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developed in recent decades [13–22] is an advanced control
approach including recursive feedback control, Lyapunov stability
and adaptive law. In [19,20], the ABC is also combined with neural
and fuzzy integral action. It is shown in [18] that the ABC is
superior to PI/PD or PID controller in its robustness against system
uncertainties. Therefore ABC has been successfully applied to
inverted pendulum, robot manipulator, jet engine, helicopter,
and induction motor drive [13–21]. In this paper, a regular ABC
and a novel adaptive observer based back stepping controller
(AOBC) are developed on the AMB system respectively. While
the regular ABC is based on the feedback information of three
states (displacement, velocity, and current) from AMB, the AOBC is
constructed on only one state (displacement). In [23], some
preliminary results are reported about the application of a regular
ABC to the AMB. The AOBC is an alternative solution to the control
problem of the AMBs where current and velocity are not measur-
able. It is demonstrated in this paper that ABC and AOBC are robust
against both external disturbance and parameter variations. But
the ABC in [13–21] only compensates the variations of system
parameters. Moreover, in this paper, the ABC is constructed based
on position feedback. So a steady state error would be eliminated
in the displacement of the rotor. The control systems0 stability is
verified by Lyapunov0s direct method.

The rest of this paper is organized as follows. The dynamic
modeling of the AMB system is given in Section 2. The design of
ABC is presented in Section 3. The stability and robustness
analyses for ABC are demonstrated in Section 3 as well. The
development of AOBC is presented in Section 4. The simulation
results are shown in Section 5. Concluding remarks and future
research are given in Section 6.

2. Dynamic modeling of an AMB system

In a typical stable AMB model, the rotor is levitated at its
equilibrium point which is positioned right in the middle of two
magnets. The two opposite electro magnets are trying to pull the
rotor on each side in the absence of any external force. When an
external force causes a displacement of the rotor from its equili-
brium position, the displacement will be sensed by a position
sensor. Position sensor outputs the position information to an
electronic control system, which increases the current in one
direction and decreases the current in another direction through
the respective electro magnets. This produces a differential force
to push the rotor to its original position. The signal from the
electronic controller continuously updates the differential force to
stabilize the rotor till no position error (between rotor0s position
and equilibrium position) is sensed.

Fig. 1 shows a simple magnetic actuator model. In this figure,
I is the coil current, g is air gap, N is the number of coil rounds on
the core, Ag represents the cross section area and g is the air gap,
l is the length of the path enclosing a surface through which the

current flows. The magnetic field generated by the current will
create an upward force.

According to Ampere0s loop law, we have (1), where H is the
magnetic field, ns is the number of the segments through the path
l, and nc is the number of different coils.

∑
ns

i ¼ 1
Hili ¼ ∑

nc

i ¼ 1
NiIi ð1Þ

Assuming that the permeability of the mediums m is constant in
each segment, we will have the magnetic flux density Bi given by

Bi ¼ μiHi ð2Þ
Combining (1) and (2) yields

∑
ns

i ¼ 1

Bili
μi

¼ ∑
nc

i ¼ 1
NiIi ð3Þ

For the system in Fig. 1, there are two air gaps and the perme-
ability of air (μg) is much less than that of iron (μ0). Then from (3),
we will have

2
Bg
μg

¼NI ) B¼ μgNI
2g

ð4Þ

The energy E stored in the air gaps is represented by

E¼ Agg
Z

HdB¼ AggHB ð5Þ

where H is constant. The electromagnetic force (F) is the derivative
of the energy E with respect to air gap. Considering (5) and (2),
we can calculate the electromagnetic force F as

F ¼ dE
dg

¼ BHAg ¼ 1
μg
B2Ag ð6Þ

With the equation of flux density in (4), we can rewrite (6) as

F ¼ μgN
2I2Ag

4g2
ð7Þ

In this paper, we use a one degree of freedom (DOF) AMB model as
shown in Fig. 2.

In Fig. 2, Fd is a disturbance force on the rotor, and F1 and F2 are
two opposite electromagnetic forces, whose values are calculated
through (7). The rotor in the middle of two cores is levitated and
rotates in a plane perpendicular to the figure. We can adjust the
input voltage u1 and u2 to control the two currents i1 and i2 so as to
determine the resultant force. In Fig. 2, the displacement of rotor
from nominal position x0 is x, and m is the rotor0s mass. According
to Newton0s law, we have

m€x¼ F1þFd�F2 ð8Þ

Fig. 1. Magnetic actuator. Fig. 2. AMB model.



In Fig. 2, x1 and x2 are the air gaps between the rotor and left and
right stators respectively. Replacing g in (7) with x1 and x2
separately, we can derive the two electromagnetic forces F1 and
F2 as follows:

F1 ¼
μgN

2i1
2Ag

4x12
¼ K

4
i1
x1

� �2

; F2 ¼
μgN

2i2
2Ag

4x22
¼ K

4
i2
x2

� �2

ð9Þ

where K ¼ μgN
2Ag . According to Kirchoff0s Voltage Law (KVL), we

have

u1 ¼ Ri1þLs
di1
dt

þK
2
d
dt

i1
x1

� �
; u2 ¼ Ri2þLs

di2
dt

þK
2
d
dt

i2
x2

� �
ð10Þ

where R is coil resistance, Ls is the self inductance of coil, and
ðk=2Þðd=dtÞði1=x1Þ and ðk=2Þðd=dtÞði2=x2Þ represent the back electro-
motive force (EMF) generated by the air gap flux change.

We suppose (x0, i0, u0) represents equilibrium states. From
Fig. 2, we have

x1 ¼ x0�x; x2 ¼ x0þx ð11Þ

i1 ¼ i0þ i; i2 ¼ i0� i ð12Þ

u1 ¼ u0þu; u2 ¼ u0�u ð13Þ
Substituting (11) through (13) into (10) and substituting (9) into (8),
we will have a nonlinear system model given by

_x¼ v

_v¼ K
4m

i1
x0�x

� �2

� K
4m

i2
x0þx

� �2

þFd
m

_i1 ¼
2ðx0�xÞ

2Lsðx0�xÞþK
�Ri1�

K

2ðx0�xÞ2
vi0þu1

" #

_i2 ¼
2ðx0þxÞ

2Lsðx0þxÞþK
�Ri2�

K

2ðx0þxÞ2
vi1þu2

" #
ð14Þ

where v is the velocity of rotor. We use Jacobian transformation to
linearize the nonlinear model (14) around equilibrium states. The
linearized state equations are given by (15) and (16). The state
matrix is represented by A. Electromagnets are biased with a current
i0. According to [9], as the current i0 is constant, the bias voltage
caused by the coil resistance R is u0¼Ri0. As the current i0 is varying,
the relationship between i0 and u0 is given by (16).

_x
_v
_i

2
64
3
75¼

0 1 0
2ks
m 0 2ki

m

0 �ki
L0 þ Ls

�R
L0 þ Ls

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x

v

i

2
64
3
75þ

0
0
1

L0 þLs

2
64

3
75uþ 0

1
m

0

2
64

3
75Fd ð15Þ

d
dt
i0 ¼

�R
L0þLs

i0þ
1

L0þLs
u0 ð16Þ

where

ks ¼ K
2
i20
x30
; ki ¼

K
2
i0
x20

and L0 ¼
K
2x0

:

The parameter values for the AMB system are given in Table 1.
From (15) and the parameter values listed in Table 1, we can

calculate the eigenvalues of A, which are [202.5781, �179.4896,
�70.1937]. Since there is a positive eigenvalue for matrix A, the
system is inherently unstable. An effective controller is crucial to
stabilize the AMB. The controller is constructed on the linearized
model represented by (15) and (16).

3. ABC design and stability proof

Since AMB is an unstable system, the primary control objec-
tives are to stabilize the AMB and to drive the position of the rotor

to its equilibrium point in the presences of an external disturbance
and system uncertainties. It is also desired that the disturbance be
estimated accurately so it can be canceled in the control effort.
It should be mentioned that a nonlinear ABC has been applied to
an AMB system in [21]. The nonlinear ABC treated the coil current
as input and all the parameters that are associated with the
position of the rotor are taken as unknown dynamics. The problem
stated in [21] is different from the one in this paper because we
take system0s input as voltage and we only assume an external
disturbance as an unknown parameter.

3.1. Model transformation

Adaptive back stepping controller consists of two parts: back-
stepping controller and adaptive laws. The back stepping control-
ler is used to stabilize and control rotor0s position. Adaptive law
estimates the disturbance. The general control Lyapunov function
(CLF) is constructed to include the rotor0s displacement, the errors
between real system states and their stabilizing functions, and the
difference between estimated and real disturbance. In the design
of ABC, the AMB system has to be expressed as a “strict feedback
form” [22,23]. Eq. (15) can be rewritten as

_x
_v
_i

2
64
3
75¼

0 1 0
a 0 b

0 c d

2
64

3
75 x

v

i

2
64
3
75þ 0

0
e

2
64
3
75uþ 0

f

0

2
64

3
75Fs ð17Þ

where

a¼ 2ks
m

; b¼ 2ki
m

; c¼ �ki
L0þLs

; d¼ �R
L0þLs

; e¼ 1
L0þLs

; f ¼ 1
m
;

and Fs ¼ Fd

For creating a “strict feedback form”, (17) can be transformed into
(18), (19) and (20), where

x1 ¼
1
b
x; x2 ¼

1
b
v; x3 ¼ i:

_x1 ¼ x2 ð18Þ

_x2 ¼ x3þ
a
b
x1þθ¼ x3þφ1ðθ; x1Þ ð19Þ

_x3 ¼ u
0 þcbx2þdx3 ¼ u

0 þφ2ðx2; x3Þ ð20Þ
In (19) and (20), the disturbance force and control effort are
defined as θ¼Fs/(bm), and u0 ¼eu respectively. In addition,
φ1ðθ; x1Þ ¼ ða=bÞx1þθ, and φ2ðx2; x3Þ ¼ cbx2þdx3.

3.2. Controller design and stability proof

Our control goal is to regulate the position of the rotor x1 in the
presence of disturbance. In (18), we suppose that the virtual
control x2 can be used to drive x1 to zero. Then we take
α1 ¼ �c1x1, where c1 is a positive real number, as stabilizing

Table 1
Parameter values.

Parameter Symbol Value (unit)

Force–displacement constant Ks 142,860 N/m
Force–current constant Ki 100 N/A
Coil self inductance Ls 120 mH
Air gap inductance L0 70 mH
Mass of rotor m 4.6 kg
Coil resistance R 8 Ω
Nominal air gap x0 0.0007 m
Bias current i0 1 A
Disturbance force Fd 4.6 N



function or virtual controller (virtual state) to replace x2. If x2 ¼ α1,
the desired state x1 will be asymptotically stable by constructing
CLF : V ¼ ð1=2Þx21 (where _V ¼ �c1x21). However, since there is an
error between x2 and α1, we need to construct new state space
equations called “error system” whose states are the differences
between the real states and their stabilizing functions. The error
states should be driven to zeros. The control goal then becomes
asymptotically stabilizing all the states of the error system. We
take the displacement x1 as the first state z1 of the error system,
hence z1 ¼ x1. The error between second state x2 and its stabilizing
function α1 is z2 ¼ x2�α1. Then the CLF consisting of these two
states is

V1 ¼
1
2
z21þ

1
2
z22 ð21Þ

Since (21) is the CLF for (18) and (19), our task is to find a suitable
input denoted by the virtual control x3 to make the derivative of
(21) negative definite so that the two terms z1 and z2 will be driven
to zero eventually. Even if the derivative is negative semi-definite,
LaSalle–Yoshizawa theorem shows that x1 will still be driven to
zero. With (18) and (19), we can calculate the derivative of (21),
which is

_V1 ¼ x1x2þz2 x3þφ1�
∂α1
∂x1

x2

� �
ð22Þ

where x2 ¼ z2þα1: We choose x3 as virtual control signal. If the
second stabilization function is given by

x3 ¼ α2 ¼ �c2z2�φ1þ
∂α1
∂x1

x2�z1; ð23Þ

where c2 is a positive real number, the derivative of V1 will
become �c1z12�c2z22 which is negative definite. However, there
is still an error z3 ¼ x3�α2 being existent. So a new CLF including
all the existing errors and displacement is created as

V2 ¼
1
2
z21þ

1
2
z22þ

1
2
z32 ð24Þ

The derivative of V2 is

_V2 ¼ �c1z21—c2z22þz2z3þz3ðu
0 þφ2� _α2Þ: ð25Þ

If u
0
is chosen as

u
0 ¼ �c3z3�z2�φ2þ _α2; ð26Þ

where c3 is a positive real number, the derivative of V2 will be

_V2 ¼ �c1z21�c2z22�c3z23 ð27Þ

which means the derivative of the final CLF is negative definite. So
the control goal is achieved. The above procedure is under the
consumption that no external disturbance exists. If there is one,
we will have to generate an adaptive law to estimate the
disturbance so as to compensate it. The estimated disturbance
will be functioning as additional feedback information in control
law. The details about disturbance estimation are given as follows.

Let disturbance be θ, and the first estimated disturbance be θ̂1:
We have an estimation error ~θ1 ¼ θ� θ̂1. We add the quadratic
form of ~θ1 to (21) and then form a new CLF (28). Positive real
numbers γi (i¼1, 2, 3) are chosen as adaptive coefficients.

V 0
1 ¼

1
2
z21þ

1
2
z22þ

1
2γ1

~θ
2
1 ð28Þ

Note that the disturbance θ is constant. Then the derivative of V 0
1

becomes

_V
0
1 ¼ z1z2�c1z21þz2 z3þα2þ

a
b
x1þθ� _α1

� �
�1
γ
~θ1
_̂θ1 ð29Þ

We reselect α2 as

α2 ¼ �z1�c2z2�
a
b
x1� θ̂1þ _α1: ð30Þ

Substituting (30) into (29) yields

_V
0
1 ¼ �c1z21�c2z22þz2z3þ ~θ1 z2�

1
γ1

_̂θ1

� �
ð31Þ

In (31), we choose adaptive law as

_̂θ1 ¼ γ1z2 ð32Þ
Then the adaptive law in (32) will make the _V

0
1 negative definite

assuming the term z2z3 in (31) could be canceled in the control
effort later.

Next we would include the quadratic form of z3 into CLF, where
z3 is the difference between x3 and the updated α2 in (30). When
we calculate the derivative of the new CLF (including z23), we need
to use the derivative of updated α2 which becomes

_α2 ¼
∂α2
∂z1

_z1þ
∂α2
∂x2

_x2þ
∂α2
∂θ̂1

_̂θ1

¼ ∂α2
∂z1

_z1þ
∂α2
∂x2

x3þ
a1
b
x1þθ

� �
þ∂α2
∂θ̂1

_̂θ1 ð33Þ

In (33), the disturbance θ has to be replaced by an estimate of it.
We suppose θ̂2 is the second estimate of θ, and the estimation
error is ~θ2 ¼ θ� θ̂2. Then the complete CLF including disturbance
estimation errors can be constructed as

V 0
2 ¼

1
2
z21þ

1
2
z22þ

1
2
z23þ

1
2γ1

~θ
2
1þ

1
2γ2

~θ
2
2 ð34Þ

The control law that was derived before is repeated as follows:

u
0 ¼ �c3z3�z2�φ2þ _α2 ð35Þ

According to (33), we can rewrite (35) as

u
0 ¼ �c3z3�z2�φ2þ

∂α2
∂z1

_z1þ
∂α2
∂x2

x3þ
a
b
x1þ θ̂2

� �
þ∂α2
∂θ̂1

_̂θ1 ð36Þ

Next we differentiate the CLF ðV 0
2Þ in (34) just as we did for the CLF

in (24). Given the control law in (36), the derivative of V 0
2 becomes

_V
0
2 ¼ �c1z21�c2z22�c3z23�

1
γ2

~θ2
_̂θ2�z3

∂α2
∂x2

~θ2 ð37Þ

In order to make (37) negative definite, we need to eliminate the
error parts which contain ~θ2. If we choose adaptive law as

_̂θ2 ¼ �z3γ2
∂α2
∂x2

; ð38Þ

the derivative of V 0
2 will become

_V
0
2 ¼ �c1z21�c2z22�c3z23 ð39Þ
Now that the derivative of the final CLF is negative definite, the

AMB system is successfully stabilized at its equilibrium point. The
control law expressed in (36) and the adaptive laws represented
by (32) and (38) constitute the ABC for the AMB system with an
external disturbance.

3.3. Closed-loop control system

The error system0s state equations are represented by (40),
where Z is error state vector, vector ~θ consists of the estimation
errors of external disturbance, and vector θ̂ includes estimated
disturbances. The definitions of matrices C, D, and E are indicated
in (40). Based on (40), we can use Fig. 3, the closed-loop adaptive
system for ABC, to generate adaptive laws. In Fig. 3, we define
θvector ¼ θ1 θ2

� �T . Fig. 4 shows the closed-loop diagram of ABC
controlled AMB system. In Fig. 4, the reference signal r is zero.
Three system states (x, v, and i) of an AMB plant are used to



construct ABC. An external disturbance is applied to the AMB
system.

_z1
_z2
_z3

2
64

3
75

|fflfflffl{zfflfflffl}
_Z

¼
�c1 1 0
�1 �c2 1
0 �1 �c3

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
_C

z1
z2
z3

2
64

3
75

|fflfflffl{zfflfflffl}
Z

0 0
1 0
0 ∂α2

∂x2

2
64

3
75

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
_D

~θ1
~θ2

" #
|fflffl{zfflffl}

~θ

_̂θ1
_̂θ2

2
4

3
5

|fflfflffl{zfflfflffl}
_̂θ

¼
0 γ1 0
0 0 ∂α2

∂x2

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

_E

z1
z2
z3

2
64

3
75: ð40Þ

4. AOBC design and stability proof

The ABC developed in Section 3 is based on the assumption
that full state feedback is available. However, in reality, only
position output of the AMB is generally measurable. In this section,
we aim to develop an adaptive back-stepping controller with
position feedback only. An observer is designed to observe the
states of current and velocity. The ABC based on observed states
are AOBC. Again, we use Lyapunov0s direct method to develop the
controller and adaptive laws.

4.1. Model transformation

In order to apply AOBC to the AMB system, we need to
transform the system model to an observable form. Conducting
Laplace transform on (15), we have

XðsÞ ¼ 2ki
mLs3þmRs2þ2ðk2i �LksÞs�2ksR

UðsÞ

þ LsþR

mLs3þmRs2þ2ðk2i �LksÞs�2ksR
FdðsÞ ð41Þ

where L¼ L0þLs. The observable canonical form of (41) is

_x1
_x2
_x3

2
64

3
75¼

�R
L 1 0

�2ðk2i � LksÞ
mL 0 1
2ksR
mL 0 0

2
6664

3
7775þ

0
0
2ki
mL

2
64

3
75uþ

0
1
m
R
mL

2
64

3
75Fd

y¼ x1 ð42Þ
In (42), the state variable x1 is displacement, and is also the

system0s output y. However, due to the canonical from realization,
the other two states x2 and x3 in (42) are not velocity and current

any more. Instead, they do not have physical meanings but are just
used to construct the state equations.

Define

ψ1ðyÞ ¼ �R
L
x1; a

0 ¼ R
L
; ψ2ðyÞ ¼

�2ðk2i �LksÞ
mL

x1;

b
0 ¼ �2ðk2i �LksÞ

mL
; ψ3ðyÞ ¼

2ksR
mL

x1; c
0 ¼ 2ksR

mL
;

u}¼ 2ki
mL

u; ϑ¼ Fd
m
:

The parameters a0
; b

0
and c

0 are used for testing the robustness of
the AOBC in the following section. Then the state equations in (42)
can be expanded as

_x1 ¼ x2þψ1ðyÞ
_x2 ¼ x3þψ2ðyÞþϑ

_x3 ¼ ψ3ðyÞþu}þa
0
ϑ: ð43Þ

4.2. Observer design

The state observer can be constructed as

X ¼ ξ0þϑξ1þε ð44Þ
where X ¼ x1; x2; x3

� �T is observed state vector, ξ0 ¼
ξ01 ξ02 ξ03
� �T and ξ1 ¼ ξ11 ξ12 ξ13

� �T are filter vectors, and
ε¼ ε1 ε2 ε3

� �T is the vector of estimation errors. We suppose ki
(i¼1, 2, 3) are real numbers. The elements of vectors ξ0 and ξ1 are
defined as follows:

_ξ01 ¼ k1ðy�ξ01Þþξ02þψ1ðyÞ
_ξ02 ¼ k2ðy�ξ01Þþξ03þψ2ðyÞ
_ξ03 ¼ k3ðy�ξ01Þþu}þψ3ðyÞ

8><
>: ð45Þ

_ξ11 ¼ �k1ξ11þξ12
_ξ12 ¼ �k2ξ12þξ13þ1

_ξ13 ¼ �k3ξ13þa0

8><
>: ð46Þ

Next we will discuss how we choose the constants ki and why the
observer represented by (44), (45) and (46) can successfully
observe the state vector X ¼ x1; x2; x3

� �T .We define a matrix

A0 ¼
�k1 1 0
�k2 0 1
�k3 0 0

2
64

3
75

and select the gain vector K ¼ k1 k2 k3
� �T to make A0 Hurwitz.

Then the system model (43) can be rewritten as

_X ¼ A0XþKyþ
ψ1ðyÞ
ψ2ðyÞ
ψ3ðyÞ

2
64

3
75þ 0

1
a0

2
64

3
75ϑþ 0

0
1

2
64

3
75u″ ð47Þ

The two filters given by (45) and (46) can be rewritten as

_ξ0 ¼ A0ξ0þKyþ
ψ1ðyÞ
ψ2ðyÞ
ψ3ðyÞ

2
64

3
75þ 0

0
1

2
64
3
75u″ ð48Þ

_ξ1 ¼ A0ξ1þ 0 1 a0
� �T ð49Þ

Given (47)–(49), we can obtain the derivative of observation
error as

_ε¼ _X� _ξ0�ϑ_ξ1 ¼ A0ðX�ξ0�ϑξ1Þ ¼ A0ε ð50Þ
From (50), since A0 is a Hurwitz matrix, the estimation error vector
ε will exponentially converge to zero.

Fig. 3. Block diagram of the adaptive system for ABC.

Fig. 4. Block diagram of ABC controlled AMB system.



4.3. Controller design and stability proof

In this section, a CLF needs to be constructed to include state
estimation errors, virtual control errors, disturbance estimation
errors, and the tracking error of the displacement of rotor. All of
the errors have to be controlled to zeros. The adaptive and control
laws are developed in a way that is similar to the one in Section 3.
The first state z01 of the error system is chosen as

z01 ¼ y ð51Þ

The derivative of z01 is

_z01 ¼ x2þψ1ðyÞ ð52Þ

Since x2 is non-measurable, it can be replaced by its observed state
ξ02þϑξ12þε2 as given by (44). Then (52) becomes

_z01 ¼ ξ02þϑξ12þε2þψ1ðyÞ ð53Þ
In (53), the disturbance ϑ needs to be replaced by its estimate ϑ̂1.
So the estimation error for disturbance is ~ϑ1 ¼ ϑ� ϑ̂1: The first CLF
f 1 is selected as

f 1 ¼
1
2
ðz01Þ2þ

1
d1

εTP0εþ
1
2γ01

~ϑ
2
1 ð54Þ

where γ01 and d1 are positive real numbers, P0 is a positive definite
and symmetric matrix and AT

0P0þP0A0 ¼ �Q ; where Q is an
identity matrix. In (53), if we choose ξ02 as a virtual controller
and ξ02 ¼ β1, we will have

β1 ¼ �c01z
0
1�d1z01� ϑ̂1ξ12�ψ1ðyÞ ð55Þ

where c0140; c01AR. Replacing the ξ02 in (53) with (55) yields

_z01 ¼ �c01z
0
1�d1z01þ ~ϑ1ξ12þε2 ð56Þ

From (54), the derivative of f1 is

_f 1 ¼ z01 _z
0
1þ

1
d1

ð_εTP0εþεTP0 _εÞþ
1
γ01

~ϑ1
_~ϑ1 ð57Þ

Substituting (50) ð_ε¼ A0εÞ and (56) into (57) produces

_f 1 ¼ �c01ðz01Þ2�ð
ffiffiffiffiffi
d1

p
z01�

1

2
ffiffiffiffiffi
d1

p ε2Þ2þ ~ϑ1 z01ξ12�
1
γ01

_̂ϑ1

� �

þ 1
4d1

ε22�
1
d1

εTε ð58Þ

where

1
4d1

ε22�
1
d1

εTε¼ � 1
d1

ε21�
3

4d1
ε22�

1
d1

ε23:

From (58), we can see that if the adaptive law is chosen as

_̂ϑ1 ¼ γ01z
0
1ξ12 ð59Þ

Eq. (58) will be negative semi definite. We define the error
between ξ02 and β1 as z02, which is the second state of the error
system. Then z02 ¼ ξ02�β1. The derivative of z02 is

_z02 ¼ _ξ02� _β1 ¼ ξ03þψ2ðyÞþk2ðy�ξ01Þ�
∂β1
∂z01

ðξ02þξ12ϑþε2

þψ1ðyÞÞ�
∂β1
∂ϑ̂1

_̂ϑ1�
∂β1
∂ξ12

_ξ12 ð60Þ

In (60), the disturbance ϑ has to be replaced by its second estimate
ϑ̂2. We define the estimation error as ~ϑ2 ¼ ϑ� ϑ̂2. Then the second
CLF is selected as

f 2 ¼ f 1þ
1
2
ðz02Þ2þ

1
d2

εTP0εþ
1
2γ02

~ϑ
2
2 ð61Þ

where d2 and γ02 are positive real numbers. If we choose ξ03 as the
second virtual controller, and ξ03 ¼ β2, we will have

β2 ¼ �c02z
0
2�d2

∂β1
∂z01

� �2

z02�ψ2ðyÞ�k2ðy�ξ01Þ

þ ∂β1
∂z01

ðξ02þξ12ϑ̂2þψ1ðyÞÞþ
∂β1
∂ϑ̂1

_̂ϑ1þ
∂β1
∂ξ12

_ξ12 ð62Þ

Replacing ξ03 in (60) with (62) yields

_z02 ¼ �c02z
0
2�d2

∂β1
∂z01

� �2

z02�
∂β1
∂z01

ξ12 ~ϑ2�
∂β1
∂z01

ε2 ð63Þ

where c0240; c02AR: Substituting (63) into the derivative of f2
produces

_f 2 ¼ _f 1�c02ðz02Þ2�
ffiffiffiffiffi
d2

p ∂β1
∂z01

z02þ
ε2

2
ffiffiffiffiffi
d2

p
 !2

þ 1
4d2

ε22�
1
d2

εTε

� ~ϑ2
∂β1
∂z01

z02ξ12þ
1
γ02

_̂ϑ2

� �
ð64Þ

where

1
4d2

ε22�
1
d2

εTε¼ � 1
d2

ε21�
3

4d2
ε22�

1
d2

ε23:

From (58), we can see that if the second adaptive law is chosen as

_̂ϑ2 ¼ �γ02
∂β1
∂z01

z02ξ12 ð65Þ

Eq. (64) will be negative semi definite. We define the error
between ξ03 and β2 as z03, which is the third state of the error
system. Then z03 ¼ ξ03�β2. The derivative of z03 is

_z03 ¼ ψ3ðyÞþu″þk3ðy�ξ01Þ� _β2 ð66Þ
In (66), the derivative of β2 is

_β2 ¼
∂β2
∂z01

ðξ02þξ12ϑþε2þψ1ðyÞÞþ
∂β2
∂z02

_z02þ
∂β2
∂ξ01

_ξ01þ
∂β2
∂ξ02

_ξ02

þ ∂β2
∂ξ12

_ξ12þ
∂β2
∂ϑ̂1

_̂ϑ1þ
∂β2
∂ϑ̂2

_̂ϑ2 ð67Þ

The disturbance ϑ in (67) has to be replaced by its estimate ϑ̂3: The
estimation error is ~ϑ3 ¼ ϑ� ϑ̂3. If we choose u″ as

u″¼ ∂β2
∂z01

ðξ02þξ12ϑ̂3þψ1ðyÞÞþ
∂β2
∂z02

_z02þ
∂β2
∂ξ01

_ξ01þ
∂β2
∂ξ02

_ξ02

þ ∂β2
∂ξ12

_ξ12þ
∂β2
∂ϑ̂1

_̂ϑ1þ
∂β2
∂ϑ̂2

_̂ϑ2�c03z
0
3� d3

∂β2
∂z01

� �2

z03

�ψ3ðyÞ�k3ðy�ξ01Þ; ð68Þ
where d340; d3AR; c0340; c03AR, Eq. (66) will become

_z03 ¼ �c03z
0
3�d3

∂β2
∂z01

� �2

z03�
∂β2
∂z01

ðξ12 ~ϑ3þε2Þ ð69Þ

Then the complete CLF for AOBC design is selected as

f 3 ¼ f 2þ
1
2
ðz03Þ2þ

1
d3

εTP0εþ
1
2γ03

~ϑ
2
3 ð70Þ

Substituting (69) into the derivative of f3 produces

_f 3 ¼ _f 2�c03ðz03Þ2�
ffiffiffiffiffi
d3

p ∂β2
∂z01

z03þ
ε2

2
ffiffiffiffiffi
d3

p
 !2

þ 1
4d3

ε22

� 1
d3

εTε� ~ϑ3
∂β2
∂z01

z03ξ12þ
1
γ03

_̂ϑ3

� �
ð71Þ

where

1
4d3

ε22�
1
d3

εTε¼ � 1
d3

ε21�
3

4d3
ε22�

1
d3

ε23:



If we choose adaptive law as

_̂ϑ3 ¼ �γ03
∂β2
∂z01

z03ξ12; ð72Þ

Eq. (71) will be negative semi definite. According to Lyapunov0s
direct method, the AOBC controlled AMB system is stable around
equilibrium points. Then we can use Barbalat0s Lemma to prove
that the estimation errors of observer and disturbance are con-
verging to zero as time goes to infinity. The Barbalat0s Lemma is
given as follows.

Barbalat0s Lemma. [24]: If the differentiable function φ(t) has a
finite limit as t-1, and if _φðtÞ is uniformly continuous, then _φðtÞ-0
as t-1:

To apply Barbalat0s lemma to the analysis of dynamic systems,
one typically uses the following immediate corollary, which looks
very much like an invariant set theorem in Lyapunov analysis for
time-invariant systems.

Lyapunov-Like Lemma. [24]: If a Lyapunov function f satisfies the
following conditions

� f is lower bounded;
� _f is negative semi-definite;
� _f is uniformly continuous in time;

Then _f-0 as t-1.

We know f3 is lower bounded since f 3Z0. Eq. (71) shows _f 3 is
negative semi definite and continuous. Therefore, from Lyapunov-
Like Lemma, _f 3 goes to zero as time goes to infinite. Then

ε1; ε2; ε3; ~ϑ1; ~ϑ2 and ~ϑ3 are converging to zero as t-1. Fig. 5
shows closed-loop diagram of an AOBC controlled AMB system
where position output is the only feedback signal from AMB to
controller. The estimator in Fig. 5 is used to estimate both
disturbance and system0s states. The AOBC is constructed based
on the estimated states and disturbance.

5. Simulation results

We construct the ABC and AOBC controlled AMB systems
respectively in Matlab/Simulink. The Simulink models for both
control systems are based on Figs. 4 and 5. An external disturbance
is added to the system as a step input as t¼1 s. We use the
parameter values for AMB given in Table 1. The nominal air gap is
0.7 mm. All the initial values of state variables are assumed to
be zeros.

5.1. Tracking performance and disturbance estimation

5.1.1. ABC controlled AMB system
As indicated in Section 3, for an ABC controlled AMB system,

the real magnitude of an external disturbance is calculated as
θ¼ ðFs=bmÞ ¼ 0:023. In the following part, two sets of simulation
results are given with different Lyapunov back stepping coeffi-
cients (LCs) ci ði¼ 1; 2; 3Þ and adaptive coefficients (ACs)
γi ði¼ 1; 2Þ respectively for the purpose of investigating how these
coefficients affect the control results of three states and distur-
bance estimate.

Fig. 6 shows the time responses of the three states (x, v, and i)
for different LCs as AC values are γ1¼1, and γ2¼1. Fig. 7 shows the
disturbance estimation as LC values are c1¼c2¼c3¼500. Fig. 8
shows the disturbance estimation as LC values are chosen as
c1 ¼ 3000; c2 ¼ 1000; c3 ¼ 500. In both Figs. 7 and 8, AC values
are unchanged (γ1¼1, and γ2¼1). From Fig. 6, it is observed that
the peak value of rotor0s displacement is driven to less than
1�10�7 m that can guarantee the rotor not touching stator. From
Figs. 7 and 8, we can see that by increasing LC values without
changing ACs, the overshoot of the displacement could be remark-
ably reduced.

In order to investigate the effects of AC, we change their values
in the following simulation while leaving LC values unchanged. We
choose c1 ¼ 3000; c2 ¼ 1000; c3 ¼ 500. We increase the first AC γ1
from 1 to 3000, and decrease the second AC γ2 from 1 to 0.1. The
simulation results for different ACs are shown in Figs. 9–11. Fig. 9
shows the time responses of three states for different ACs. The
peak value of rotor0s displacement is driven to less than
1�10�8 m. Velocity and current are stabilized at their steady

Fig. 5. AOBC controlled AMB system.
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Fig. 6. Time responses of three states with different LCs.
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state values. Both Figs. 10 and 11 show that the external dis-
turbance θ is successfully estimated by θ̂2, which is represented by
red colored dotted line. The settling time for estimated distur-
bance relies on the values of ACs. Increasing AC values can increase
the estimation speed of external disturbance.

As shown from Figs. 6 through 11, the displacement of the rotor
in AMB has been successfully controlled to almost zero without
steady state error by the ABC with different LCs and ACs. The
adaptive laws estimate disturbance precisely. In addition, the LCs
play an important role in system0s response. The larger the LCs
values are, the smaller the overshoot values will be. Increasing ACs
can amplify the adaptation signals. Consequently the settling time
for the estimation errors of disturbance is reduced.

5.1.2. AOBC controlled AMB system
For an AOBC controlled AMB system, the real magnitude of an

external disturbance is calculated as ϑ¼ Fd=m¼ 1. The disturbance
is added to the system at t¼1 s as a step input. The LC values are
chosen as c01 ¼ 5000; c02 ¼ 1000; c03 ¼ 50: The AC values are
chosen as γ01 ¼ 15;000; γ02 ¼ 100; γ03 ¼ 1: The coefficients di are
chosen as d1¼d2¼d3¼1�10�5. Fig. 12 shows the displacement
output of the rotor under the control of AOBC. From the figure, we
can see that the peak value of the displacement is controlled to be
8�10�5 m, which is much less than the nominal air gap (0.7 mm)
in the presence of disturbance. The displacement is eventually
stabilized at almost zero.

Fig. 13 shows the estimated disturbances ðϑ̂1; ϑ̂2; ϑ̂3Þ, which are
represented by blue, green, and red lines respectively, through
three adaptive laws of AOBC. It is demonstrated that the dis-
turbance is precisely estimated by the adaptive laws.
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Fig. 10. Disturbance (θ) and its estimates when γ1¼10, and γ2¼1.
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Fig. 12. Position output for an AOBC controlled AMB.
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5.2. Robustness against parameter variations

5.2.1. ABC controlled AMB system
ABC0s robustness is tested by changing the system0s parameter

a, which is defined in (17), by 200 and 1/200 times from their
original values. Fig. 14 shows rotor0s displacement with a variant
parameter a. A step disturbance is added to the system at t¼1 s.
The figure shows the convergence of the displacement to zero in
the presence of parameter variations and external disturbance.
When we change other parameters b, c, d in (17) by 200 and 1/200
times from their original values, we obtain the same simulation
result as in Fig. 14.

5.2.2. AOBC controlled AMB system
We keep the LC and AC values unchanged. A step disturbance is

added to the system at 1 s. We vary the parameter a0 in (43) from
ð1=2:3Þa0

to 2:3a
0
without tuning the observer parameters. Fig. 15

shows the displacement of the rotor with the variance of a0 . From
the figure, we can see that the peak value of the displacement is
less than nominal air gap (0.7 mm). When we change the para-
meters b

0
and c

0
from their nominal values to 2.3 times their

nominal values, we obtain the same displacement output as
shown in Fig. 15. However, if we increase a

0
, b

0
and c

0
by over

2.3 times, the peak value of the displacement will exceed nominal
air gap, causing the system unstable. Comparing Figs. 14 and 15,

we can see that the displacement output of AOBC controlled AMB
has much larger overshoot value than that of ABC controlled AMB.

5.3. Comparison between ABC and AOBC

From simulation results (Figs. 6 through 15), we can see that
both ABC and AOBC successfully control the rotor0s displacement
within the nominal air gap in an AMB system despite the
presences of disturbance and parameter variations. In addition,
the external disturbance is precisely estimated by the adaptive
laws of ABC and AOBC respectively. However, the ABC demon-
strates better robustness than AOBC against disturbance and
parameter variations. Fig. 16 shows the displacement outputs for
ABC and AOBC controlled AMB systems after a step disturbance is
added to the system at t¼1 s. As shown in Fig. 16, the displace-
ment output of an AOBC controlled AMB has larger overshoot
value than that of ABC controlled AMB. Comparing Fig. 14 with
Fig. 15, we can see that when we vary system parameters,
AOBC controlled AMB has larger overshoot in displacement output
than ABC too. This is because the controller in AOBC is based
on the observed states of an observer which has the observa-
tion errors decreasing with time. In addition, AOBC has more
tuning parameters than ABC. There are six controller parameters
(c01; c

0
2; c

0
3; d1; d2; d3Þ, three adaptive parameters (γ01; γ

0
2; γ03), and

three observer parameters (k1; k2; k3) to tune for an AOBC while
there are only three controller (c1, c2, c3) and three adaptive
parameters (γ1, γ2, γ3) in an ABC. A large number of tuning

Fig. 14. Displacement output of ABC controlled AMB with variant a.

Fig. 15. Displacement output of AOBC controlled AMB with variant a0 .

Fig. 16. Position responses of AOBC and ABC controlled AMB systems.

Fig. 13. Disturbance estimates by three adaptive laws. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)



parameters makes the AOBC more difficult to implement than ABC
in the real world. Fig. 17 shows the control efforts for both ABC and
AOBC. The control effort of ABC is smooth while the one for AOBC
is oscillatory. Nevertheless, AOBC only needs one available state
from AMB (rotor0s displacement) while ABC requires full state
outputs (displacement, velocity, and current) from AMB. This
advantage makes AOBC is a better control option than ABC for a
real AMB system where current and velocity are not measurable.
Fig. 16 shows the position outputs for ABC and AOBC controlled
AMB systems.

6. Concluding remarks

Two types of adaptive control methods, adaptive back stepping
control (ABC) and adaptive observer based back stepping control
(AOBC) are applied to an active magnetic bearing (AMB) system.
The ABC is based on full state feedback (displacement, velocity,
and current) from the AMB while the AOBC is constructed on a
single feedback signal (displacement). Both ABC and AOBC achieve
excellent control performances in regulating a rotor0s position in
the AMB, in disturbance rejection, and in being robust against
system uncertainties. Lyapunov0s direct method proves the stabi-
lity of two control systems under the interference of disturbance.
Simulation results verify the effectiveness and robustness of both
control systems. The ABC and AOBC methods introduced in the
paper can also be applied to the other nonlinear system models
from which a linearized “strict feedback form” and observable
canonical form can be obtained.

Adaptive back stepping control has the potential to be widely
applied in the real world with its reliability and the ability of
online estimation of uncertainties. However, the tuning of multiple
parameters for controller and adaptive laws makes it difficult to
implement in practice. In the future, a systematic tuning method
of the controller parameters needs to be discovered. A study about
how to accurately choose Lyapunov and adaptive coefficients will
be conducted since their variations influence the system0s perfor-
mance. We also plan to implement the AOBC on a real AMB of the

flywheel energy storage system in NASA Glenn Research Center at
Cleveland, OH.
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