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CONSTRAINED KALMAN FILTERING VIA DENSITY FUNCTION TRUNCATION 
FOR TURBOFAN ENGINE HEALTH ESTIMATION 

Dan Simon, Cleveland State University 
Donald L. Simon, NASA Glenn Research Center 

ABSTRACT 

Kahnan filters are often used to estimate the state variables of a dynamic system. However, in the application of 
Kalman filters some known signal information is often either ignored or dealt with heuristically_ For instance, 
state variable constraints (which may be based on physical considerations) are often neglected because they do 
not fit easily into the structure of the Kalman filter. This article develops an analytic method of incorporating 
state variable inequality constraints in the Kalman filter. The resultant filter truncates the probability density 
function (PDF) of the Kalman filter t'Stimate at the known constraints and then computes the constrained filter 
estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the 
computational effort of the filter but also improves its estimation accuracy. The improvement is demonstrated via 
simulation results obtained from a turbofan engine modeL It is also shown that the truncated Kalman filter may 
provide a more accurate way of incorporating inequality constraints than other constrained filters (e.g. the 
projection approach to constrained filtering). 

Keywords: Kalman filter: state constraints; estimation; probability density function: gas turbine engines; health 
monitoring; optimal filtering; constrained filtering 

I. Introduction 

For linear dynmnic systems with white process and 
measurement noise, the Kalman filter is an optimal 
estunator. However, in the application of Kahnan 
filters there is often known model or signal information 
that is either ignored or dealt with heuristically 
(Massicotte, Morawski and Barwicz 1995), This has 
resulted in recent efforts to incorporate constraints in 
the Kahnan filter. For example, a projection method 
can be used to find the optimal way to incorporate 
hard inequality constraints on the states (Simon and 
Simon 2005). Another way of incorporating con­
straints is to use a regularisation method to enforce a 
soft limit on the changes of the state variables \vith 
respect to time (Simon and Simon 2006), Yet another 
approach is the use of ridge regression to bias estimates 
with low certainty towards their constraints (Dewallef, 
Leonard and Mathioudakis 2004), Other approaches 
to incorporating constraints in filtering algorithn1s 
include constraints on the mean squared values of the 
estimates (Vathsal and Sarma 1974) and constraints on 
the variance of the estimation error (Wang and Shu 
2000). Non-linear ways of incorporating state con­
straints include moving horizon estimation (Rao, 
Rawlings and Mayne 2003; Goodwin, De Dona, 
Seron and Zhuo 2005) and particle filtering 

(Simon 2006), These methods are more rigorous than 
Kalman filter modifications, but the trade-otT is that 
they can require a lot of computational effort. 
Therefore they may not be feasible, depending on the 
application. 

This article presents a way to generalise the Kalman 
filter such that knmvn inequality constraints among the 
state variables are satisfied by the state variable esti­
mates. The constraints that are imposed are hard 
constraints in that they are strictly enforced. However~ 
in contrast to the projection method of constraint 
enforcement (Simon and Sunon 2005), the state esti­
mates are not projected onto the constraint surface. 
Rather, the probability density function (PDF) that is 
computed by the Kahnan filter is tmncated at the con­
straint edges, and the constrained state estimate 
becomes equal to the mean of the truncated PDF. 
This idea is based on a previously published method 
(Shimada, Shirai, Kuna and Miura 1998) but has been 
modified to handle t\vo-sided inequality constraints. 

The application considered in this article is aircraft 
turbofan engine health parameter estimation (Doel 
1994a). Health parameters represent engine component 
et1iciencies and flow capacities. The performance of 
gas turbine engines deteriorates over time. This dete­
rioration reduces the fuel economy of the engine. 
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Airlines periodically collect engine data in order to 
evaluate the health of the engine and its components. 
The health evaluation can then be used to determine 
maintenance schedules. This offers the benefits of 
improved safety and reduced operating costs. The 
money-saving potential of such health evaluations is 
substantial, but only if the evaluations are reliable. 
The data used to perform health evaluations are 
typically collected during night and later transferred 
to ground-based computers for post-flight analysis. 
Data are collected each flight at the same engine 
operating point and corrected to account for variabil­
ity in ambient conditions. Variolls algorithms have 
been proposed to monitor engine health, such as 
weighted least squares (Doel 1994b), expert systems 
(DePold and Gass 1999), Kalman filters (Volponi, 
DePolcL Ganguli and Daguang 2003). neural networks 
(Volponi et al. 2003), fuzzy logic (Ganguli 2003) and 
genetic algorithms (Kobayashi and Simon 2001). 

It could be argued that static estimation methods 
(e.g. least squares) can be used to effectively estimate 
engine health, and that dynamic methods such as 
Kalman filtering are not needed. However, if we 
consider on-board real-time estimation, a dynamic 
estimator such as a Kalman filter gives better results 
than a static estimator. More accurate health param­
eter estimation gives more accurate on-board engine 
models, which are then used to process transient, 
dynamic input data. 

This article develops the truncation method of 
constrained Kahnan filtering, and then applies it to the 
estimation of engine health parameters. \Ve use 
heuristic knowledge of the health parameter dynamics 
to constrain their estin1ate. For example, we know that 
health parameters generally do not improve with time. 
Engine health generally degrades over time, and we can 
incorporate this information into state constraints to 
improve our health parameter estimation. (This is 
assuming that no maintenance or engine overhaul is 
performed.) It should be emphasised that in this article 
we are confining the problem to the estimation 
of engine health parameters in the presence of degra­
dation only. There are specific engine faults that 
can result in abrupt shifts in filter estimates, possibly 
even indicating an apparent improvement in some 
engine components. An actual engine performance 
monitoring system would need to include additional 
logic to detect and isolate such faults (Ganguli and 
Dan 2004). 

Section :2 derives the constrained Kalman filter. 
Section 3 discusses the problem of turbofan health 
parameter estimation, along with the dynamic model 
that we use in our simulation experiments. Although 
the health parameters are not state variables of the 
model, the dynamic model is augmented in such a 

way that a Kalman filter can estimate the health 
parameters following the approach described in previ­
ous publications (Friedland 1969: Lambert 1991). We 
show how this problem can be expressed in a way that 
is compatible with the constraints discussed in 
Section 2. Section 4 presents some simulation results 
based on a turbofan model linearized around a known 
operating point. We show (for our problem) that the 
truncated Kahnan filter can estimate health parameters 
better than the unconstrained filter, and it can also 
estimate health parameters better than other con­
strained filters. Section 5 presents some concluding 
remarks and suggestions for further \,",ork. 

2. Constrained Kalman filtering 
Consider the discrete linear time-invariant system 
given by 

x(k + 1) = Ax(k) + Bu(k) + w(k) 
(1)

y(k) = Cx(k) + elk), 

where k is the time index, x is the state vector, u is the 
known control input and y is the measurement. The 
signals (w(k)} and (elk)} are uncorrelated zero mean 
Gaussian noise input seq uences with covariances 

£[W(k)wT(m)] = Q8km 

E[e(k)eT (m)1 = R8km (2) 

E[w(k)eT(m)] = 0, 

where Er·] is the expectation operator and Skm is the 
Kronecker delta function (Skm -------: 1 if k -------: fn, Sktn -------- 0 
otherwise). The Kalman filter equations are given as 
follows (Simon 2006a): 

K(k) = A2:(k)CT(C2:(k)CT + R)-l 

'C(k + 1) = Ax(k) + Bu(k) + K(k)(y(k) - Cx(k)) (3) 

2:(k + 1) = (A2:(k) - K(k)C2:(k))AT + Q, 

where the mter is initialised with -'(0) = E [x(O)] and 
2:(0) .•••• E[(x(O) - x(O))(x(O) _X(O))T]. The Kalman 
filter estimate x(k) is a Gaussian random variable 
with a mean of x(k) and a covariance matrix of 2:(k). 

Now suppose that we are given the s scalar 
constraints 

\\,'here am(k) < bm(k). This is a two-sided constraint on 
the linear function of the state ¢~(k)x(k). If we have 
only a one-sided constraint, then we set an/k) == -00 or 
bn/k) == 00. Now suppose at time k that we have some 
estimate x(k) with covariance 2:(k). The problem is to 
truncate the Gaussian PDF N(x(k),2:(k)) at the s 
constraints given in (4), and then find the mean i(k) 



and covariance 'E(k) of the truncated PDF. These new 
quantities, x(k) and 'E(k), become the constrained state 
estimate and its covariance. 

In order to make the problem tractable, we will 
define xi(k) as the state estimate after the lirst 
i constraints of (4) have been enforced, and 'Ei(k) as 
the covariance of S:1{k). \Ve therefore initialise 

• 0 

x,(k) = £(k) (5) 

'Ei(k) •••• E(k). 

The seq uence of steps that follows is intended to 
transfonn the state vector so that the constraints are 
decoupled. That is, we will obtain s transformed 
constraints, with each constraint involving only one 
transfonncd state. \Vith this decoupling we will be able 
to easily enforce the constraints one transfOlmed state 
at a time. \Ve perfonn the transformation 

(k) - w- 1!2 TT 'k) - (k))0Zi" / -,3iV/' i i(X(, -Xi., /' (6) 

The reason for this transformation is that only one 
element of z/k) is constrained, which makes the 
required PDF truncation tractable. Ii and tVf are 
obtained from the Jordan canonical decomposition 
of 'EJk), 

(7) 

We see that Tf is orthogonal and TVf is diagonal 
(therefore its square root is very easy to compute). Sf 
is obtained by using (Tram Schmidt orthogonalisation 
(Moon and Stirling 2(00) to find the orthogonal Si that 
satisifes 

S,W;/'T{¢,(k) = [(¢{(k)'E/k)q)j(k))1!2 0 0 r 
(8) 

With these definitions we see that the upper bound (4) 
is transformed as 

¢{(k)x(k):S b,(k) 

¢{(k)Tj wi!'S{zi(k) H){(k)x,(k):s b,(k) 

(q){(k)T, w;!' Silz,(k) < Mk) - q){(k)x,(k) 
(¢{(k)'E,(k)¢,(k)) 1/2 (¢{(k)'Ei(k)¢i(k)yIi2 

[1 0 ... O]z,(k):s di(k) 
(9) 

where d,(k) is defined by the a bove equation. Similarly 
we see that 

ai(k) - ¢!(k)ii(k)
[1 0 OJ7(k)- > ' 

.~, . - (¢{(k)'E,(k)¢i(k))1!2' (10) 

2: CAk) 

where elk) is defined by the above equation. We 
therefore have the normalised scalar constraint 

e,(k) :s [1 0 o]z,(k) :s d,(k). (1) 

[,emma 1: z/k) has an identity covariance matrix, and 
only its first element C(fJ1 have a non-zero mean. 

Proof: See Appendix 1. 

Since z,{k) has an identity covariance matrix, 
its elements are statistically independent of each 
other. Only the first element of zi(k) is constrained, 
so the PDF truncation reduces to a one-dimensional 
truncation. 

The constraint says that the first element of zi(k) 
must lie between e;(k) and di(k). We therefore remove 
that part of the Gaussian PDF that is outside of the 
constraints and compute the area of the remaining 
portion of the PDF as 

1d,(k) 1 . 

-=exp(-i;2/2)di; 


(,(k) J2;r 

= ~ [erf(di(k)/v'2) - erf(ci(k)/v'2)j, (12) 

where erf() is the error function. defined as 

o 

erf(l) = Jrr i,t exp(-r')dr. (13) 

Vole nODnalise the truncated PDF so it has an area of 
one, and we lind that the truncated PDF (i.e. the con­
strained PDF of the first element of zlk)) is given as 

PDF(\) = ai exp(_1;2 /2) 

-/i (14) 

a, = vrr[erf(d,(k)/-/2) _ erf(ci(k)/-/2)]' 

\Ve can compute the mean and variance of the first 
element of zJk) after constraint enforcement as 

1d,(k) 
ILi = Ci, I; exp(_I;' /2) dl; 

c,(k) 

= a'[exp(-c;(k)/2) - exp(-di(k)/2)i 
~d,(k)

G7 = a, (i; _1'')' exp(-i;2/2)dl; (15)I.' c,(k) 

= a,l exp(-c;(k)/2)(ei(k) - 21I,) 

- exp(-d;(k)/2)(di(k) - 21';)1+ 1'; + 1 

The mean and covariance of the transformed state 
estimate, after enforcement of the first constraint, 
are therefore given as 

"i+1(k) .•••• [IIi 0 Or 
(16) 

(:jI1(k) = diag(at, 1, ... ,1). 
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Figure 1. The unconstrained estimate violates the constraints. The constrained estimate is the centroid of the truncated PDF: 
(a) Unconstrained PDF; (b) contrained PDF. 

We then take the inverse of the transfonnation (6) to 
find the mean and variance of the state estimate after 
enforcement of the first constraint. 

x'+I(k) = T,W)/2S;z'+I(k)+x,(k) 
(17) 

t'+I(k) = T,W) f2 S;C'+I(k)S,W) f2 T;' 

We then increment i by one and repeat the process 
of (6) (17) to obtain the state estimate after enforce­
ment of the next constraint. Note that xo(k) is the 
unconstrained state estimate at time k, Xl (k) is the state 
estimate at time k after the enforcement of the first 
constraint, x2(k) is the state estimate at time k after the 
enforcement of the first two constraints, etc. After 
going through this process s times (once for each 
constraint) we have the final constrained state estimate 
and covariance at time k. 

x(k) = x,(k) 
(18)

t(k) = t,(k) 

After this procedure, all of the original constraints of 
(4) will be satisified, assuming that they are linearly 
independent. 

Figure 1 shows an example of a one-dimensional 
state estimate before and after truncation. Before 
truncation the state estimate is outside of the state 
constraints. After truncation, the state estimate is set 
equal to the mean of the truncated PDF. This figure 
illustrates the motivation behind the constraint 
enforcement method presented in the preceding equa­
tions. The unconstrained state is assumed to be 
Gaussian. The Gaussian PDF is truncated at the 
constraint boundaries, and the constrained estimate is 
equal to the mean of the truncated PDF. An initial 
consideration of Figure l(a) might indicate that the 
constrained estimate should lie on the constraint 
boundary. In fact, this is exactly the philosophy of 

the projection approach to constrained filtering 
(Simson and Simon 2005). However, the PDF trunca­
tion approach considers both the constraints and the 
unconstrained Kalman filter's Gaussian distribution of 
the estimate. The resulting constrained estimate lies at 
a place within the constraint boundaries that is 
determined by both the information from the uncon­
strained filter and the constraints. Simulation results 
presented later in this article show that this PDF 
truncation approach outperfonns the projection 
approach for turbofan engine health estimation. 

Figure 2 shows another example of PDF trunca­
tion. In this case the unconstrained state estimate is 
inside the state constraints. However, truncation 
changes the PDF and so the constrained state estimate 
changes to the mean of the truncated PDF. It could be 
argued that the estimate should not be changed if it 
satisfies the constraints. In fact, the PDF truncation 
filter could be implemented either way. Whether to 
modify estimates that already satisfy the constraints 
(as shown in Figure 2), or leave those estimates 
unchanged, is an implementation decision that depends 
on the application and the engineer's judgement. 

2.1. Bias 
Probability density function truncation imposes a bias 
on the state estimate. The unconstrained Kalman filter 
has the property that the state estimate is the mean of 
the true state conditioned on the measurements. 
However, the truncated state estimate is biased. This 
is a drawback to this method of constraint enforcement, 
especially since other methods of constraint enforce­
ment preserve unbiasedness (Simon and Simon 2005). 
However, if other features of the estimate are more 
important to the user than unbiasedness (e.g. root mean 
square (RMS) estimation error) then the truncation 
approach to constraint enforcement may still be 
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Figure 2. The unconstrained estimate satisfies the constraints. Nevertheless, the truncation approach to constrained estimation 
shifts the estimate to the centroid of the truncated PDF: (a) Unconstrained PDF; (b) contrained PDF. 

attractive. It is shown later in Section 4 that the 
truncation approach outperfonns the projection 
approach in our example in terms of RMS estimation 
error in spite of the biasedness of the truncated state 
estimate. 

2.2. Order of constraint application 
Since the algorithm of (5) (18) is non-linear, the 
constrained state estimate depends on the order in 
which the constraints are applied. The constraints will 
all be satisfied regardless of the order of constraint 
application, but the final state estimate may change if 
the order is changed. This shows that, in general, PDF 
truncation is not optimal. However, if the constraints 
are decoupled, as they are in the turbofan engine health 
estimation problem discussed in Section 3, then the 
order of constraint application does not matter. 

2.3. Non-recursiveness of PDF truncation 
If estimates that satisfy the constraints are modified via 
PDF truncation, as shown in Figure 2, it is important 
that the unconstrained Kalman filter be run indepen­
dently of the truncation process. That is, the truncated 
state estimate and covariance i(k) and :E(k) must not 
be used as the starting point for the unconstrained 
Kalman filter iteration in (3). This is because the 
information in the constraint at each time step should 
be limited to that specific time step, and should not be 
used (even implicitly) in succeeding time steps. The 
constraint at time k should be used only at time k, and 
should not have even an indirect effect on the filter at 
later time steps. 

To illustrate this point, suppose that we use the 
constrained a posteriori state estimate to obtain the a 
priori estimate at the next time step. Consider the 
noise-free scalar system Xk+ 1 = Xk and the constraint 

Xk 2: O. Suppose that the PDF of the unconstrained a 
priori estimate is zero-mean with a variance of 1. If the 
next measurement is infonnation-free (i.e. R = (0) the 
a posteriori estimate is the same as the a priori estimate. 
The Xk:::: 0 constraint then gives a constrained estimate 
with a mean of ~2/rr and a variance of (rr-2)jrr. After 
the next time update and information-free measure­
ment, we truncate the PDF again. The mean increases 
and the variance decreases. Continuing this process 
gives a series of supposedly normal distributions with 
a mean that increases monotonically and a variance 
that decreases monotonically. The problem is that the 
information in the constraint was used recursively. 

If the engineer chooses to not modify those state 
estimates that satisfy the constraints, then constrained 
state estimates could be recursively fed back into the 
Kalman filter algorithm without any problems. In that 
case only estimates that violate the constraints would 
be modified, which is similar to other approaches of 
constrained estimation (e.g. the projection approach 
(Simon and Simon 2005) and moving horizon estima­
tion (Rao et aL 2003)). 

2.4. Non-linear constraints 
Although we have considered only linear state 
constraints, it is not conceptually difficult to extend 
this method to non-linear constraints. If the state 
constraints are non-linear they can be linearised as 
discussed in Simon and Chia (2002). The PDF trun­
cation method has been extended to non-linear 
unscented Kalman filters in Teixeira, Chandrasekar, 
Torres, Agnirre and Bernstein (2009). 

3. Tnrbofan engine health monitoring 

Figure 3 shows a schematic representation of an aircraft 
turbofan engine (Parker and Guo 2003; Parker and 



Figure 3. Schematic representation of a turbofan engine. 

Melcher 2004). A single inlet supplies airflow to 
the fan. Air leaving the fan separates into two streams: 
one stream passes through the engine core, and the 
other stream passes through the annular bypass duct. 
The fan is driven by the low pressure turbine. The air 
passing through the engine core moves through the 
compressor, which is driven by the high pressure 
turbine. Fuel is injected in the main combustor 
and burned to produce hot gas for driving the 
turbines. The two air streams combine in the augmentor 
duct, where additional fuel is added to further 
increase the air temperature. The air leaves the 
augmentor through the nozzle, which has a variable 
cross-section area. 

The simulation used in this article is a gas turbine 
engine simulation software package called Modular 
Aero Propulsion System Simulation (MAPSS) (Parker 
and Guo 2003; Parker and Melcher 2004). MAPSS is 
written using Simulink®. The MAPSS engine model 
is based on a low frequency, transient, performance 
model of a high-pressure ratio, dual-spool, low-bypass, 
military-type, variable cycle, turbofan engine with a 
digital controller. MAPSS does not simulate a specific 
engine, but instead provides a simulation environment 
for a generic engine. The controller update rate is 
50 Hz, and the component level model balances the 
mass/energy equations of the system at a rate of 
2500 Hz. The three state variables used in MAPSS are 
low-pressure rotor speed (XNL), high-pressure rotor 
speed (XNH) and the average hot section metal 
temperature (TMPC) (measured from aft of the 
combustor to the high pressure turbine). The discre­
tised time invariant equations that model the turbofan 
engine can be summarised as follows: 

x(k + I) = f[x(k), u(k),p(k)] + wx(k) 

p(k + 1) = p(k) + wp(k) (19) 

y(k) = g[x(k), u(k),p(k)] + e(k) 

where k is the time index, x is the 3-element state 
vector, u is the 3-element control vector, p is the 
10-element health parameter vector and y is the 
II-element measurement vector. Note that the noise 
terms and health parameter degradation are not mod-
elled in MAPSS but have been added to the model for 
the problem studied in this article. The health param­
eters change slowly over time. Between measurement 
times their deviations can be approximated by the zero 
mean noise wp(k) (although in our study the health 
parameters only changed once per flight). The noise 
term wik) represents inaccuracies in the system model 
and e(k) represents measurement noise. 

The states, controls, health parameters and mea-
surements are summarised in Tables 1 4, along with 
their values at the nominal operating point considered 
in this article, which is a power lever angle of 21 0 at sea 
level static conditions (zero altitude and zero mach). 
Table 4 also shows typical signal-to-noise ratios for the 
measurements, based on NASA experience and pre-
viously published data (Merrill 1984). Sensor dynamics 
are assumed to be high enough bandwidth that 
they can be ignored in the dynamic equations. In 
Tables 1 4, LPT is used for Low Pressure Turbine. 
HPT is used for High Pressure Turbine, LPC is used 
for Low Pressure Compressor and HPC is used for 
High Pressure Compressor. 

We linearise and augment (19) to obtain the system 

X(k+ 1)] = [AI A 2 ][X(k)] [B][ uk]
[ p(k+1) 0 I p(k) + 0 () 

+ [Wx(k)] 
wp(k) 

X(k)]y(k) = [CI C2 ] [ p(k) + e(k) 

= c[ X(k)] + e(k) 
p(k) 

(20) 



Table 1. Modular aero propulsion system simulation turbo­
fan model states and nominal values. 

State Nominal value 

LPT rotor speed 7264 RPM 
HPT rotor speed 12152 RPM 
Average hot section metal temperature 1533c R 

A Kalman filter can be applied to these linearised 
equations to estimate the state vector .x and the health 
parameter vector p. The system matrices are given in 
Appendix 2. 

Constraints can be incorporated in the state 
estimator by using heuristic knowledge of the behav­
iour of the health parameters. For example, it is known 
that health parameters generally do not improve with 
time. [t is also expected that they degrade within a 
specific envelope. 

Pm(k) Sp'::,~(k), 111 E [1-10] 
(21)

Pm(k) ::: p:n(k). 

This envelope constraint is in the linear form required 
in the constrained filtering problem statement (4) and 
is therefore amena ble to the approach presented in this 
article. Note that this technique of constrained esti­
mation does not take into account the possibility of 
abll1pt changes in health parameters due to discrete 
damage events. That possibility must be addressed by 
some other means (e.g. residual checking (DoeI1994a)) 
in conjuction with the methods presented in this article. 

4. Simulation results 

We simulated the methods discussed in this article 
using :NIATLAB®. \Ve measured a steady state 3 s 
burst of engine data at 10Hz during each night. 
These routine data collections \vere performed over 100 
flights at the single operating point shown in Tables 1, 
2 and 4, except the engine's health parameters 
deteriorated a small amount each night. We simulated 
a linear-pIus-exponential degradation of the 10 health 
parameters over 100 nights. The simulated health 
parameter degradation was representative of turbofan 
performance data reported in the literature (Sasahara 
1985). Figure 4 shows the degradations of all 1 0 health 
parameters that we used in our simulations. 

In the Kalman filter we used a one-sigma state 
process noise equal to 0.005%) of the nominal state 
values to allow the filter to be responsive to changes in 
the state variables. \Ve also set the one sigma process 
noise for each component of the health parameter 
vector to 0.01 %1 of the nominal parameter value. 

Table 2. Modular aero propulsion system simulation tur­
bofan model controls and nominal values. 

Control Nominal value 

Main burner fuel How 2454lbmhr-1 

Variable nozzle area 343 in:! 
Rear bypass door variable area 154in2 

Table 3. l\'lodular aero propulsion system simulation turbo­
fan model health parameters and nominal values. 

Health parameter Normalized value 

Fan airflow 
Fan efficiency 
Booster tip ai rHow 
Booster tip efficiency8. 
Booster hub airflmv 
Booster hub efficiency 
High pressure turbine airHow 
High pressure turbine eff1ciency 
Low pressure turbine airflow 
L,ow pressure turbine efficiency 

Note: 9.The fourth health parameter is not yet implemented in 
MAI'SS. 

Table 4. Modular aero propulsion system simulation turbo­
fan model measurements, nominal values and signal-to-noise 
ratios. 

Nominal 
Measurement value SNR 

LPT exit pressure 19.33 psia lOll 
LPT exit temperature 1394C R 100 
Percent low pressure spool rotor 63.47% 150 

speed 
HPC inlet temperature 580.8c R 100 
HPe exit temperature 965JoR 201l 
Bypass duct pressure 20.66 psia 100 
Fan exit pressure 17.78 psia 200 
Booster inlet pressure 20.19 psia 200 
HPC exit pressure 85.06 psia 100 
Core rotor speed 12152 RPM 150 
LPT blade temperature 1179°l{ 71l 

Note: SNR values are linear (not in decibels). 

These values were obtained by manual tuning. They 
were small enough to give reasonably smooth esti­
mates, and large enough to allow the filter to track 
slowly time-varying parameters. The Kalman filter 
gain \vas time varying, although it converged to steady 
state after about 50 flights. The health parameter 
estimates were updated once per time step (i.e. 30 times 
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Figure 4. This figure shows the true health parameter 
deviations that were simulated for each of the 10 health 
parameters. 

per flight). In the enforcement of the constraints in (21) 
we chose the constraint envelope as follows: 

(I) 	For the turbine airflow health parameters (m E 
[7,9]), whose values increase with time (i.e. an 
increase corresponds to a degradation), pr;:x(k) 
was set equal to a linear-plus-exponential 
degradation that was initialised to zero (i.e. 
p:;:~(O) = 0) and reached a maximum of 6% 
after 500 flights, while pc;::n(k) was set equal to 0 
for all k. 

(2) 	 For the other health parameters (m E [1 6, 8, 
10]), whose values decrease with time (i.e. a 
decrease corresponds to a degradation), p~n(k) 
was set equal to a linear-plus-exponential 
degradation that was initialised to zero (i.e. 
pc;::n(o) = 0) and reached a maximum magni­
tude of 6% after 500 flights, while p~(k) was 
set equal to 0 for all k. 

The constraint envelope was chosen on the basis 
of domain knowledge of the turbofan engine health 
estimation problem, and manual tuning. If the 
constraints are too loose then they do not provide 
any improvement over unconstrained filtering. If the 
constraints are too tight then they overly restrict the 
state estimates and do not make enough of an 
allowance for random variations in the health 
parameters. 

Figure 5 shows a typical plot of health parameter 
deviation, along with the constraint envelope, the 
unconstrained estimate and the constrained estimate. 
The initial health parameter estimation errors were 
assumed to be zero. Note that the true health param­
eter changes once per flight, but the filter estimate is 
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Figure 5. In this example, constraint enforcement decreases 
the RMS estimation error from 12.2% to 9.2%. 

updated each time step (i.e. 30 times per flight). It is 
seen that even though the unconstrained estimate lies 
within the constraint envelope, the constrained esti­
mate is more accurate. 

Figure 6 shows a different type of example where 
the true health parameter deviation is closer to the 
constraint envelope. In this case there are times when 
the unconstrained estimate lies outside of the con­
straint envelope, but the enforcement of constraints 
forces the constrained estimate to remain within the 
envelope. 

Note that Figures 5 and 6 cannot be compared 
directly with our previous results in Simon and Simon 
(2006). First, the results in Simon and Simon (2006) 
were obtained with different turbine engine simulation 
software. Second, the estimation error percentages in 
Simon and Simon (2006) were calculated relative to 
nominal health parameter values, while the percentages 
in this article are calculated relative to health param­
eter degradation magnitudes. For example, suppose 
that nominal airflow is 100kgs-I, it degrades by 
1 kgs-I, and we estimate it to within 0.1 kgs- 1 That 
estimation accuracy would be reported in Simon and 
Simon (2006) as a 0.1 % estimation error (i.e. 0.1/100), 
while it is reported in this article as a 10% estimation 
error (i.e. 0.1/1). 

We obtained estimates of the health parameters 
using unconstrained (standard) Kahnan filtering, 
constrained Kaman filtering using the projection 
approach (Simon and Simon 2005) and constrained 
Kalman filtering using the PDF truncation approach. 
We ran 100 Monte Carlo simulations, each simulation 
consisting of 100 flights and the same health parameter 
degradation, but different realisations of the 
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Figure 6. In this example, constraint enforcement decreases 
the RMS estimation error from 13.4% to 6.6%. 

measurement noise. Table 5 shows the perfonnance of 
the filters averaged over 100 Monte Carlo simulations 
of 100 flights each. The standard Kahnan filter 
estimates the health parameters to within 7.3% of 
their final degradations. The projection-based con­
strained filter estimates the health parameters to within 
6.5% of their final degradations. The truncation 
approach to constrained filtering estimates the para­
meters to within 6.0% of their final degradations. 
These numbers show the improvement that is possible 
with the truncation approach to constrained Kalman 
filtering. 

These examples involve processing 3 s of data each 
flight, which is similar to standard ground-based 
estimation based on snap-shot measurements. In this 
scenario, it could be argued that static estimators (e.g. 
least squares) would work just as well as a Kahnan 
filter. However, when we consider on-board real-time 
estimation, a Kalman filter will give better perfor­
mance than a static estimator. Dynamic estimators can 
be used to update health estimation in flight, which 
could then be input to a flight control algorithm. 

A companson between other constrained 
approaches to filtering for aircraft turbofan engine 
health estimation can be found in the literature. 
These methods include the projection approach 
(which is compared with PDF truncation here) and 
the switched projection approach (Simon and Simon 
2006), the use of soft constraints (Simon and Simon 
2006), constrained H= filtering (Simon 2006b) and 
ridge regression (Dewallef et aL 2004). A general 
comparison of different methods of constrained 
Kalman filtering, including the PDF truncation 
method presented here, can be found in Simon (2008b). 

Table 5. Percent RMS health parameter estimation errors of 
the Kalman filters averaged over 100 Monte Carlo 
simulations. 

Estimation error (%) 

Unconstrained Projection Truncated 
Health parameter filter filter filter 

Fan airflow 12.6 8.7 7.5 
Fan efficiency 7.1 6.4 6.5 
Booster tip airflow 11.3 ILl 9.3 
Booster tip efficiencya NjA NjA NjA 
Booster hub airflow 7.2 6.6 7.0 
Booster hub efficiency 3.9 3.2 3.8 
High pressure turbine 4.2 3.2 3.9 

airflow 
High pressure turbine 4.3 4.0 3.9 

efficiency 
Low pressure turbine 3.8 3.5 3.5 

airflow 
Low pressure turbine 11.4 11.3 8.6 

efficiency 
Average 7.3 6.5 6.0 

Note: The estimation error is measured as I(p - j3)/P! I, where 
P is the true health parameter value, j3 is the estimated health 
parameter value, and pjis the health parameter value at the 
end of the simulation. 

aThe fourth health parameter is not yet implemented in 

MAPSS. 

4.1. Determination of constraints 
The p'::,~(k) and p,;:n(k) constraints are system depen­
dent and were obtained in this example using domain 
knowledge and tuning. Constraints that are too loose 
or too tight will result in worse performance as shown 
in Table 5. The results in Table 5 were obtained with 
constraints of 0% and 6%, as discussed at the 
beginning of this section. If the constraints are relaxed 
to 3% and 9%, the average constrained perfonnance 
degrades to 7.3%, which is the same as the uncon­
strained filter, showing that loose constraints do not 
provide any improvement relative to unconstrained 
filtering. If the constraints are tightened to 0% and 
2%, the average constrained performance degrades to 
10.6%, which is worse than the unconstrained filter. 
Constraint tuning affects the performance of both the 
projection approach and the PDF truncation approach 
to constrained filtering. However, for all reasonable 
constraint envelopes that we investigated, the PDF 
truncation approach outperformed projection by an 
amount similar to that seen in Table 5. 

4.2. Estimation of slower health degradations 
The robustness of constrained Kalman filtering 
to varying rates of health parameter degradation 
is suggested by further simulation results. The 



simulations discllssed above were repeated except that 
the health parameters degraded only 10%; as fast as 
shown in Figure 4 but over 1000 night cycles. In this 
case the standard unconstrained Kalman filter esti­
mated the health parameters with an average RMS 
error of 6.7%

, while the PDF truncation filter 
estimated the health parameters with an average 
RMS error of 5.0% (averaged over 100 Monte Carlo 
simulations). Comparing these results with Table 5 
shows that both standard unconstrained Kalman 
filtering and PDF tnmcation 111tering perform better 
\",hen the health parameter degradation is slower. 

4.3. Computational effort 
The improved performance of the constrained filter 
comes with a price, and that price is computational 
effort. The algorithm outlined in (6) (17) requires 
Jordan decomposition and Gram Schmidt orthogona­
lisation. However, if the constraints of (4) are 
decoupled (as they are in our example) then the com­
putational effort can be largely reduced by ignoring the 
cross-covariance terms in the state estimator and hence 
avoiding these matrix computations. In any case, 
computational effort is not a critical issue for turbofan 
health estimation since the filtering is perfonned on 
ground-based computers after each night. 

In this example, the projection approach to 
constrained filtering requires a negligible mnount of 
additional computational effort relative to uncon­
strained filtering. This is because the constraints are 
decoupled. However, the PIJF truncation approach 
discussed in this article requires a noticeable amount of 
additional computational effort. This is primarily 
because of the error function and exponential calcula­
tions in (14) and (15). (If the constraints were coupled, 
then the computational effort would be primarily due 
to the Jordan decomposition and Gram Schmidt 
orthogonalisation.) For the lOO-flight simulations 
performed for this article on a 1.5 GHz PC with 
I GB of RAM. unconstrained Kalman filtering 
required 1.8 s of CPlJ time and the PDF truncation 
approach required 5.6 s of CPU time. Even with its 
increased complexity, CPU time will probably not be a 
primary concern for the tnlncation approach to 
constrained filtering. For exmnple, extrapolating the 
CPU times obtained above, we see that processing data 
for 1000 flights of 1000 engines would require 16 h of 
CPt) time using the truncation approach to con­
strained filtering. Also, since the Kahnan filter is 
applied recursively, the health parameter estimates are 
updated with only a small num ber of new data points 
each flight (30 measurements per flight in this article). 

However, a relinearisation process should be per­
formed every few flights in order to obtain the best 
possible estimation performance (Simon 2008a). 
If CPt) time is a consideration, fast table lookups for 
the error function and exponential calculations in (14) 
and (15) could be implemented. 

4.4. Abrupt faults 
The Kalman filter works well only if the assumed 
system model matches reality fairly closely. This 
implies that the system model should be relinearised 
periodically in order to maximise estimation perfor­
mances (Simon 2008a). The method presented in this 
article will not work well by itself if there are large 
sensor biases or hard faults due to severe component 
failures. A mission-critical implementation of a 
Kalman filter should always include some sort of 
additional residual check to verify the validity of the 
Kalman filter results (Gelb 1974), particularly for the 
application of turbofan engine health estimation 
considered in this article (Doel 1994a). 

5. Conclusion 

\Ve have presented a PDF truncation method for 
incorporating constraints into a Kahnan filter. If the 
system whose state variables are being estin1ated 
has known state variable constraints, then those 
constraints can be incorporated into the Kahnan filter 
as shown in this article. For the aircraft turbofan engine 
health estimation problem, the use of constraints 
generally improves the accuracy of health estimation. 

'We have seen that the constrained filter requires 
more computational effort than the standard Kahnan 
filter. This is due to the addition of s matrix 
decompositions and associated computations that 
must be performed at each time step (one for each 
constraint). The engineer must therefore perfonn a 
tradeoff bet\veen computational effort and estimation 
accuracy. 

The Kalman filter works well only if the assumed 
system model matches reality fairly closely. The 
constraint enforcement method presented in this article 
will not work \",ell if there are large sensor biases or 
hard faults due to severe component failures. A 
mission-critical implementation of a Kalman filter 
should always include some sort of residual check to 
verify the validity of the Kalman filter results, partic­
ularly for the application of turbof.:'1n engine health 
estimation considered in this article. 

The method presented in this article changes the 
unconstrained estimate even if the unconstrained 



estimate satisfies the constraints. An improvement 
might be seen if PDF truncation is performed only for 
those estimates that violate the constraints. The desired 
approach depends on if the engineer is more confident 
in the unconstrained state estimate or more confident 
in the constraint information. 
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Appendix 1 
This appendix contains a proof of Lemma 1. First 
we prove the covariance part. of t.he lemma. Note from (6) 
to (7) that 

E[(z,(k) -i,(k))(z,(k) - i,(k)/] _sw-'!lrT'i','(k)TW-1/2S T 

== SW-'; lTT(TWTT)T-1/2S,a' 
-1, (22) 

T\fIle have proved that. the covariance of zi(k) is the ident.ity 
matrL'X. 

Next consider t.he mean of zl(k). \Vhen i = 0, the mean of 
z;(k) is given as 

E(zo(k)) ~ SW'/2TTE(x(lc) .... xo(k)) 

- sw-'/2ri'E(x(k) - ilk)) 
- 0, (23) 

Now we use induction to show t.hat. only t.he first. 
component. of t.he mean of ztCk) can be non-zero. 
For i> 0, suppose that. 'it{k) == [t.L 0 of and 
E(::i_l(k)) == [v 0 of. Then t.he mean of z;(k) is 
gi ven as 

E(z,(k)) _ SW-1/ 2TTE(x(k) - x,(k)) 

_ SW"/2T TE(x(k) ... TW1/2STz,(k) ... X,_llk )) 

- zi(ic) + sw-1/'ri'E(x - ."_l(k)) 

-[IL 0 of+E(z,-,(k)) 

- [IL () O(I[V () O( (24) 

We have proved that only the first element of zlk) can have a 
non-zero rnean. 

Appendix 2 
This appendix gives the matrices t.hat. are used in (20). 

0,9029 0,1)411 (LIl381] 
A1 ~ -0,0069 0,9088 0,0432 

[ - (l,()01J1 -(1,0004 11,9924 

-47,2503 10.0174 -19,6286 -365.4922 116,1297J 
449,5393 -61,9914 302,5021 126,9419 35.4716 

-3,3278 -1.4288 -0,1425 -0,0200 -0,0275 



-0.0034 0.0237' 
(l.OO87 0.0002 (l.OOO2 

(l.OOI6 0.0006 o.cIOO 1 

0.0022 -0.0005 0.0001 

0.4928 0.0181 -0.0024 0.0008[ 0.0805 -0.1557 J 
B ~ (l.()910 0.1678 0.0341 . C\ = (l.OI48 (l.()493 o.cI094 

0.0018 -0.0003 -0.0001 0.0018 0.0000 0.0002 

0.0030 0.0127 0.0048 

0.0012 0.0302 O.c1656 

-0.0172 -0.1098 0.1218 

0.0010 0.0007 0.0004 J 

-2.5330 -21.8759 -64.9562 0.0000 -161.0030 240.9109 -34.5505 160.8764 66.6444 18.8739 

···1.3496 1.1914 0.0113 0.0000 1.1016 0.2965 0.0416 0.1417 1.7128 0.5402 

2.2717 0.2729 ···1.4787 0.0000 1.9038 0.5124 0.0734 0.3334 ----0.2629 0.0053 

5.6643 0.3723 ···1.4596 0.0000 1.6750 0.4341 0.0741 0.2731 0.4132 0.0709 

30.3031 62.3520 6.3313 0.0000 ----7.7714 2.6506 0.3207 ···1.6537 ----3.3329 0.7082 

C2 = 27.3703 -65.9505 -8.5258 0.0000 128.5380 -391.3869 -161.7529 6.3074 0.5187 1.4964 

5.4493 -0.0209 1.9711 0.0000 -0.4037 -0.4561 0.0269 -0.3159 -0.1625 -0.0255 

1.4155 10.5671 -1.0475 0.0000 52.2323 -2.7962 -93.1014 1.9595 0.1496 0.4219 

31.0947 -124.3117 3.6502 0.0000 -201.6218 -340.3074 -76.2822 -101.8336 52.7272 -43.3964 

34.8192 ····182.6730 15.8262 0.0000 531.7816 ···289.2280 9.1885 209.9746 104.9357 88.2893 

2.7499 0.4834 0.8791 0.0000 2.3038 0.5266 0.2287 0.4034 0.1298 0.1472 

(25) 
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