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Reliability-based topology optimization of trusses with stochastic stiffness 

Mehdi Jalalpour *, James K. Guest, Takeru Igusa 

Department of Civil Engineering, Johns Hopkins University Baltimore, MD 21218, USA 

1. Introduction 

Topology optimization is a computational design tool for opti­
mizing structural system connectivity and corresponding member 
sizes to meet given performance targets. Due to associated numeri­
cal challenges, however, the vast majority of works consider the 
loading and structural characteristics, such as geometry and mate­
rial properties, to be deterministic. This is almost always an unreal­
istic assumption due to the inherent variability in manufacturing 
process and simplifying assumptions for evaluating the loads on 
structure. Formal design methods accounting for such uncertainties 
include worst-case design, robust topology optimization (RTO), and 
reliability-based topology optimization (RBTO). This work focuses 
on RBTO of truss structural systems with stochastic stiffness. 

The goal of RBTO is to find the optimal values for a design vector 
q so that a target reliability is achieved. Randomness in the system 
is expressed as basic variables and denoted by g. It is useful to de­
fine an auxiliary function s(g,q) for the load effects, which can be 
displacement, stress, etc. Failure is defined by a limit-state function 
in terms of load effects as g(s). Probability of failure can be found in 
terms of s by Z 
Pf ail ¼ fsðsÞds ð1Þ 

gðsÞ<0 

where fs(s) is the probability distribution of load effects. It is apparent 
that information regarding the distribution of the load effects and 
form of the limit-state function is needed to calculate the above inte­
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gral directly. Such an approach is called Level III reliability analysis 
[1]. However, only the distribution of basic variables g is typically 
known, making assessment of the probability of failure a challenging 
task. Moreover, in the engineering cases where there may be many 
uncertain parameters, calculation of the integral might become com­
putationally infeasible [2]. To circumvent these issues, Level II reli­
ability methods have been proposed, where the notion of reliability 
index [3,4] is used. To follow this methodology, one first maps the ba­
sic variables to the space of standard normal variables using a prob­
abilistic transformation. The limit surface is then approximated by a 
first (FORM) or second (SORM) order Taylor series [5] and the normal 
distribution may be used to estimate the structural reliability (see 
Hohenbichler et al. [6], Gasser and Schueller [7] for a review). The 
key idea is that the normal probability density function (PDF) decays 
very quickly with distance from the origin, limiting significant contri­
butions to the response integral in Eq. (1) to points in the neighbor­
hood of the most probable point (MPP) with the least distance to 
the origin (b). Therefore, a Taylor series expansion about this point 
leads to acceptable reliability estimates, and the problem is now 
transformed to finding the MPP. There are a number of search meth­
ods for optimal points and we refer to [8] for a review on the available 
methods. It is then possible to find the probability of failure. For in­
stance, FORM utilizes Pfail = U(-b), where U(.) symbolizes the normal 
cumulative distribution function (CDF). 

In the context of topology optimization, the MPP must be lo­
cated at every iteration of the optimization process. This produces 
a nested, or double-loop optimization algorithm [9,10], which may 
ultimately lead to cumbersome or even intractable computations. 
Tu et al. [11] report that using the Hasofer–Lind definition for 
the reliability index may lead to convergence issues on locating 
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the MPP and that solutions may not exist. Methods for avoiding the 
double-loop approach have also been proposed [12,13]. Often, 
these methods consist of employing the Karush–Kuhn–Tucker 
(KKT) optimality conditions for an approximation to the design 
point in the nested loop, allowing the inner loop to be replaced 
with a deterministic constraint [14]. Kharmanda et al. [15] have 
proposed a decoupling method where they first search for the 
MPP based on the desired reliability of design, and then perform 
a deterministic minimum compliance design. Du and Chen [16] 
have proposed an interesting methodology to replace the search 
for the design point by the method of sequential optimization 
and reliability assessment. Kang and Luo [17] have implemented 
a non-probabilistic method to perform reliability-based design on 
geometric nonlinear continuum structures using a convex model 
that encompasses all the possible values for basic random vari­
ables. We refer to [18] for a review on the methodologies on single-
or nested-loop optimization. 

The works in the preceding discussion can be categorized as com­
ponent-level reliability. When considering system reliability, multi­
ple performance functions must be considered in either series or 
parallel, significantly increasing computational cost [19,20]. Thoft-
Christensen and Dalsgård Sørensen [21] proposed a methodology 
to evaluate structural reliability with correlated member uncertain­
ties for both parallel and series systems. Nguyen et al. [22] have gen­
eralized the methodology proposed in [14] to system reliability. 
Silva et al. [23] have used a FORM single-loop approach for reliabil­
ity-based design on both component and system level for the case 
when uncertainty is present in loading. Their methodology utilizes 
an approximation to MPP and the gradient, and is suitable for inte­
gration with available finite-element software. Park et al. [24] have 
proposed an efficient methodology for computing system reliability 
indices in terms of component reliability. Their methodology is 
based on considering correlation between modes of failure. 

There is a rich literature on various applications of reliability-
based design, and the reader is referred to Tsompanakis et al. 
[25] for a recent collection of state-of-the-art papers, Schueller 
and Jensen [26] for an excellent review on the recent advance­
ments on design under uncertainty, and Igusa and Der Kiureghian 
[27] for a review in dynamics problems and the importance of con­
sidering randomness in structural characteristics. Specifically in 
the context of structural topology optimization, a significant 
amount of work has considered RBTO under uncertainty in loading 
for structures defined on truss [28] and continuum [29] domains. 

An emerging trend in topology optimization has been the formal 
consideration of uncertainty in structural characteristics. This has 
largely fallen under the regime of robust topology optimization, 
i.e., design for insensitivity to variations in manufactured stiffness. 
The standard measure of structural response is the compliance, de­
fined as c = fTd, which is a proxy for structural stiffness. Guest and 
Igusa [30] used a perturbation-based approach to minimize the ex­
pected value of compliance under geometric uncertainties. This 
work was later extended to include uncertainties in material proper­
ties [31], more general robust design optimization [32], and global 
instability effects [33]. Chen et al. [34] used Karhunen–Loeve expan­
sion and multivariate dimension reduction to minimize the ex­
pected value of compliance under uncertainty in material 
properties as well as applied loads. Schevenels et al. [35] use Monte 
Carlo simulation to formally account for over- and under-etching in 
manufacturing to optimize the expected value of response. Tootka­
boni et al. [36] use polynomial chaos to minimize the expected value 
and variability of stiffness under material property uncertainties. 

In the present article, it is shown that the probability distribu­
tion of the compliance of optimally designed trusses with uncer­
tain nodal locations and/or members Young’s modulus can be 
approximated by the Gumbel distribution, provided that the truss 
is not a trivial structure with only a few nodes. Because of this ob­

served property the probability of failure can be readily estimated 
from first- and second-moments of the response, circumventing 
the need for a nested-loop approach. This enables straightforward 
expressions for sensitivity analysis and produces an effective and 
computationally efficient topology optimization design algorithm, 
especially in system-level RBTO, and ultimately allows the de­
signer to perform RBTO at the computational cost of RTO. 

This article is structured as follows. We begin by formulating 
the limit-state function and structural reliability in terms of a dis­
placement-based metric. We then derive the expressions for the 
statistical moments of the metric using stochastic perturbations 
and show how these moments are related to the parameters of 
the Gumbel distribution. We then propose a single-loop reliabil­
ity-based topology optimization method for truss systems. Numer­
ical examples are presented for trusses with geometric and 
material property uncertainties and the accuracy of the method 
is verified using Monte Carlo simulation. 

2. Reliability-based topology optimization formulation 

In this section, we begin with defining the structural reliability 
in terms of a displacement-based metric, obtain the required sta­
tistics of the metric, and present the reliability-based topology 
optimization (RBTO) formulation. 

2.1. Structural reliability 

To assess the structural reliability, structural performance has 
to be measured in terms of a load effect (stress, deflection, ...), 
and a limit-state or performance function is defined for the struc­
ture. We measure structural performance in terms of a linear func­
tion of displacement vector using: 

c ¼ lT d ð2Þ 

where l is a vector that linearly combines the degrees of freedom of 
interest from the displacement vector d. Throughout this article 
boldface lower and upper case letters represent vectors and matri­
ces, respectively. We can constrain deflection at degree of freedom i 
by using l = ei, where ei is a unit vector with zeros at all degrees of 
freedom other than i. We can now define the limit-state function in 
terms of the displacement metric as 

*g ¼ c - c ð3Þ 

where c* is the predetermined structure capacity. For example, under 
a deflection constraint (l = ei), c* represents the maximum allowable 
deflection (capacity) at degree of freedom i and c represents the cor­
responding actual (demand) deflection. This problem formulation is 
natural, as typically design requires that, for instance, the structure 
displacement be less than a given deterministic value (e.g., 1/360 of 
span). The probability of failure can be evaluated using: 

* *Pfail ¼ P½g < 0] ¼ P½c < c] ¼ 1 - P½c : c ] ð4Þ 

There are now two challenges in using the above formulations: 
obtaining the displacement metric and obtaining its distribution. 
These challenges and possible mitigation strategies are discussed 
in further detail in the remaining parts of this section. 

2.2. Structural response 

When uncertainty is introduced into structural stiffness, such as 
in the form of geometric imperfections or material variability, 
obtaining structural displacement becomes challenging, because it 
is related to the inverse of a stochastic matrix. In this subsection, 
we review a perturbation approach to this problem that closely fol­
lows Guest and Igusa [30]. First we express each random quantity as: 
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Û d̂
1gi ¼ gi0 þ dgi	 ð5Þ TT T 

jKU ¼ K0U - 0 K0;ijd0 e ð14Þei2where gi0 is the deterministic and dgi is the additive random com­
ponent. Information about the distribution of dg and its first and It is noted that KU is symmetric due to symmetry of the stiffness 

second statistical moments are assumed known (e.g., through mea- matrix. Substituting (14) into (13) yields the final form for the dis­
surement). Without loss of generality we may assume that dg has placement metric as: 

d̂
Tzero mean. Structural equilibrium is given as: c ¼ lT d0 þ T KUx0 K0 Ux þ x ð15Þ 

f ¼ KðgÞdðgÞ	 ð6Þ 
Two types of uncertainties are considered in this work: geometric 

where the applied loads f are assumed deterministic. It is observed 
that the input variability in structural stiffness makes the displace­
ment a random vector. Because the uncertainties of interest are due 
to manufacturing defects or material variability, it assumed that 
these uncertainties are relatively small. This enables the displace­
ment for any structure with stochastic response to be obtained using 
perturbations of the stiffness matrix to the second order, yielding: 

1 1 1d ¼ K- f - K- K0;iK
- fdgi0 0 0
 

1 1 1
þ K- K0;i K
- K0;jK

- fdgidgj0 0 0
 

1 1 1
 - K- K0;ij K
- fdgidgj	 ð7Þ

2 0 0 

where we have used standard indicial notation with repeated index 
meaning summation. The matrix K0,i denotes the derivative of the 
deterministic stiffness matrix with respect to the ith basic variable. 

^

To obtain the displacement metric, let us rewrite (7) in vector for­
mat to produce a more compact form. We first express the random­
ness as: 

x ¼ eidgi	 ð8Þ 

d0 :and denote the solution of the following adjoint problem as

imperfections and material variability. Expressions for the deriva­
tives K0,i and K0,ij for geometric uncertainties are available in [30] 
and are straightforward for trusses. They are likewise straightfor­
ward for uncertainty in Young’s modulus [32,36], where in particu­
lar we note: 

K0;ij ¼ 0 8i; j	 ð16Þ 

Eq. (15) is general and can be used to obtain the displacement 
metric for any source of uncertainty and for all structural 
systems. 

2.3. Gumbel distribution 

We can view the displacement-based metric as a mechanical 
transformation of the input variability in structural characteristics. 
Now depending on the form of this transformation, the metric 
might have various distributions, and obtaining them is not a triv­
ial task. It has been shown that FORM and SORM methods perform 
very well in estimating the probability of failure [5–7,37]. How­
ever, as discussed in the introduction, these methods may become 
computationally prohibitive in the context of the iterative struc­
tural topology optimization.
 

One approach to overcome this difficulty is to look for an
d0 ¼ l 
appropriate distribution to accurately model the displacement 

It is common practice in topology optimization to use l = f, making c metric. We used Liu and Der Kiureghian [38], which lists the 
proportional to the external work, or compliance, which can be most widely used two-parameter distributions for reliability 
interpreted as a proxy for structural stiffness. For this case 

^K ð9Þ 

analysis (Normal, Lognormal, Weibull, Shifted exponential and 
d0 ¼ d0, which is the deterministic solution under applied loads. Gumbel) and observed that Gumbel distribution provides, by 
However, let us continue the derivations with the general case. far, the closest fit to the empirical distributions of the demand 
Substituting (9) and (7) into (2) gives: metric in Eq. (2) for all non-trivial trusses when the basic vari­

^

ables are normally distributed. It is noted that using the normal T T 
c ¼ lT d0 

1^d d 

T	 T dratic terms in x in Eq. (13). 
j x 

^ T T 
i x þ x T 

j x0K0;id0e 0 K0;iK
-
0 K0;jd0eei-

d̂

distribution for the demand is inappropriate because of the qua­
1 T 

0 K0;ijd0e ð10Þx ei-
Gumbel, or extreme type I, is a two parameter distribution 2 

Observe that the random displacement-related performance 
metric c is now written in terms of the deterministic stiffness ma­
trix of structure and its derivatives, which are straightforward to 
compute [30]. Therefore, under the assumption of small uncertain­
ties, we can evaluate the structural response using Eq. (10) for any 
structural system. To rewrite the above in a more compact format, 

dependent on location and scale variables, denoted by l and s, 
respectively. The cumulative distribution function (CDF) is given 
by [39]: 

*	 
( ( (

- l 
)))

c * 
FC ðc Þ ¼ exp - exp - ð17Þ 

s 

Assuming that the displacement metric c follows this distribution, Û as dimensionless matrices that can be under-
we can establish a relation between the distribution parameters stood as the structural normalized displacements under a system 
and demand using the method of moments: of equivalent normalized loads [33] as follows: pffiffiffi 

1	 6rcU ¼ K-0	 F s ¼ ð18Þ 

let us define U and

p
^^ F 

where the system of equivalent normalized loads F and

ð11ÞU ¼ K-0 
l ¼ lc - cs	 ð19Þ 

F̂ can be de­
fined as: where c is the Euler–Mascheroni constant, and lc and rc are the ex­

pected value and standard deviation of c, respectively. Combining 
F ¼ -K0;i d0eT 

i	 Eqs. (4) and (17) and following Ditlevsen [40], we can express the 

^^^

^F̂ ¼ -K0;i d0e

b ¼ q-1 ðFC ðkÞÞ	 ð20ÞSubstituting (11) into (10) yields: 

d U d 

T	 ð12Þ reliability index as: 
i 

where we have defined: 1T TT 
c ¼ lT d0 þ T T T 

j x0K0 Ux þ x K0 Ux - 0K0;ijd0e ð13Þx ei2 c * - l 
k ¼	 ð21Þ 

We can transform (13) into a more compact form by defining: s 

1 
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Computation of the reliability index requires estimation of the 
expected value and standard deviation of the displacement-based 
metric (demand). These statistics are estimated using perturbation 
expansions and are derived in the next subsection. 

2.4. Response statistics 

Equations for estimating the expected value and standard devia­
tion of compliance under stochastic stiffness have previously been 
derived using perturbation in Guest and Igusa [30], Asadpoure 
et al. [32], and Jalalpour et al. [33]. Herein, we extend these results 
for the more general displacement-based metric in (15). Following 
Jalalpour et al. [33], we can write the expected value of (15) as: 

E½c] ¼ lT d0 þ trfKUC0g ð22Þ 

where C0 is the covariance matrix of the basic random variables and 
tr is the trace operator. Eq. (22) is general and does not depend on 
the distribution of basic variables. 

It is useful to derive the demand variance for a general covari­
ance matrix of normally distributed basic variables. The variance 
can be expressed as: 

T^var½c] ¼ var½d0 K0Ux] þ var½xTKUx] ð23Þ 

We note that the terms involving 3rd order statistics have been 
dropped because they are zero for normally distributed variables. 
The variance of the first term in (23) is straightforward to derive 
and is given as: 

d 
T 

d0 

T 
K0UC0 U

T K0d0 
^^^var½ 0 K0Ux] ¼  

Design sensitivities are derived using the direct differentiation 

ðE½xT KUx]Þ 2 ¼ ðtrfKUE½xxT ]gÞ 2 ¼ trfKUC0 gtrfKUC0g ð26Þ 

To derive the variance of the first term of Eq. (25), we use Isserlis’ 
theorem and indicial notation to get the 4th order statistics as: 

E½xT KUxxT KUx] ¼ kij krs E½xi xjxr xs] 
¼ rijkijrrskrs þ rir kijrjskrs þ riskijrjr krs 

¼ rijkijrrskrs þ 2rir kij rjs krs ð27Þ 

where we have taken advantage of the symmetry of the matrices. 
Eq. (27) is now expressed using vector form and trace operator as: 

E½xT KUxxT KUx] ¼ trfKUC0 gtrfKUC0 g 
þ 2trfKUC0KUC0g ð28Þ 

Substituting Eqs. (28) and (26) into Eq. (25) yields: n o 
var½xT KUx] ¼ 2tr ðKUC0Þ2 ð29Þ 

Substituting Eqs. (24) and (29) into Eq. (23) gives the final form of 
variance as: n 

2 
o 

var½c] ¼ lT UC0UT l þ 2tr ðKUC0Þ ð30Þ 

where we have used the equilibrium condition of the adjoint problem 
defined in Eq. (9). It is noted that for uncorrelated basic variables, C0 

would be a diagonal matrix. The above estimate for the variance in­
cludes terms up to 4th order statistics as noted in Eq. (27). 

For cases where the basic random variables are not normally 
distributed Eq. (30) would no longer hold and the expression for 
the variance would have to be truncated to include only the sec­
ond-order moments, as given by the first term in Eq. (30). 

2.5. Optimization formulation 

Using the above, we now present the reliability-based topology 
optimization formulation that minimizes structural volume V (or 
equivalently weight) subject to a constraint on the probability of 
failure. This is formulated as a constraint on the reliability index 
as follows: 

min V ¼ qT v 
q 

s:t: K0ðqÞdðqÞ ¼ f 
K0 ðqÞUðqÞ ¼ FðqÞ 
bðqÞ ? bt 

0\qmin\qe ð31Þ 

where q is the vector containing independent design variables (qe) 
and v is the vector of element volumes for unit q. For truss systems, 
these vectors are cross-sectional areas and element lengths respec­
tively. Variable b is the reliability index that has to exceed a target 
reliability bt (or equivalently the probability of failure has to be low­
er than a prescribed accepted risk). The lower design variable bound 
qmin is set to a small positive number to avoid singularity of the glo­
bal stiffness matrix. The remaining constraints are for satisfying the 
equilibrium of the deterministic structure (with stiffness matrix K0) 
under the applied loads f and equivalent random loads F. Consistent 
units are used throughout, hence all magnitudes are presented as 
unitless. 

Problem (31) is continuous and thus is solved using gradient-
based optimizers, selected herein as sequential quadratic program­

ð24Þ ming as implemented in the MATLAB optimization toolbox [41]. 

The variance for the second term of Eq. (23) is given as: method [33]. Expressions for these sensitivities are straightforward 
to derive, and details are presented in the appendix. 

The proposed RBTO algorithm for stochastic stiffness offers com-

T KUx] ¼ E½ðxT KUxÞ 2 ] - ðE½xT KUx]Þ 2 ð25Þvar½x


Using the trace operator we can derive the second term of Eq.
 putational efficiency in comparison to other MPP-based or Monte 
(25) using: Carlo-based methods. The key advantages are: (1) using perturba­

tion of the stiffness matrix the stochastic stiffness problem is recast 
in terms of equivalent normalized loads, meaning the linear systems 
to be solved feature one left-hand side (K0 in Eq. (31)) with multiple 
right-hand sides (f and F in Eq. (31)), and (2) the Gumbel approxima­
tion eliminates the need to solve the inner MPP problem. Computa­
tional savings associated with advantage (1) were discussed in [30] 
and quantified in [32]. In short, the number of operations associated 
with evaluating demand statistical moments using perturbation is 
on the order of np ðOÞ ¼ n3 =3 þ nrv * n2 and using Monte Carlo sim­eq eq 

ulation is nMC ðOÞ ¼ M * n3 =3, where neq is the number of equations eq 

to solve (free degrees of freedom), nrv is the number of random vari­
ables, and M is the number of Monte Carlo realizations needed to 
accurately quantify the demand variability. As M is typically much 
larger than nrv, the computational savings of using perturbation over 
Monte Carlo simulation are significant. With regard to the second 
advantage, double-loop algorithms use FORM or SORM which re­
quires another minimization loop to estimate the reliability index 
at every design iteration. Assuming that this inner loop converges 
in F iterations, it is straightforward to show that the total computa­
tional savings of the proposed algorithm over Monte Carlo-based 
FORM (or SORM) are on the order of (F - 1) * nMC(O)/np(O). This is 
typically two or three orders of magnitude difference for the prob­
lems considered in this manuscript. More fundamentally regarding 
advantage (2), the estimates of structural reliability in Sections 2.3 
and 2.4 enable us to achieve RBTO at the computational cost of RTO. 

3. Numerical examples 

The proposed algorithm is used to design several truss struc­
tures with uncertain nodal locations (geometric uncertainties) 
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(a) (b) 
Fig. 2. Optimal cantilever truss designs for various values of target reliability. (a) bt 

= 1.46, (b) bt = 2.29 and (c) bt = 3.01.Fig. 1. Ground structure and deterministic design for cantilever truss – symmetric 
loading. (a) Ground structure and (b) deterministic design. 

0 0
10 10

and uncertain Young’s modulus (material uncertainties). The 
−1 

well-known ground structure approach to topology optimization 
is used [42–44]. In this approach, the design domain is densely 
meshed with candidate truss elements and material is distributed 
uniformly across the elements, which is the initial guess for the 
structural design. The proposed algorithm then optimizes 
cross-sectional areas throughout this ground structure. Inefficient 
(low-area) members are then removed and the optimization is 
re-run to ‘clean-up’ the result. This second optimization typically 
requires only a few iterations and does not lead to significant 
topological changes. In all cases, the random (basic) variables are 
Gaussian. For the examples with geometric uncertainties, the ran­
domly located nodes associated with free degrees of freedom have 
standard deviations that are proportional to the mean spacing be­
tween nodes in the horizontal direction. For the example with 
material property uncertainties, the Young’s modulus of each truss 
element is random with the same standard deviation from the 
deterministic modulus. The coefficient of variation for material 
uncertainty is 0.2 so the likelihood of negative Young’s modulus 
is insignificant for the ranges of reliability of interest herein. Monte 
Carlo (MC) simulation using 10,000 realizations is used to verify 
the accuracy of the probability of failure estimates in all presented 
examples. 

3.1. Geometric uncertainty examples 

3.1.1. Cantilever truss – symmetric loading 
We begin with a cantilever truss example to illustrate the direct 

effect of topology optimization using target reliabilities on design. 
The ground structure is shown in Fig. 1 (a). The dimensions are 
60 x30. This example has been widely studied in topology optimi­
zation literature using continuum, frame, or truss structures. For 
instance, Mogami et al. [45] studied this with beam elements un­
der random loads using FORM. We consider geometric uncertain­
ties of 8% nodal location variability, with a deterministic load of 
magnitude 0.25. 

We begin with deterministic design conditions and the standard 
minimum compliance problem meaning l = f in Eq. (15). The mini­
mum compliance solution under a total available volume constraint 
of Vallow = 900 is shown in Fig. 1 (b). This design serves as our base­
line for the subsequent discussion in this example. The compliance 
for this design is 3.52, which is now chosen as the capacity for the 
RBTO (c* = 3.52), and the volume of the optimized designs will be 
normalized against Vallow. When randomness is introduced to the 
nodal locations, a larger volume of material will be needed so that 
the probability of exceeding c* meets pre-assigned target reliabili­
ties bt. This volume will increase as the probability of exceedance de­
creases (and the corresponding target reliability increases). 

Designs using formulation (31) that optimally satisfy three dif­
ferent values of target reliability, are shown in Fig. 2. It can be seen 
that material is added to the truss in two manners: (1) increased 
member sizing, where cross-sectional areas are increased (shown 
by line thickness in all design figures), and (2) changes in system 
topology, where new members are added to diversify the load 
path. Interestingly, no topological changes were observed from bt 

= 2.66 to bt = 3.01. 
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Fig. 3. Comparison between Gumbel and normal distribution fit for the designs in 
Fig. 2(b) and (c). (a) Design in Fig. 2(b), and (b) design in Fig. 2(c). 

Fig. 4. Minimum expected value design for cantilever truss with 8% node location 
variability. 

The accuracy of the estimates is verified using Monte Carlo sim­
ulation. Table 1 summarizes the results of this study. It is seen that 
the perturbation estimates of expected value and standard devia­
tion are accurate. The table further confirms the assertion that 
the Gumbel distribution accurately captures behavior at the tails 
of the response distribution, even for low probabilities of failure. 

In Table 1, the first column is normalized volume of each design, 
normalized by dividing by the volume of the deterministic design. 
This illustrates material cost associated with reduced probability of 
failure. It is noted that even in cases when topology does not 
change (bt ?2.66), member sizes increases, leading to larger total 
volume. 

We examine the accuracy of the Gumbel prediction for Pfail by 
plotting the empirical, Gumbel, and normal estimates on probabil­
ities of failure with respect to the compliance capacity c *. The prob­
abilities for the designs in Fig. 2 (b) and (c) are shown in Fig. 3, 
which indicates that the Gumbel distribution closely follows the 
right tails of the Monte Carlo results. The plot also indicates that 
using a normal distribution for the demand would significantly 
underestimate the probability of failure. 

We now compare these RBTO solutions to the solution found 
using robust design when considering only expected value of com­
pliance, as originally presented in Guest and Igusa [30]. To make this 
comparison, we use the volume in the design of Fig. 2 (c) as the vol­
ume constraint and perform optimization to find the design with the 
minimum expected compliance (RTO). The result is shown in Fig. 4. 
While the structures in Figs. 2 (c) and 4 contain the same volume of 
material, the former which is optimized with respect to reliability 
has a more complex topology and is more redundant than the latter 
which is optimized with respect to expected compliance. 

To compare the performance of RTO and RBTO, we conducted 
Monte Carlo simulations and plotted the corresponding PDFs in 
Fig. 5. As expected, the RTO solution has a lower expected value 
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Table 1 
Comparison summary between the proposed methodology and Monte Carlo simulation. 

Perturbation MC Gaussian Gumbel MC 

Volumea 

1.09 
1.20 
1.27 
1.31 
1.35 
1.41 

bt 

0.50 
1.46 
2.09 
2.29 
2.66 
3.01 

lc 

3.44 
3.20 
3.02 
2.97 
2.86 
2.76 

rc 

0.23 
0.21 
0.19 
0.18 
0.17 
0.16 

lc 

3.45 
3.20 
3.02 
2.97 
2.86 
2.76 

rc 

0.25 
0.22 
0.20 
0.19 
0.18 
0.17 

Pfail (%) 

37.08 
5.74 
0.39 
0.11 
0.00 
0.00 

Pfail (%) 

30.80 
7.16 
1.81 
1.10 
0.39 
0.13 

Pfail (%) 

34.50 
8.20 
1.86 
1.20 
0.35 
0.11 

a Normalized volume. 

L 

4L / 6 

H 

Fig. 7. Ground structure for simply supported truss. 

(a) (b) 

Fig. 8. Designs for simply supported truss at two levels of target reliability. (a) bt 

= 1.00 and (b) bt = 3.01. 

Fig. 5. Comparison of performance of RTO (expected value only) and RBTO for 10
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Fig. 6. Modes of failure for the RTO (expected value only) and RBTO for cantilever 
truss with identical Vallow. (a) Robust design and (b) reliability-based design. 

of compliance (lc = 2.71) but larger standard deviation (rc = 0.19) 
than the RBTO solution. This leads to a probability of failure of 
P[F] = 0.25%, nearly double that of the corresponding RBTO solu­
tion. It is noted that including multiple standard deviation of re­
sponse in the RTO formulation, as in [32], would reduce this gap. 

Another way to compare the two designs is to look at the failure 
modes, which are shown in Fig. 6. We see that the excessive defor­
mation in the compressive member has been mitigated by the 
RBTO approach through the introduction of additional paths. 

3.1.2. Simply supported truss 
We now consider the simply supported ground structure shown 

in Fig. 7. The dimensions are L = 90 and H = 30 and the truss is sub­
jected to three point loads with a common magnitude of 0.1. We 
consider 6% randomness in node location (with respect to mean 
spacing in horizontal direction) and choose a compliance capacity 
of c* = 4.6. 

Fig. 8 displays the optimal topology for two target reliabilities. 
We plot the empirical, normal and Gumbel estimates for probabil­
ities of failure for both designs in Fig. 9. It is interesting to observe 
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Fig. 9. Probability of failure plots with respect to c* for designs in Fig. 8. (a) Design 
in Fig. 8(a), and (b) design in Fig. 8(b). 

that both normal and Gumbel estimates (PNormal ¼ 17:20% andfail 

PGumbel 
fail ¼ 16:66%) are close to the Monte Carlo estimate 

(PMC 
fail ¼ 18:73%) for the design in Fig. 8 (a), but the Gumbel distri­

bution offers a significantly better estimate for lower probabilities 
¼ PMCof failure (PGumbel 

fail ¼ 0:13%) for the design in Fig. 8 (b).fail 

3.2. Material properties 

We now demonstrate the algorithm considering uncertainty in 
Young’s modulus. It is noted that the second derivatives of the stiff­
ness matrix are zero for material property uncertainty, so that the 
last term in (13) can be dropped. Basic variables (Young’s modulus 
of truss members) are assumed correlated. To obtain a stationery 
correlation field we use the following exponential decay correla­
tion function: ! 

dpffiffiffiffiffiffiffiffiffiffiffi kddi - dj k rij ¼ riirjjexp ð32Þ
Lexp

where rij is the correlation between element i and j, rii = rjj is the 
variance, ddi is the coordinate for center of element i, and Lexp is 
the correlation length. The larger the correlation length the stronger 
the correlation. 
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Fig. 12. Normalized weight versus correlation length for the asymmetrically loaded 
cantilever truss. 

Fig. 10. Ground structure for the asymmetrically loaded cantilever truss. 
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Fig. 11. Designs for material uncertainty for the asymmetrically loaded cantilever 
truss and bt = 3.01 with various levels of correlation. (a) Uncorrelated, (b) Lexp = 1  
and (c) Lexp = 10. 

3.2.1. Asymmetrically loaded cantilever truss 
We conclude the example section with the cantilever truss 

shown in Fig. 10, previously studied in Jalalpour et al. [33]. Domain 
dimensions are 60 x30, load magnitude is 1 and c * = 20. We choose 
rE = 0.2, and design for a target reliability of bt = 3.01. Fig. 11 shows 
results for uncorrelated and two correlation lengths. 

It is interesting to note that the design in Fig. 11 (c) is the same 
as deterministic design despite considering randomness in mate­
rial properties. This is in line with previous findings [31] where a 
higher correlation length would lead to less complexity in struc­
tural design. However, it should be noted that this design requires 
significantly higher volume of material in comparison to the deter­
ministic case. This can be observed in Fig. 12, which plots normal­
ized volume of the structural system against correlation length. 
The curve for the normalized weight has a discontinuity at Lexp 

= 3; this is due to the fact that the topology of the optimized design 
undergoes a very distinct and abrupt change as the correlation 
length exceeds 3. 

The plot of empirical and fitted distributions for correlated basic 
variables design is shown in Fig. 13. This figure again shows the 
accuracy of Gumbel fit. The estimated PGumbel ¼ 1% is in agreement f ail 

with Monte Carlo result PMC 
f ail ¼ 1:8%. 

It can be observed that the design for uncorrelated basic vari­
ables in Fig. 11 (a) is more complex than the case of correlated ran­

10


Compliance
 

Fig. 13. Probability of failure plot with respect to c* for the design in Fig. 11(b). 

dom variables (b, c). As we discussed in previous examples, the 
design is also dependent on the target reliability. Therefore, we 
now investigate this effect, and present two designs for lower tar­
get reliabilities in Fig. 14. It is interesting that the design for 
bt = 0.51 is again similar to the deterministic design. This is in con­
trast to considering geometric uncertainty, which consistently 
leads to increased bracing throughout the structure. This is consis­
tent with previous findings [30,32,33]. The primary reason for this 
phenomenon is that consideration of material uncertainty leads to 
K0,ij = 0 as shown with Eq. (16), and that the matrices K0,j have dif­
ferent structures when considering material property versus geo­
metric uncertainties which is discussed in detail in [32]. 

4. Concluding remarks 

In this article, a reliability-based topology optimization algo­
rithm has been proposed for truss structural systems with geomet­
ric and/or material Young’s modulus uncertainties. These 
uncertainties may result from manufacturing flaws or damage, 
and are assumed to be relatively small and normally distributed. 
Under such conditions a Gumbel probability model is used to esti­
mate structural reliability using only first- and second-moments of 

24 
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(a)	 (b) 

Fig. 14. Design for uncorrelated material uncertainty for the asymmetrically loaded 
cantilever truss and two levels of target reliability. (a) bt = 2.34 and (b) bt = 0.51. 

the response, estimated using stochastic perturbation. The accu­
racy of the perturbation-based estimates of first- and second-mo­
ments and the Gumbel estimate of the structural reliability is 
verified with Monte Carlo simulation for several structures. It is ob­
served that the estimates are acceptable without significant loss of 
accuracy, even for probabilities of failure as low as 0.1%. Therefore, 
a computationally efficient single-loop RBTO algorithm without a 
search for the MPP is proposed. 

The computational efficiency of the algorithm as compared to 
Monte Carlo simulation and MPP methods makes it attractive par­
ticulary in iterative structural topology optimization. The limita­
tion of the approach are that the Gumbel model is based on the 
assumption of normally distributed basic variables, and may lose 
accuracy for very simple designs with few nodes. Regardless, under 
such conditions the preliminary design obtained from the pro­
posed algorithm can be verified using more computationally inten­
sive MPP-based reliability methods. 

The field of topology optimization is currently undergoing rapid 
growth and finding use in structural engineering design, in addi­
tion to a wide-range of other engineering applications. It is becom­
ing common knowledge, however, that ultra-efficient topology-
optimized solutions found under deterministic design conditions 
may be susceptible to uncertainties in stiffness, such as due to 
manufacturing defects, thus necessitating formal treatment of such 
uncertainties in the design problem formulation and algorithm. 
This work provides an efficient first step towards a reliability-
based topology optimization under such conditions. 
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Appendix A. Sensitivities 

In the following we use direct differentiation to derive the sen­
sitivity of the variance of compliance with respect to the design 
variables for use with gradient-based optimizers. The reader is re­
ferred to Jalalpour et al. [33] for the sensitivity of expected value of 
compliance. 

To begin, we repeat the expression for variance when l=f in Eq. 
(2) for convenience: 

var½c] ¼ trffT UC0UT fg((( ) )2
)

þ 2tr UT K0U - 1 
eid

T 
0 K0;ijd0eT C0 ðA:1Þj2 

Using chain rule results in: 

0ðvar½c]Þ ¼ trffT U0C0UT fg{(
1

UT K0þ 4tr 0U þ 2UT K0U0 - eiðdT 
0 K
0 
0;ijd02 ) }

þ 2dT 
0 K0;ij d

0 
0 ÞeT 

j C0KUC0	 ðA:2Þ 

where primes denote the gradient with respect to the design vari­
able (cross sectional areas for trusses). Differentiating Eqs. (9) and 
(11) and solving yields: 

U0 ¼ K-1 
0 ðK

0 
0K-1 

0 K0;i - K0 0;i þ K0;iK
-1 
0 K0 0Þd0ei ðA:3Þ 

d0 0 ¼ -K-1 
0 K0 0 d0 ðA:4Þ 

Eq. (A.3) can be simplified to the following: 

U0 ¼ K-1 
0 ð-K0 0 U - ðK0 0;id0 þ K0;id

0 
0 ÞeT 

i Þ ðA:5Þ 

Substituting (A.5) into and taking advantage of symmetric matrices 
gives the final form of sensitivity as: 

ðvar½c]Þ0 ¼ 2trfd0 
T ð-K0 0U þ ð-K0 0;id0 þ K0;id

0 
0 ÞÞeT 

i 

C0UT fg þ 4trf-UT K0 0U þ 2UT ðð-K0 0;id0 þ K0;id
0Þei 

T Þ 
C0KUC0g - 2trfeiðdT 

0 K
0 
0;ijd0 þ 2dT 

0 K0;ijd
0 
0Þej 

T C0KUC0g ðA:6Þ 

Finally, the gradient of k in Eq. (21) can be found using: 
pffiffiffi 

6r0 
s0 ¼ c	 ðA:7Þ 

p 

l0 ¼ l0 cS0 c -	 ðA:8Þ 

-l0 s þ s0ðclÞ 
k0 ¼	 ðA:9Þ 

s2 

where rc0 and lc0 are gradients of the standard deviation and 
expected value of compliance, respectively. 

References 

[1]	 Madsen HO, Krenk S, Lind N. Methods of structural safety. Prentice-Hall Inc.; 
1986. 

[2]	 Schuëller G, Pradlwarter H, Koutsourelakis P. A critical appraisal of reliability 
estimation procedures for high dimensions. Probab Eng Mech 
2004;19(4):463–74. 

[3]	 Cornell C. A probability-based structural code. J Am Concr Inst 
1969;66(12):974–85. 

[4]	 Hasofer A, Lind N. An exact and invariant first-order reliability format. J Eng 
Mech Div 1974;100(1):111–21. 

[5]	 Der Kiureghian A, Lin H, Hwang S. Second-order reliability approximations. J 
Eng Mech 1987;113(8):1208–25. 

[6]	 Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R. New light on first- and 
second-order reliability methods. Struct Saf 1987;4:267–84. 

[7]	 Gasser M, Schueller G. Reliability-based optimization of structural systems. 
Math Methods Oper Res 1997;46(12):287–307. 

[8]	 Liu PL, Der Kiureghian A. Optimization algorithms for structural reliability. 
Struct Saf 1991;9(3):161–77. 

[9]	 Karadeniz H, Toan V, Vrouwenvelder T. An integrated reliability-based design 
optimization of offshore towers. Reliab Eng Syst Saf 2009;94(10):1510–6. 

[10]	 Enevoldsen I, Sørensen J. Reliability-based optimization in structural 
engineering. Struct Saf 1994;15(3):169–96. 

[11]	 Tu J, Choi KK, Park YH. A new study on reliability-based design optimization. J 
Mech Des 1999;121(4):557–64. 

[12]	 Madsen H, Hansen P. A comparison of some algorithms for reliability based 
structural optimization and sensitivity analysis. In: Rackwitz R, Thoft­

http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0001
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0001
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0002
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0002
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0002
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0003
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0003
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0004
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0004
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0005
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0005
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0006
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0006
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0007
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0007
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0008
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0008
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0009
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0009
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0010
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0010
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0011
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0011
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0012
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0012


49 

Christensen P, editors. Proceedings of the 4th IFIP WG 7.5 conference. Munich, 
Germany: Springer-Verlag, Berlin. p. 443451. 

[13] Agarwal	 H. Reliability based design optimization: formulations and 
methodologies. Ph.D. thesis, University of Notredam; 2004 

[14]	 Liang J, Mourelatos Z, Tu J. A single-loop method for reliability-based design 
optimization. ASME Conf Proc 2004;2004(46946):419–30. 

[15]	 Kharmanda G, Lambert S, Kourdi N, Daboul A, Elhami A. Reliability-based 
topology optimization for different engineering applications. Int J CAD/CAM 
2007;7(1):61–9. 

[16]	 Du X, Chen W. Sequential optimization and reliability assessment method for 
effcient probabilistic design. J Mech Des 2005;126(2):225–33. 

[17]	 Kang Z, Luo Y. Non-probabilistic reliability-based topology optimization of 
geometrically nonlinear structures using convex models. Comput Meth Appl 
Mech Eng 2009;198(4144):3228–38. 

[18]	 Chiralaksanakul A, Mahadevan S. First-order approximation methods in 
reliabilitybased design optimization. J Mech Des 2005;127(5):851–7. 

[19]	 Fu G, Frangopol DM. Balancing weight, system reliability and redundancy in a 
multiobjective optimization framework. Struct Saf 1990;7(24):165–75. 

[20]	 Hendawi S, Frangopol DM. System reliability and redundancy in structural 
design and evaluation. Struct Saf 1994;16(12):47–71. 

[21]	 Thoft-Christensen P, Dalsgård Sørensen J. Reliability of structural systems with 
correlated elements. Appl Math Modell 1982;6(3):171–8. 

[22]	 Nguyen TH, Song J, Paulino GH. Single-loop system reliability-based design 
optimization using matrix-based system reliability method: theory and 
applications. J Mech Des 2010;132(1):011005. 

[23]	 Silva M, Tortorelli D, Norato J, Ha C, Bae HR. Component and system reliability-
based topology optimization using a single-loop method. Struct Multi Optim 
2010;41:87–106. 

[24]	 Park S, Choi S, Sikorsky C, Stubbs N. Efficient method for calculation of system 
reliability of a complex structure. Int J Solids Struct 2004;41(1819):5035–50. 

[25]	 Tsompanakis Y, Lagaros N, Papadrakakis M. Structural design optimization 
considering uncertainties. Taylor and Francis; 2008. 

[26]	 Schueller G, Jensen H. Computational methods in optimization considering 
uncertainties – an overview. Comput Meth Appl Mech Eng 2008;198(1):2–13. 

[27]	 Igusa T, Der Kiureghian A. Response of uncertain systems to stochastic 
excitation. J Eng Mech 1988;114(5):812–32. 

[28]	 Stockl G. Topology optimization of trusses under stochastic uncertainty. J Appl 
Math Mech 2001;81(S3):697–8. 

[29]	 Maute K, Frangopol DM. Reliability-based design of mems mechanisms by 
topology optimization. Comput Struct 2003;81(8–11):813–24. 

[30]	 Guest J, Igusa T. Structural optimization under uncertain loads and nodal 
locations. Comput Meth Appl Mech Eng 2008;198(1):116–24. 

[31]	 Asadpoure A, Guest J, Igusa T. Structural topology optimization considering 
correlated uncertainties in elastic modulus. Collection of Technical Papers – 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 
Conference, 2010. 

[32]	 Asadpoure A, Tootkaboni M, Guest JK. Robust topology optimization of 
structures with uncertainties in stiffness: application to truss structures. 
Comput Struct 2011;89(1112):1131–41. 

[33]	 Jalalpour M, Igusa T, Guest J. Optimal design of trusses with geometric 
imperfections: accounting for global instability. Int J Solids Struct 
2011;48(21):3011–9. 

[34]	 Chen S, Chen W, Lee S. Level set based robust shape and topology optimization 
under random field uncertainities. Struct Multidiscipl. Optim., 
2010:507–24. 

[35]	 Schevenels M, Lazarov BS, Sigmund O. Robust topology optimization 
accounting for spatially varying manufacturing errors. Comput Meth Appl 
Mech Eng 2011;200:3613–27. 

[36]	 Tootkaboni M, Asadpoure A, Guest JK. Topology optimization of continuum 
structures under uncertainty: a polynomial chaos approach. Comput Meth 
Appl Mech Eng 2012;201:204(0):263–75. 

[37] Ditlevsen O, Madsen H. Structural reliability methods 2007. Available from: 
<http://www.web.mek.dtu.dk/staff/od/books.htm>. 

[38]	 Liu P, Der Kiureghian A. Multivariate distribution models with prescribed 
marginals and covariances. Probab Eng Mech 1986;1(2):105–12. 

[39]	 Gumbel EJ. Statistical theory of extreme values and some practical 
applications; a series of lectures. Washington: U.S. Govt. Print. Office; 1954. 

[40]	 Ditlevsen O. Generalized second moment reliability index. J Struct Mech 
1979;7(4):435–51. 

[41]	 The MathWorks Inc. MATLAB - optimization toolbox, version 6.2. Natick, 
Massachusetts: The MathWorks Inc; 2012. http://www.mathworks.com/ 
products/optimization/. 

[42]	 Kirsch U. Optimal topologies of truss structures. Comput Meth Appl Mech Eng 
1989;72(1):15–28. 

[43]	 Rozvany GIN, BM P, Kirsch U. Layout optimization of structures. Appl Mech 
Rev 1995;48(2):41–119. 

[44]	 Bendsøe MP, Sigmund O. Topology optimization: theory, methods and 
applications. Springer; 2003. 

[45]	 Mogami K, Nishiwaki S, Izui K, Yoshimura M, Kogiso N. Reliabilitybased 
structural optimization of frame structures for multiple failure criteria using 
topology optimization techniques. Struct Multi Optim 2006;32:299–311. 

http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0012
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0012
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0013
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0013
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0014
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0014
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0014
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0015
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0015
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0016
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0016
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0016
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0017
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0017
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0018
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0018
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0019
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0019
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0020
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0020
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0021
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0021
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0021
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0022
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0022
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0022
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0023
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0023
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0024
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0024
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0025
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0025
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0026
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0026
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0027
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0027
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0028
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0028
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0029
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0029
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0030
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0030
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0030
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0030
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0031
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0031
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0031
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0032
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0032
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0032
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0033
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0033
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0033
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0034
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0034
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0034
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0035
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0035
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0035
http://www.web.mek.dtu.dk/staff/od/books.htm
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0037
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0037
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0038
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0038
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0039
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0039
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0040
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0040
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0040
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0041
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0041
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0042
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0042
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0043
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0043
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0044
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0044
http://refhub.elsevier.com/S0167-4730(13)00018-0/sbref0044

	Cleveland State University
	EngagedScholarship@CSU
	7-2013

	Reliability-based Topology Optimization of Trusses with Stochastic Stiffness
	Mehdi Jalalpour
	James K. Guest
	Takeru Igusa
	Publisher's Statement
	Original Citation


	Reliability-based topology optimization of trusses with stochastic stiffness
	1 Introduction
	2 Reliability-based topology optimization formulation
	2.1 Structural reliability
	2.2 Structural response
	2.3 Gumbel distribution
	2.4 Response statistics
	2.5 Optimization formulation

	3 Numerical examples
	3.1 Geometric uncertainty examples
	3.1.1 Cantilever truss – symmetric loading
	3.1.2 Simply supported truss

	3.2 Material properties
	3.2.1 Asymmetrically loaded cantilever truss


	4 Concluding remarks
	Acknowledgements
	Appendix A Sensitivities
	References


