation 
capability than the classic one. Frequency-domain analyses 
proved the stability and robustness of the two designs 
against system uncertainties, disturbance, and noise.     

2. Dynamic Modeling of MEMS 
Actuator  

An electro-mechanical model of a simple MEMS actuator 
with one degree of freedom is shown in Figure 1. 

 
Figure 1.  Micro-mechanical actuator model 

In Figure1, the electrostatic actuator consists of a 
parallel-p late capacitor with one fixed plate and one moving 
plate, a  spring with spring constant k , a damper with  a 
damping coefficient b, one voltage source Vin and one series 
resistor R.  The init ial gap with zero  applied  voltage is 
denoted by g0. The gap g is positive in the direct ion of 
increasing gap, while X is the displacement of the moving 
plate and X is positive in the direction of decreasing gap.  
The relationship between g and X is given by 

g = g0-X                        (1) 

2.1. Dynamic Modeling Using First Principles 

The actuator in Figure 1 is operating in two energy 
domains, electrical and mechanical. As electrical charge 
(represented by Q) on the two plates builds up, the force of 
attraction grows, bringing the plates closer together. In order 
to keep the plates from touching each other there needs to be 
an equal and opposite force resisting this motion. This force 
is provided by the restoring spring force o f a mechanical 
spring. In the mechanical domain, accord ing to Newton’s 
2nd law, we have 

e b kmX F F F= − −                 (2) 
where 

bF bX=   is the linear squeeze-film damping force, 
Fk=kX is the linear mechanical spring force and Fe=Q2/2εA 
is the nonlinear electrostatic force. Equation (2) can be 
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rewritten as 
2

2
QmX bX kX

Aε
= − −  .                  (3) 

Note that the mass of the upper p late of the actuator is so 
small that the gravity force on the actuator can be 
disregarded.  

In electrical domain, we apply Kirchhoff's circu it law to 
the actuator yields  

( )1
in actI V VinR
= −  .                   (4) 

where Vact is the voltage cross the capacitor plates, and Iin is 
the current flowing through resistor R. The voltage cross 
actuator is 

act
QgV

Aε
= .                  (5) 

The current Iin can be solved by substituting (5) into (4). 
Using the fact that inI Q=  , we have  







 −=

A
Qg

sV
R

Q
ε

1
 .                    (6) 

Substituting (1) into (6) yields 
( )







 −

−=
A

XgQ
V

R
Q S ε

01
                  (7) 

Equations (3) and (7) constitute the nonlinear model of the 
electrostatic actuator.  

2.2. Equation Normalization 

For the simplicity of a controller design for the 
electrostatic actuator, equations (3) and (7) have to be 
normalized. The position of the upper plate relative to the 
lower plate (X), t ime (t), the charge (Q), and the source 
voltage (Vin) are normalized as follows. 

0g
Xx =     t0ωτ =     

pi

Qq
q

=    in
in

pi

Vv
v

=         (8) 

In (8), the displacement X  is normalized  by the init ial gap 
(g0), time τ is normalized by the natural frequency (ω0) of 
the actuator, charge q is normalized by the accumulation of 
charge at pull-in (qpi), and the source voltage Vin is 
normalized by the pull-in voltage (vpi). From[1] the 
equations that govern the pull-in voltage, the amount of 
charge at pull-in and the capacitance at  in itial gap are given 
by 

0
3
2pi piq C v= ,   

2
0

0

8
27pi

kgv
C

= ,   
0

0 g
AC ε

=          (9) 

The details of normalization can be found in[5]. The 
results of the normalization are represented by 

2

3
12 qxxx =++  ς                     (10) 

( )1 21
3 inq x q v

r r
+ − =                   (11) 

where  

 
02 ω

ς
m
b

= , 00 RCr ω= , and 
m
k

=0ω .       (12) 

2.3. Model Linearization 

We choose the state variables of the normalized model of 
the actuator as x(t), q(t), and s(t), where s(t) is the velocity 
( )(tx ) of the movable plate of the actuator. For small-signal 
linearization, the equilibrium values of the state variables, 
which are represented by Xeq, Qeq, and Seq, have to be 
determined. Then the nonlinear equation will be linearized 
around these equilib rium values. The state equations of the 
normalized actuator model are 

( )

1 2 1

2
2 1 2 3 2

3 1 3 3

12
3

1 21
3 in

x x f

x x x x f

x x x v f
r r

ς

= =

= − − + =

= − − + =







       (13) 

The equilib rium points are determined by solving f1=0, 
f2=0, and f3=0. The solutions are given by 

Seq=0, Xeq=(1/3)Qeq
2, 3 3 2 0eq eq inQ Q v− + = .    (14) 

From (14), we can see that when we choose different 
equilibrium d isplacement Xeq, we will have different Qeq. 
The equilibrium values of Xeq and Qeq corresponding to 
different percentages of the displacements with respect to 
full gap are calculated and given in Table 3 in Appendix. 
Define X1=Xeq, and X3=Qeq. Then the linearized model is 

( )


[ ]

1 1

2 3 2

3 3
3 1

1

2

3

0 1 0 0
21 2 0
3

21 10 1 3

1 0 0

in

B
A

C

x x
x X x V
x x

X X rr r

x
y x

x

δ δ
δ ς δ δ
δ δ

δ
δ δ

δ

                = − − +                  −   

 
 =  
  











  (15) 

According to[11], we use ζ=2 and r=0.95 for the 
linearized model of the electrostatic actuator in (15).   

2.4. Transfer Function Representation of Linearized 
Model 

For the convenience of later frequency-domain analyses, a 
transfer function representation of the linearized electrostatic 
actuator model is developed. Conducting Laplace transform 
on (15) (assuming zero in itial conditions) for the 
displacement output gives 

)(
3
2)(2)()(2 sQQssXsXsXs eq+−−= ς ,     (16) 

where X(s) is displacement output, and Q(s) is the charge 
on the plates. Equation (16) can be reduced to  

( ) )(
123

2
)( 2 sQ

ss
Q

sX eq

++
=

ς
.           (17) 

The Lap lace transform of (15) for charge output is 

( ) 2( ) ( ) 1 ( ) ( )
3eq eq inrsQ s Q X s X Q s V s= − − + .    (18) 

Equation (18) can be rewritten as 
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( )( ) ( )( )
2( ) ( ) ( )

1 3 1
eq

in
eq eq

Q
Q s X s V s

rs X rs X
= +

+ − + − .                      (19) 

Equations (17) and (19) can be represented by the block diagram shown in Figure2.  

 
Figure 2.  T ransfer function model of a MEMS actuator 

The block diagram shown in Figure 2 can be simplified as the one in Figure 3. From Figure 3, we can find the transfer 
function between displacement output and input voltage as follows.   

( )
( ) ( ) ( )( ) ( )( )3 2

4

9 1 2 2 1 1 3
eq

in eq eq eq

QX s
V s rs X r s X r s Xς ς

=
+ − + + − + + −                    (20) 

 
Figure 3.  Simplified transfer function model 

From (20), we can  see that when Xeq=1/3, the transfer 
function will have a pole at the origin. Any operating point 
with a d isplacement greater than 1/3 will produce a pole in 
the right half plane of a complex p lane. This shows explicit ly 
how the actuator system becomes unstable at the pull-in 
displacement of 1/3. 

Since the transfer function representation of the actuator 
model (20) is a third-order plant, it can be rewritten as 

( ) ( )( )( )210

0
% asasas

b
sP

+++
=          (21) 

where -a0, -a1, and -a2 are poles, and the subscript % in P% (s) 
represents the percentage of the displacement with respect to 
full gap. The values of parameters b0, a0, a1, and a2 can be 
obtained by comparing (21) and (20) with the equilibrium 
values of Xeq and Qeq listed in Table 3 in Appendix. The 
obtained parameters b0, a0, a1, and a2 are given in Tab le 4 in 
Appendix.  

3. Controller Design 
In this section, two kinds of linear ADRC designs are 

presented. They are classic ADCRC and an original 
multi-loop ADRCs. The state space representations of the 
classic ADRC design are developed. Then the transfer 
function representations for both of the ADRC designs are 
derived for later frequency-domain analyses.  

3.1. Classic ADRC Design 

For classic ADRC, all of the system parameters in (21) are 
assumed to be unknown. A  fourth-order extended state 
observer (ESO) is developed to estimate both internal system 
states (including displacement, velocity, and charge) and 
external disturbance. Based on the accurate estimation of 
ESO, the classic ADRC is constructed to drive the actuator’s 
output to a desired displacement.   

3.1.1. Introduction to Classic ADRC Design 

From (20) and (21), the electrostatic actuator can be 
modeled by a third-order d ifferential equation as follows.  

( ) butdyyyfy += ,,,,               (22) 
In (22), the function ),,,,( tdyyyf 

, which will be denoted 
as f in the rest part of the paper, represents all of the other 
forces on the actuator plant excluding control effort, y(t) is 
equal to normalized displacement output x(t), d denotes 
external disturbance force, b is controller gain, and u is equal 
to Vin in (20). As we design the ADRC, the function f is 
assumed to be unknown and referred to as a generalized 
disturbance. We choose state variables as yx =1

, yx =2
, 

yx =3
 and 4x f= , among which x4 is an augmented    

state. Assuming fh = and h is bounded within the  
interests, (22) can be represented by a state-space model as 
follows. 
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Cxy
EhBuAXX

=
++=

             (23) 

where 



















=

0000
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=

0

0
0

b
B , 



















=

1
0
0
0

E , 
[ ]

.],,,[
,0001

4321
TxxxxX

C
=

=
 (24) 

The augmented state x4 (or generalized disturbance) and 
the other states can be estimated using the ESO g iven by 
(25). 

( )
Czy

yyLBuAzz
=

−++=
ˆ

ˆ

            (25) 

In (25), z is the estimated state vector and z=[z1, z2, z3, z4]T, 
where z1, z2, z3, and z4 are the estimated x1, x2, x3, and x4 
respectively. The observer gain vector L is chosen such that 
all the observer poles are located at –ωo, where ωo is observer 
bandwidth. As the observer gains are chosen as  

[ ] 2 3 4
1 2 3 4 4 6 4

T
o o o oL L L L L ω ω ω ω = =      (26) 

the characteristic equation of the ESO is (s+ωo)4. With a well 
tuned observer, the estimated states z1, z2, z3, and z4 will 
closely track y , y , y  and f. We assume that b̂  is an 
approximate b. Then the control input to the actuator is  

( )40ˆ
1 zu
b

u −= ,               (27) 

where u0 denotes a control law. Suppose z4≈f. Then 
substituting (27) into (22) produces 

0uy = ,                   (28) 
which is a triple integrator plant. The plant can be controlled 
by a conventional PD controller, which is 

( ) 4322110 zzkzkzrku ddp −−−−= ,     (29) 
where r denotes a desired displacement output for the 
actuator. In (29), kp, kd1, and kd2 are controller gains and are 
chosen as  

cdcdcp kkk ωωω 3,3, 2
2

1
3 === .       (30) 

The controller gains above can place all the closed-loop 
poles of the controller at -ωc , which is taken as controller 
bandwidth.  

From (26) and (30), we can see that the ADRC including 
the ESO only has three tuning parameters, ωc, ωo, and b[18]. 
The framework of the classic ADRC is shown in Figure 4, 
where d is an external disturbance, n represents sensor noise, 
and ym is the measured output containing noise. In this paper, 
we choose controller parameters for the classic ADRC as 
ωc=2, ωo=50, and .1.1ˆ =b  

3.1.2. Transfer Function Representation of the Classic 
ADRC 

Combing (27) and  (29), we can  rewrite the control input as                                                         

[ ]( )zkkkrk
b

u ddpp 1ˆ
1

21−= .      (27) 

Define controller gain vector as K=[K1, K2, K3, K4]=[kp, 
kd1, kd2, 1]. The Lapalce transform of (27) is  

( ) ( ) ( )( )1
ˆ pU s k R s KZ s
b

= −            (28) 

Assuming zero in itial conditions for z(t) and its derivatives, 
the Laplace transform of (25) is  

( ) ( ) ( ) ( )[ ]sLYsBULCAsIsZ ++−= −1 .        (29) 
 

 
Figure 4.  Framework of classic ADRC 

 
Figure 5.  Block diagram of the classic ADRC control system 
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Substituting (29) into (28) yields 

( ) ( ) ( ) ( ) ( )( )[ ]sLYsBULCAsIKsRk
b

sU p ++−−= −1

ˆ
1

  (30) 

Define matrix M as ( ) 1−+−= LCAsIM . Then (30) can be 
reorganized and simplified as  

( ) ( ) ( )ˆ ˆ
pk KMLU s R s Y s

b KMB b KMB
 

= − 
+ + 

         (31) 

Equation (31) can be represented by a closed-loop block 
diagram as shown in  Figure 5, where Hr(s) is a pre-filter, C(s) 
the controller in the feedback path, P(s) the actuator model, 
D(s) an external d isturbance, and N(s) measurement noise.  

The plant model P(s), or P% (s) is given by (21). The 
pre-filter Hr(s) and controller C(s) are  

( ) ( )ˆ ˆ
p

r
kKMLC s H s

b KMB b KMB
= =

+ +
.         (32) 

Substituting the controller and observer gains into (32) 
yields  

( ) ( )    ˆ
1

21
2

0
3

32
2

1
3

0

dsdsdss
cscscsc

b
sC

+++
+++

⋅= ,      (33) 

And 

( )
( )
( )

4 3 2
1 1 2 3 4

3 2
0 1 2

1
ˆr

K s L s L s L s L
H s

b s s d s d s d

+ + + +
= ⋅

+ + +
,     (34) 

where 

0 1 1 2 2 3 3 4

1 1 2 2 3 3 4

2 1 3 2 4

3 1 4

c K L K L K L L
c K L K L K L
c K L K L
c K L

= + + +

= + +

= +

=

, and 

0 3 1

1 2 2 3 1

2 1 2 1 3 2 3

d K L
d K L K L
d K K L K L L

= +

= + +

= + + +
. 

As shown in Figure 3, the reference signal r and the 
measurement output y are treated independently by a 
pre-filter and ADRC. In addition, the configuration shown in 
Figure 5 allows for the derivations of traditionally defined 
sensitivity function (S), complementary sensitivity function 
(T), and other various closed loop transfer functions that are 
used for controller performance analyses to be conducted in 
the following section. 

3.2. Multi-loop ADRC Design 

In this section, an original multi-loop control system is 
developed for the electrostatic actuator. The multi-loop 
control system consists of a standard ADRC in an inner loop 
and a traditional PI controller in an outer loop. The ADRC is 
used to control the charge output for the electrical part of the 
actuator while the PI controller is employed to control the 
displacement output for the mechanical part of the actuator. 
It would be demonstrated in the next section that adding an 
extra measured output (charge output) to the controller 
design can greatly reduces the effects of sensor noise and 
external d isturbance on the actuator system. 

3.2.1. Architecture of Mult i-loop Control System 

We suppose the electrostatic actuator (as shown in Figure 
3) can be divided into two sub-plants, which are P1 and P2, 
along with a positive feedback constant K. The two 
sub-plants and the feedback constant are defined as 

( )1 2

2

3 4 1
eqQ

P
s s

=
+ +                   (35) 

( )( )2
2 / (3 )

1/ 1 eq

rP
s r X

=
+ −                  (36) 

  
3
2 eqK Q=                     (37) 

The output of the first sub-plant (P1) is the displacement x. 
The output of the second sub-plant (P2) is the charge q. The 
two sub-plants of the electrostatic actuator and the two 
controllers (C1(s) and C2(s)) which are used to control the 
two sub-plants are shown in Figure 6, where F(s) is a 
pre-filter for ADRC, and ESA denotes Electro-Static 
Actuator.  

In Figure 6, the displacement x is controlled  by a PI 
controller (C1(s)), of which the output is u1. The reference 
signal r is the set-point for this displacement. The charge 
output q is controlled by an ADRC (C2(s)), of which the 
output is u2. The charge output q is also acting as a control 
signal for the sub-plant P1. It is assumed both q and x are 
measurable. The signal un is the control input to the whole 
ESA plant. The input disturbance d in Figure 6 represents 
both internal and external disturbances. The block diagram 
in Figure 6 can be simplified as the one shown in Figure 7, 
where P(s)=P1(s)P2(s). 

 
Figure 6.  Multi-loop control system 
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Figure 7.  Equivalent model of multi-loop control system 

In Figure7, the transfer function representation of the 
displacement, x(s) (or x), can be represented by 

   ( )22111
1221

1 nPCnPFCPdrPFC
PKPFCCP

x −−+
−++

=  (38) 

The transfer function representation of charge q is given 
by 

   ( )222112212
1221

1 nCPnFCPdPrFCP
PKPFCCP

q −−+
−++

=  (39) 

3.2.2. Inner Loop Design 

In the inner loop of the multi-loop control system (shown 
in Figure 6), the sub-plant P2(s) is a first-order system. 
Therefore an ADRC with a 2nd order ESO is applied in the 
inner loop. We choose the observer gain vector (L’) for the 
2nd order ESO as L’=[2ωo, ωo

2], where ωo is the observer 
bandwidth. Following the same equation development as we 
did for classic ADRC (in section 3.1), we will obtain the 
transfer function representation of the estimated charge 
output (Z1

’(s)) as 

( )
( )

( )
( )

( )sU
s

ssq
s

ssZ n
o

m
o

oo
22

2
'

1
2

ωω
ωω

+
+

+
+

=    (40) 

The transfer function representation for the estimated 
disturbance (Z2

’(s)) is 

( )
( )

( )
( )

( )
2 2

'
2 2 2

o o
m n

o o

sZ s q s U s
s s

ω ω

ω ω
= −

+ +
      (41) 

The control law used to control the inner loop is given by 

( ) ( ) ( )( ) ( )' ' '
1 1 2

1
ˆn pU s k u s Z s Z s
b
 = − −             (42) 

where the controller gain Kp
’=ωc and )3/(2ˆ γ=b . 

Substituting (40) and (41) into (42) y ields 

( )
( )

( ) ( )
( )

( ) ( )
2 22

1
21

ˆ 2 2

o p o p op o
n m

o p o p

k s kk s
U s U s q s

b s s k s s k

ω ω ωω

ω ω

 + ++ = − + + + +  
(43) 

Comparing (43) and Figure 6, we obtain the transfer 
function for the controller (C2(s)) in the feedback path of the 
inner loop as follows. 

( )
( )

( )
2 2

2
21

ˆ 2

o p o p o

o p

k s k
C s

b s s k

ω ω ω

ω

+ +
= ⋅

+ +
            (44) 

The pre-filter F(s) in Figure 6 is given by 

( )
( )

( )
2

1
ˆ 2

p o

o p

k s
F s

b s s k

ω

ω

+
= ⋅

+ +
              (45) 

The controller parameters for the ADRC are chosen as  
ˆ4 20 0.7018c o bω ω= = =         (46) 

3.2.3. Outer Loop Design 

In the outer loop of multi-loop control system, a PI 
controller that includes a first-order noise filter is used to 
control the displacement output of the sub-plant P1(s) of 
ESA. The PI controller is defined by (47), where Kp1 is a 
proportional gain, Kd1 is an integral gain, and ωf is the cut-off 
frequency of the noise filter. 

 
1

1

 

( ) fP I

f
PI Noise Filter

K s KC s
s s

ω
ω

+
= ⋅

+




            (47) 

The controller parameters fo r the PI controller are chosen 
as 

1 2.75, 0.75, 100P I fK K ω= = =          (48) 
The two sub-controllers C1(s) (given by (47)) and C2(s) 

(represented by (44)) constitute the control efforts for the 
multi-loop control system. (4.85) 

4. Stability and Robustness Analyses 
In this section, we investigate the stability and the 

robustness against noise and disturbance for both classic 
ADRC and multi-loop control system designs.  

4.1. Loop Transmission and Sensitivity Functions for 
Classic ADRC Design 

In the frequency domain, the loop transmission function is 
a key tool in  accessing the performance o f a control system. 
For a classic ADRC design, the loop transmission function 
L(s) in Figure 5 is defined by 

  ( ) ( ) ( )sCsPsL =                (49) 
From (21) and (33), we can expand L(s) as 

( ) ( ) ( )

( )( )( )
3 2

0 1 2 3
3 20 0 1 2 0 1 2

ˆ
o

L s P s C s

c s c s c s cb
b s s a s a s a s d s d s d 

 
 

= =

+ + +
⋅

+ + + + + +
   (50) 



  International Journal of Control Science and Engineering 2013, 3(1): 8-21 15 
 

 

From Figure 5, the measurement output Y(s) and the 
control signal U(s) can be represented by (51) and (52). The 
sensitivity function S(s) and complementary sensitivity 
function T(s) are defined by (53).  

)(
)()(1
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)()(1
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=             (53) 

The transfer function from the noise input N(s) to the 
control signal U(s) is denoted as C(s)S(s) and is used to 
investigate the effects of sensor noise, and the transfer 
function from the disturbance input D(s) to the displacement 
Y(s) is denoted as P(s)S(s) and will be used to discuss the 
disturbance rejection capability. The C(s)S(s) and P(s)S(s) 
are 

( ) ( )
)(1

)(
sL

sCsSsC
+

=                (54) 

( ) ( )
)(1

)(
sL

sPsSsP
+

=                (55) 

4.2. Loop Transmission and Sensitivity Functions for 
Multi-loop Design 

From Figure 7, the effects of sensor noise on the control 
input (un) to the plant are represented by  

( ) ( )
2

122

2
1

122

1

1
1

1
1 n

PKPFCCP
PKCn

PKPFCCP
PKFCun −++

−
−

−++
−

−= (56) 

From (38), the loop transmission function (L1(s)) for the 
primary loop (outer loop) is given by 

( )122

1
1 1 KPCP

FPCL
−+

=                  (57) 

The sensitivity function for the outer loop is given by 

1
1 1

1
L

S
+

=                  (58) 

Substituting (57) into (59), we will have the sensitivity 
function rewritten as 

PKFPCCP
PKCPS
−++

−+
=

122

22
1 1

1
              (59) 

From (38), the input disturbance transfer function 
(P(s)S(s)) between input disturbance (d) and displacement 
output (x) is  

PKPFCCP
PsSsP

−++
=

1221
)()(         (60) 

 

4.3. Stability Analyses 

The Bode diagrams of the loop transmission function L(jω) 
((50)) for classic design are shown in  Figure 8, where L05 
represents the L(jω) for the desired travel range being 5% of 
the full gap. The p lant for this travel range is denoted by P05. 
Similarly, L20, L33, L50, L75, and L95 represent the loop 
transmission functions for the desired travel ranges being 
20%, 33%, 50%, 75% and 95% of the fu ll gap. Note that the 
plant P33 is linearized  at the pull-in  displacement. In Figure8, 
three of the plants have unstable poles in the RHP (P50, P75, 
and P95), one has a pole at the origin (P33), and the other 
two are stable (P05, P20). The stability margins for the first 
design are listed in Table 1. The Bode diagrams of the loop 
transmission function ((57)) with respect to different 
displacements for mult i-loop design are illustrated in Figure 
9. Table 2 shows the stability margins for the multi-loop 
design. The bandwidth for multi-loop design is reduced but 
not significantly compared to classic ADRC design. Both 
classic ADRC and multi-loop designs have sufficiently large, 
positive stability marg ins which  demonstrate the stability of 
these two designs. 

Table 1.  Stability margins for classic ADRC design 

Plant 
Model 

Gain Margin 
(dB) 

Phase Margin 
(degrees) 

Band Width 
(rad/sec) 

P05 27.9 61.7 2.96 

P20 21.9 77.8 6.80 

P33 19.6 77.6 9.08 

P50 17.8 75.3 11.3 

P75 16.0 71.7 14.0 

P95 15.0 69.1 15.9 

Table 2.  Stability margins for multi-loop design 

Plant 
Model 

Gain Margin 
(dB) 

Phase Margin 
(degrees) 

Band Width 
(rad/sec) 

P05 22.2 56.6 1.92 

P20 16.1 80.7 5.22 

P33 13.9 79.6 7.30 

P50 12.1 73.5 9.32 

P75 10.2 65.1 11.6 

P95 9.13 59.6 13.1 
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Figure 8.  Bode diagrams of the transmission function for classic ADRC design 

 
Figure 9.  Bode diagrams of the loop transmission function for multi-loop design 

4.4. Noise Attenuation 

For multi-loop control system, the transfer functions from 
two sensor noise sources (n1 and n2) to a single controller 
input (un) are given by (56). The Bode plots of these two 
transfer functions (in (56)) along with the Bode plot of the 
noise sensitivity function (54) for classic ADRC design are 

shown in Figure 10. In this figure, the multi-loop 
n1represents the Bode plot  of the transfer function from noise 
source n1 to control input un, and multi-loop n2 represents the 
one from noise source n2 to control input un.  

From Figure 10, we can see that the multi-loop control 
design offers significant advantages in noise attenuation over 
the classic ADRC design.  
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Figure 10.  Magnitude Frequency Responses of Controller Noise Transfer Functions for Both Multi-loop (with noise filter) and Classic ADRC Designs 

4.5. Disturbance Rejection 

Figure 11 shows the Bode diagrams of the input 
disturbance transfer function (55), along with the transfer 
function of an actuator model (P90), the inverse of the 
controller (or C-1 from (33)) and the loop transmission 
function (50) for classis ADRC design. From this figure, we 
can see that at low frequencies, P(s)S(s) (in (55)) behaves 
like C-1, while at  high frequencies, it behaves like plant 
model P90.  Thus if controller C has high gain at low 
frequencies, C-1 will attenuate low frequency disturbance. 
It’s also shown that when the magnitude of L(s) is small, the 
controller has no control over high frequency disturbance. 
Then the disturbance will fo llow the high frequency 
behaviour of the actuator plant.  

Figure 12 shows the bode diagrams the input disturbance 
transfer function (60), the transfer function of the actuator 
plant (P90), and the inverse of F(s)C1(s) in Figure 6. From 
this figure, we can see that the inverse of F(s)C1(s) plays a 
dominate role in input disturbance rejection at low frequency. 
However, at h igh frequency part, the disturbance rejection is 
solely dependent on the actuator plant. The electrostatic 
actuator has built-in d isturbance rejection capabilit ies due to 
its low system gain. However, both classic ADRC design 
and multi-loop control system demonstrate excellent 
disturbance rejection capabilities at low frequency part.  

In summary, the mult i-loop controller is equally good as 
classic ADRC when it comes to stabilizing the actuator 
system and disturbance rejection. However, the multi-loop 
controller shows much better noise attenuation capability 
than classic ADRC design.  
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Figure 11.  Bode diagrams of input disturbance function, actuator model, the inverse of controller, and loop transmission function for classic ADRC design 

 
Figure 12.  Bode diagrams of input disturbance transfer function, actuator model, and inverse of F(s)C1(s) 

5. Simulation Results  
During  the simulat ion, the senor noise in Figure13 is 

added to the control systems shown in Figure5 (as N) and 
Figure 6 (as n1 and n2) respectively. Both the classic ADRC 
design and the multi-loop control system are simulated on 
the normalized model of the electrostatic actuator, whose 
parameter values are given in Table 4 of Appendix. Figure 
14 and Figure 15 show the step responses of the two kinds of 
control designs to the references of 10% and 99% of the fu ll 
gap respectively. In both figures, blue line represents 
reference signal. From Figure 14, we can see that the rise 
time of the classic ADRC is much smaller than the one for 

the multi-loop controller at s mall displacement. However, 
the step response of the mult i-loop control system has zero 
overshoot while the classic ADRC design exh ibits overshoot. 
Figure 15 demonstrates that only the multi-loop design can 
achieve 99% of full gap traversal. The overshoot in the step 
response of the classic ADRC system will result in the “snap 
down” between the two plates of the actuator and cause the 
failure of operation. Figure 16 shows the control signals for 
both designs in the presence of sensor noises. It is clear to see 
that the multi-loop controller is a better choice in minimizing 
the effects of sensor noise than the classic ADRC design. 
Figure 17 shows the displacement outputs for the two 
designs with a step disturbance at t=15s. The figure 
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demonstrates the robustness of the two designs with a travel 
range of 97% of init ial gap in the presence of the disturbance. 
From Figure 17, we can see that the mult i-loop design has 
much s maller overshoot than the classic ADRC when a step 
disturbance is added to the system. Figure 18 compares the 
tracking performances of the two  ADRC designs. In 
Figure18, the actuator is commanded to track several desired 
travel ranges which are set to 10%, 30%, 50%, 70% and 90% 
of the full gap. Both designs have shown excellent tracking 
performances. The simulation results demonstrate the better 
performance of mult i-loop control system than classic 
ADRC controlled system in noise attenuation and 
disturbance rejection. However, the classic ADRC has 
smaller rise time than the multi-loop design.  

 
Figure 13.  Normalized sensor noise 

 
Figure 14.  Step responses of two control designs at 10% of full gap 

 
Figure 15.  Step responses of two controller designs at 99% of full gap 

 
Figure 16.  Controller signals for the two designs with sensor noise 

 
Figure 17.  Displacement outputs of two designs with step input 
disturbances at t=15s 
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Figure 18.  Displacement outputs of two designs 

6. Conclusions  
The research presented in the paper aims to provide a 

robust feedback controller that could greatly increase the 
operating range of an electrostatic actuator and to stabilize 
the actuator over the entire operating range. This controller 
would have to overcome the pull-in phenomenon inherent in 
the actuator. It also has to cope with sensor noise and 
external d isturbance. And most importantly, the controller 
needs to be simple enough to implement on a MEMS device 
where silicon area is at a premium. The contribution of this 
research is that two forms of linear ADRC designs are 
developed that provide nearly full gap traversal for the 
actuator despite the presences of sensor noise and 
disturbances. Both controller designs have successfully 
addressed all the control problems state above. In addition to 
the effectiveness of these controllers they only have three 
tuning parameters, and hence are simple enough for practical 
implementation. 

The classic ADRC design could drive the electrostatic 
actuator to travel 97% of its full gap. But this design is 
sensitive to sensor noise compared to multi-loop design. The 
multi-loop controller shows great promise in controlling the 
electrostatic actuator to 100% travel range, while keeping the 
effects of sensor noise to a min imum. This design should be 
considered as a design of the future since current technology 
makes it difficult  to obtain two  sensed outputs, but it does 
serve as a benchmark for what is possible with feedback 
control. As the complexity of MEMS devices increases, the 
demand for high performance control will also rise, making 
this design highly practical in the near future. 

APPENDIX 
Table 3.  Equilibrium points 

Xeq Qeq Veq 

0.05 0.3873 0.5519 
0.10 0.5477 0.7394 
0.20 0.7746 0.9295 
0.30 0.9487 0.9961 
0.33 1 1 
0.40 1.0954 0.9859 
0.50 1.2247 0.9185 

0.60 1.3416 0.8050 
0.70 1.4491 0.6521 
0.80 1.5492 0.4648 
0.90 1.6432 0.2465 
0.95 1.6882 0.1266 

Table 4.  Parameter values with varying displacement 

Plant b0 a0 a1 a2 

P05 0.18119 3.721 1.050 0.2290 
P10 0.25624 3.710 1.048 0.1895 
P20 0.36238 3.689 1.044 0.1093 
P30 0.44383 3.669 1.041 0.0276 
P33 0.46784 3.662 1.104 0.0000 
P40 0.51249 3.650 1.038 -0.0556 
P50 0.57298 3.631 1.035 -0.1400 
P60 0.62767 3.614 1.033 -0.2256 
P70 0.67796 3.597 1.031 -0.3122 
P80 0.72477 3.581 1.029 -0.3999 
P90 0.76873 3.566 1.028 -0.4883 
P95 0.7898 3.559 1.027 -0.5329 
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