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Maxwell’s Equations.  V.   × E = -B/t 

 

This is the fifth installment in a series devoted to explaining Maxwell’s equations, the four 

mathematical statements upon which the classical theory of electromagnetic fields – and light – 

is based.  Previous installments can be found on Spectroscopy’s website (whose URL can be 

found throughout these issues).  Maxwell’s equations are expressed in the language of vector 

calculus, so a significant part of some previous columns have been devoted to explaining vector 

calculus, not spectroscopy.  For better or worse, that’s par for the course, and it’s my job to 

explain it well – I trust readers will let me know if I fail!  The old adage “the truth will set you 

free” might be better stated, for our purposes, as “math will set you free”.  And that’s the truth. 

 

 Beginnings 

 In mid-1820, Danish physicist Hans Oersted discovered that a current in a wire can affect 

the magnetic needle of a compass.  These experiments were quickly confirmed by François 

Arago and, more exhaustively, André Marie Ampère.  Ampère’s work demonstrated that the 

effects generated, which defined a so-called “magnetic field” (labeled B), were centered on the 

wire, were perpendicular to the wire, and were circularly symmetric about the wire (Figure 31).  

By convention, the vector component of the field had a direction given by the right hand rule:  if 

the thumb of the right hand were pointing in the direction of the current, the curve of the fingers 

on the right hand gives the direction of the vector field. 

 Other careful experiments by Jean-Baptiste Biot and Félix Savart established that the 

strength of the magnetic field was directly related to the current I in the wire and inversely 

related to the radial distance from the wire r.  Thus, we have 



 

  

where “” means “proportional to”.  To make a proportionality an equality, we introduce a 

proportionality constant.  However, because of the axial symmetry of the field, we typically 

include a factor of 2 (the radian angle of a circle) in the denominator of any arbitrary 

proportionality constant.  As such, our new equation is 

  

where the constant  is our proportionality constant and is called the permeability of the medium 

the magnetic field is in.  In a vacuum, the permeability is labeled 0 and, because of how the 

units of B and I are defined, is equal to exactly 4  10-7 tesla-meters per ampere (Tm/A). 

 Not long after the initial demonstrations, Ampère had another idea:  curve the wire into a 

circle.  Sure enough, inside the circle, the magnetic field increased in strength as the concentric 

circles of the magnetic field overlapped on the inside (Figure 32).  Biot and Savart found that the 

magnetic field B created by the loop was related to the current I in the loop and the radius of the 

loop R: 

  

Multiple loops can be joined in sequence to increase B, and in 1824 – 5 English inventor William 

Sturgeon wrapped loops around a piece of iron, creating the first electromagnet.  Even by then, 

Ampère had the thought that it was the current – that is, moving charges – that caused the 

magnetic field. 

 Joseph Henry was an American scientist who eventually became the first Secretary of the 

Smithsonian Institution.  In 1830, he performed some experiments showing how a magnetic field 

can induce electricity – and did not publish.  Because of this, he lost a larger place in scientific 



 

history when in 1831, Michael Faraday announced that a changing magnetic field could produce 

an electrical current.  (Henry’s work has not gone unnoticed, as the SI unit of inductance is 

named the henry.)  Note that Faraday (followed by others) found that a changing magnetic field 

is required; a static, non-changing magnetic field produces no current (Figure 33).  This strongly 

suggests that an electric current I is related to a varying magnetic field, or 

  

Actually, this is not far from the truth (which would then be another of Maxwell’s equations if it 

were), but the more complete truth is expressed in a different, more applicable form. 

 

Work in an Electrostatic Field 

 The simple physical definition of work (w) is force (F) times displacement (s): 

 w = F  s 

This is fine for straight-line motion, but what about if the motion occurred on a curve (Figure 34 

in two dimensions), with perhaps a varying force?  Then calculating the work is not as 

straightforward, especially since force and displacement are both vectors.  However, it can be 

easily justified that the work is the integral, from initial point to final point, of the dot product 

force vector F with the unit vector tangent to the curve, which we will label t: 

 ·  
f  

  

Because of the dot product, only the force component in the direction of the tangent to the curve 

contributes to the work..  That makes sense if you remember the definition of the dot product, 

ab = |a||b|cos:  if the force is parallel to the displacement, work is maximized (because the 

cosine of the angle between the two vectors is cos[0º] = 1) while if the force is perpendicular to 

the displacement, work is zero (because now the cosine is cos[90º] = 0). 



 

 Now consider two random points inside of an electrostatic field E (Figure 35).  Keep in 

mind that we have defined E as static; that is, not moving or changing.  Imagine that an electric 

particle with charge q were to travel from P1 to P2 and back again along the paths s1 and s2, as 

indicated.  Since the force F on the particle is given by qE (this is from Coulomb’s law), we have 

for an imagined two-step process: 

 ·  
P

P   ·  
P

P  

Each integral covers one pathway, but eventually you end up where you started. 

 This last statement is a crucial one:  eventually you end up where you started.  According 

to Coulomb’s law, the only variable that the force or electric field between the two particles 

depends on is the radial distance, r.  This further implies that the work, w, depends only on the 

radial distance between any two points in the electric field.  Even further still, this implies that if 

you start and end at the same point, as we are in our example, the overall work is zero because 

you are starting and stopping at the same radial point r.  Thus, the equation above must be equal 

to zero: 

·  
P

P
  ·  0

P

P
 

Since we are starting and stopping at the same point, the combined paths s1 and s2 are termed a 

closed path.  Notice too that, other than being closed, we have not imposed any requirement on 

the overall path s itself:  it can be any path.  We say that this integral, which must equal zero, is 

path-independent. 

The symbol for an integral over a closed path is .  Thus, we have 

 ·  0 

We can divide by the constant q to get something slightly more simple: 



 

 ·  0 

This is one characteristic of an electrostatic field:  the path-independent integral over any closed 

path in an electrostatic field is exactly zero. 

 The key word in the above statement is “any”.  You can select any random closed path in 

an electric field, and the integral of Et over that path is exactly zero.  How can we generalize 

this for any closed path? 

 Let us start with a closed path in one plane, as shown by Figure 36.  The complete closed 

path has four parts, labeled T, B, L, and R for top, bottom, left, and right, and it surrounds a point 

at some given coordinates (x, y, z).  T and B are parallel to the x axis, while L and R are parallel 

to the y axis.  The dimensions of the path are x by y (these will be useful shortly).  Right now 

the area enclosed by the path is arbitrary, but later on we will want to shrink the closed path 

down so that the area goes to zero.  Finally, the path is immersed in a three dimensional field F 

whose components are Fx, Fy, and Fz.  That is, 

 F = iFx + jFy + kFz 

in terms of the three unit vectors i, j, and k in the x-, y-, and z-dimension, respectively. 

 Let us evaluate the work of each straight segment of the path separately, starting with 

path B.  The work is 

 B ·  B  

The tangent vector t is simply the unit vector i, since path B points along the positive x axis.  

When you take the dot product of i with F (see expression above), the result is simply Fx.  (Can 

you verify this?)  Finally, since the displacement s is along the x axis, ds is simply dx.  Thus, we 

have 

 B  B  



 

Although the value of Fx can vary as you go across path B – in fact, it is better labeled as 

Fx(x,y,z) – let us assume some average value of Fx as indicated by its value at a y-axis position of 

y – y/2, which is the y value ½ of the height of the box below the point in the center.  Thus, we 

have 

 B  B , ∆ , · ∆  

where we have replaced the infinitesimal dx with the finite x. 

 We can do the same for the work at the top of the box, which is path T.  There are only 

two differences:  first, the tangent vector is –i, because the path is moving in the negative 

direction, and second, the average value of Fx is judged at y + y/2, which is ½ of the height of 

the box above the center point.  Hence we can simply write 

 T , ∆ , · ∆  

The sum of the work on the top and bottom are thus 

 T B , ∆ , · ∆ , ∆ , · ∆  

Rearranging this so that it is in the form “top minus bottom” and factoring out the x, this 

becomes 

 T B , ∆ , , ∆ , ∆  

Let us multiply this expression by 1, in the form of y/y.  We now have 

 T B
, ∆ , , ∆ ,

∆
∆ ∆  

Recall that this work is actually a sum of two integrals involving, originally, the integrand Ft.  

Reminding ourselves, this last expression can be written as 

 T B ·  T B

, ∆ , , ∆ ,

∆
∆ ∆  



 

The term xy is the area of the path, A.  Dividing the area to the other side of the equation, we 

have 

 ·  T B

, ∆ , , ∆ ,

∆
 

Suppose we take the limit of this expression as x = y = A  0.  What we would have is the 

amount of work done over any infinitesimal area defined by any random path – the only 

restriction is that the path is in the (x,y) plane.  The equation above becomes 

 lim ·  T B lim∆
, ∆ , , ∆ ,

∆
 

Looking at the second limit above and recalling our basic calculus, that limit defines a derivative 

with respect to y!  But because Fx is a function of three variables, this is better defined as the 

partial derivative with respect to y.  Thus, we have 

 lim ·  T B  

Note the retention of the minus sign. 

 We can do the same thing for paths L and R.  The analysis is exactly the same, only the 

variables that are affected change.  What we get is (and you are welcome to verify the derivation) 

 lim ·  L R  

Now, combine the two parts:  the work done over an infinitesimally small closed path in the (x,y) 

plane is given by 

 lim lim ·   

Now isn’t that a rather simple result? 

 Let us see an example of this result so we can understand what it means.  Consider a two-

dimensional sink, in the (x,y) plane, as diagrammed in Figure 37.  A thin film of water is going 



 

down the central drain, and in this case it is spinning in a counter-clockwise direction at some 

constant angular velocity.  The vector field for the velocity of the spinning water is 

  

In terms of the angular velocity , this can be written as 

  

(A conversion to polar coordinates was necessary to go to this second expression for v, in case 

you need to do the math yourself.)  In this vector field, Fx = -y and Fy = x.  To determine the 

limit of the work per unit area, we evaluate the expression 

  

This is easy to evaluate: 

 =  – (–) = 2 

Suppose we stand up a piece of cardboard on the sink, centered at the drain.  Experience suggests 

to us that the cardboard piece will start to rotate, with the axis of rotation perpendicular to the flat 

sink.  In this particular case, the axis of rotation will be in the z dimension, and in order to be 

consistent with the right hand rule, we submit that in this case the axis points in the positive z 

direction.  If this axis is considered a vector, then the unit vector in this case is (positive) k.  

Thus, vectorially speaking, the infinitesimal work per unit area is actually 

  

Thus, the closed loop in the (x,y) plane is related to a vector in the z direction.  In the case of a 

vector field, the integral over the closed path is referred to as the circulation of the vector field. 

 As a counterexample, suppose water in our two-dimensional sink is flowing from left to 

right at a constant velocity, as shown in Figure 38.  In this case, the vector function is 



 

 v = Ki 

where K is a constant.  If we put a piece of cardboard in this sink, centered on the drain, does the 

cardboard rotate?  No, it doesn’t.  If we evaluate the partial-derivative expression from above (in 

this case, Fx = K and Fy = 0): 

 K 0 0 0 

(Recall that the derivative of a constant is zero.)  This answer implies that no rotation is induced 

by the closed loop. 

 

Introducing the Curl 

 For a vector function F = Fxi + Fyj + Fzk, I will hereby define the function 

  

as the one-dimensional curl of F.  Possibly improperly, I designate it “one dimensional” because 

the result is a vector in one dimension, in this case the z dimension.  The analysis we performed 

in the earlier section – defining a closed path in a single plane and taking the limit of the path 

integral – can be performed for the (x,z) and (y,z) planes.  When we do that, we get the following 

analogous results: 

 (x,z) plane:   

 (y,z) plane:   

The combination of all three expressions gives us a general expression for the curl of F: 

 curl   

This expression allows us to determine 

 lim ·   



 

for any vector function F in any plane. 

 But what does the curl of a vector function mean?  One way of thinking about it is that it 

is a variation in the vector function F that causes a rotational effect in about perpendicular axis.  

(Indeed, “curl F” is sometimes still designated “rot F”, and a vector function whose curl equals 

zero (see Figure 38) is termed “irrotational”.)  Too, a vector function with a non-zero curl can be 

thought of as curving around a particular axis, with that axis being normal to the plane of the 

curve.  Thus, the rotating water in Figure 37 has a non-zero curl, while the linearly-flowing water 

in Figure 38 has a zero curl. 

 A mnemonic (that is, a memory aid) for the general expression for curl F takes advantage 

of the structure of a 3  3 determinant: 

 curl  

Understand that curl F is NOT a determinant; a determinant is a number that is a characteristic of 

a square matrix of numerical values.  However, the expression for curl F can be constructed by 

performing the same operations on the expressions as one would do with numbers to determine 

the value of a 3  3 determinant:  constructing the diagonals and adding the right-downward 

diagonals and subtracting the left-upwards diagonals.  If you have forgotten how, Figure 39 

shows how to determine the expression for the curl. 

 The determinental form of the curl can be expressed in terms of the del operator, .  

Recall from Part III of this series [1] that the del operator is 

   



 

Recall from vector calculus that the cross product of two vectors A  iAx + jAy + kAz and B 

defined analogously is written A  B and is given by the expression 

  

By comparing this expression to the determinental form of the curl, it should be easy to see that 

the curl of a vector function F can be written as 

 curl F    F 

Like the fact that curl is not technically a determinant, it is technically not a cross product, as del 

is an operator, not a vector.  The parallels, however, make it easy to gloss over this technicality 

and use the “del cross F” symbolism to represent the curl of a vector function. 

 Because the work integral over a closed path through an electrostatic field E is zero, it is 

a short logical step to state that therefore 

   E = 0 

This is one more property of an electrostatic field:  the field is not rotating about any point in 

space.  Rather, an electrostatic field is a purely radial field, with all field “lines” going from the 

point in space straight to the electric charge. 

 

 Faraday’s Law 

 The previous section may be all well, magnetic fields relate to moving, not static, charges.  

Also, the electric fields themselves are subtly different. 

 An electrostatic field caused by a charged particle is thought of as beginning at a positive 

charge and ending at a negative charge.  Since overall, matter is electrically neutral, then every 



 
 

electric field emanating from a positive charge eventually ends at a negative charge.  This is 

illustrated in Figure 40, top diagram. 

 However, when a changing magnetic field creates a current in a conductor, this current is 

the product of an induced electric field.  In the case of a bar-type magnet, the magnetic field is 

axially symmetric about the length of the bar, so the induced electric field is axially symmetric as 

well:  that is, it is circular.  This is illustrated in Figure 40, bottom diagram. 

 The induced, circular electric field caused by a moving magnet causes charges in that 

circle.  The circulation of the induced electric field vector can be constructed from our definition 

of “circulation” above; it is 

 circulation  ·   

where E is the induced electric field, t is the tangent vector along the path, and s is the 

infinitesimal amount of path.  In this case, the “circulation” is defined as the “electromotive 

force”, or emf.  What is this force doing?  Why, causing charges to move, of course!  As such, it 

is doing work, and our arguments using work in the sections above are all valid here. 

 What Faraday found experimentally is that a changing magnetic field induced an electric 

field (which then forced a current).  If you imagine that a magnetic field is composed of discrete 

field lines, what is happening is that as the number of magnetic field lines in a given area 

changes with time, an electric field is induced.  Figure 41 illustrates this.  Consider the loop of 

area outlined by the black line.  As the magnet is moved to the right, the number of magnetic 

field lines intersecting the loop changes.  It is this change that induces the electric field. 

 The number of field lines per area is called the magnetic flux.  In Part III of this series 

[1], we presented how we determine the flux of a vector field.  For a changing vector field F 



 

having a unit vector perpendicular (or normal) to its direction of motion n over some surface S, 

the flux is defined as 

 flux  ·  SS  

For our magnetic field B, this becomes 

 magnetic flux  ·  SS  

But the induced electric field is related to the change in magnetic flux with time.  Thus, we are 

actually interested in the time derivative of the magnetic flux: 

  ·  SS  

 At this stage, we bring everything together by citing the experimental facts as determined 

by Faraday and others:  the electromotive force is equal to the change in the magnetic flux over 

time.  That is, 

 ·   ·  SS  

Let us divide each side of this equation by the area A of the circular path of the induced current.  

This area also corresponds to the surface S that the magnetic field flux is measured over, so we 

divide one side by A and one side by S.  We get  

 ·   ·  SS  

Suppose we want to consider the limit of this expression as the area of the paths shrink to zero 

size; that is, as A  0.  We would have 

 limA ·   limS ·  SS  

The left side is, by definition, the curl of E.  What about the right side?  Rather than prove it 

mathematically, let’s consider the following argument.  As the surface S goes to zero, the limit of 

the magnetic flux ultimately becomes one magnetic flux line.  This single line will be 



 

perpendicular to the infinitesimal surface – look at the rendering of the magnetic field lines in 

Figure 41 if you need to convince yourself of this.  Thus, the dot product Bn is simply B, and 

the infinite sum of infinitesimal pieces (which is what an integral is) degenerates to a single 

value of B.  I therefore argue that 

 limS ·  SS  

So what we now have is 

    

We are almost done.  The law of conservation of energy must be satisfied.  Although it appears 

that we are getting an induced current from nowhere, understand that this induced current also 

generates a magnetic field.  In order for the law of conservation of energy to be satisfied, the new 

magnetic flux must oppose the original magnetic flux (this concept is known as Lenz’s law after 

Henrich Lenz, a Russian physicist who discovered it).  To represent this mathematically, a 

negative sign must be included in the last equation.  By convention, the minus sign is put on the 

right side, so our final equation is 

    

This expression is known as Faraday’s law of induction, given that Michael Faraday discovered 

(or rather, first announced) magnetic induction of current.  It is considered the third of Maxwell’s 

equations:  a changing magnetic field induces an electromotive force, which in a conductor will 

promote a current. 

 Not meaning to minimize the importance of Maxwell’s other equations, but the impact of 

what this equation embodies is huge.  Electric motors, electrical generators, and transformers are 

all direct applications of a changing magnetic field being related to an electromotive force.  



 

Given the electrified nature of modern society – and the machines that make it that way – we 

realize that there is a huge impact of Maxwell’s equations in our everyday lives. 
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Maxwell’s equations. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31.  The “shape” of a magnetic field about a wire with a current running through it.  

[AU’s note:  this may need to be redrawn by an artist.] 
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Figure 32.  A wire loop generates a magnetic field B when a current I runs through the wire.  In 

this case, the magnetic field is an axial field about the central axis of the loop. 

[AU’s note:  Needs to be rerendered by an artist.  Make the black wire of the loop a thicker line 

and the red lines of the magnetic field thinner.] 
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Figure 33.  A magnet inside a coil of wire (top) does not generate a current.  A magnet moving 

through a coil of wire (bottom) does generate a current. 
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Figure 34.  If the force F is not parallel to the displacement s (shown here as variable, but F can 

be variable too), then the work performed is not as straightforward to calculate. 
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Figure 35.  Two arbitrary points in an electric field.  The relative strength of the field is indicated 

by the darkness of the color. 
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Figure 36.  A closed, two-dimensional path around a point.   
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Figure 37.  A two-dimensional sink with a film of water rotating counterclockwise as it goes 

down the drain. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38.  Water flowing in a two-dimensional sink with a constant left-to-right velocity. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39.  To determine the expression using a determinant, multiply the three terms on each 

arrow and apply the positive or negative sign to that product, as indicated.  Combining all terms 

yields the proper expression for the curl of a vector function F having components Fx, Fy, and Fz. 
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Figure 40.  Top:  In an electrostatic field, the field lines go from the positive charge to the 

negative charge.  Bottom:  a moving magnetic field induces an electric field, but in this case the 

electric field is in a circle, following the axial nature of the magnetic field lines. 
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Figure 41.  As the magnet is moved farther from the loop, the number of imaginary magnetic 

field lines intersection the loop changes (here, from seven lines to three lines).  It is this change 

that induces an electric field in the loop. 
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