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Reliability-based topology optimization of trusses with stochastic stiffness 

Mehdi Jalalpour *, James K. Guest, Takeru Igusa 

Department of Civil Engineering, Johns Hopkins University Baltimore, MD 21218, USA 

1. Introduction 

Topology optimization is a computational design tool for opti
mizing structural system connectivity and corresponding member 
sizes to meet given performance targets. Due to associated numeri
cal challenges, however, the vast majority of works consider the 
loading and structural characteristics, such as geometry and mate
rial properties, to be deterministic. This is almost always an unreal
istic assumption due to the inherent variability in manufacturing 
process and simplifying assumptions for evaluating the loads on 
structure. Formal design methods accounting for such uncertainties 
include worst-case design, robust topology optimization (RTO), and 
reliability-based topology optimization (RBTO). This work focuses 
on RBTO of truss structural systems with stochastic stiffness. 

The goal of RBTO is to find the optimal values for a design vector 
q so that a target reliability is achieved. Randomness in the system 
is expressed as basic variables and denoted by g. It is useful to de
fine an auxiliary function s(g,q) for the load effects, which can be 
displacement, stress, etc. Failure is defined by a limit-state function 
in terms of load effects as g(s). Probability of failure can be found in 
terms of s by Z 
Pf ail ¼ fsðsÞds ð1Þ 

gðsÞ<0 

where fs(s) is the probability distribution of load effects. It is apparent 
that information regarding the distribution of the load effects and 
form of the limit-state function is needed to calculate the above inte
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gral directly. Such an approach is called Level III reliability analysis 
[1]. However, only the distribution of basic variables g is typically 
known, making assessment of the probability of failure a challenging 
task. Moreover, in the engineering cases where there may be many 
uncertain parameters, calculation of the integral might become com
putationally infeasible [2]. To circumvent these issues, Level II reli
ability methods have been proposed, where the notion of reliability 
index [3,4] is used. To follow this methodology, one first maps the ba
sic variables to the space of standard normal variables using a prob
abilistic transformation. The limit surface is then approximated by a 
first (FORM) or second (SORM) order Taylor series [5] and the normal 
distribution may be used to estimate the structural reliability (see 
Hohenbichler et al. [6], Gasser and Schueller [7] for a review). The 
key idea is that the normal probability density function (PDF) decays 
very quickly with distance from the origin, limiting significant contri
butions to the response integral in Eq. (1) to points in the neighbor
hood of the most probable point (MPP) with the least distance to 
the origin (b). Therefore, a Taylor series expansion about this point 
leads to acceptable reliability estimates, and the problem is now 
transformed to finding the MPP. There are a number of search meth
ods for optimal points and we refer to [8] for a review on the available 
methods. It is then possible to find the probability of failure. For in
stance, FORM utilizes Pfail = U(-b), where U(.) symbolizes the normal 
cumulative distribution function (CDF). 

In the context of topology optimization, the MPP must be lo
cated at every iteration of the optimization process. This produces 
a nested, or double-loop optimization algorithm [9,10], which may 
ultimately lead to cumbersome or even intractable computations. 
Tu et al. [11] report that using the Hasofer–Lind definition for 
the reliability index may lead to convergence issues on locating 
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the MPP and that solutions may not exist. Methods for avoiding the 
double-loop approach have also been proposed [12,13]. Often, 
these methods consist of employing the Karush–Kuhn–Tucker 
(KKT) optimality conditions for an approximation to the design 
point in the nested loop, allowing the inner loop to be replaced 
with a deterministic constraint [14]. Kharmanda et al. [15] have 
proposed a decoupling method where they first search for the 
MPP based on the desired reliability of design, and then perform 
a deterministic minimum compliance design. Du and Chen [16] 
have proposed an interesting methodology to replace the search 
for the design point by the method of sequential optimization 
and reliability assessment. Kang and Luo [17] have implemented 
a non-probabilistic method to perform reliability-based design on 
geometric nonlinear continuum structures using a convex model 
that encompasses all the possible values for basic random vari
ables. We refer to [18] for a review on the methodologies on single-
or nested-loop optimization. 

The works in the preceding discussion can be categorized as com
ponent-level reliability. When considering system reliability, multi
ple performance functions must be considered in either series or 
parallel, significantly increasing computational cost [19,20]. Thoft-
Christensen and Dalsgård Sørensen [21] proposed a methodology 
to evaluate structural reliability with correlated member uncertain
ties for both parallel and series systems. Nguyen et al. [22] have gen
eralized the methodology proposed in [14] to system reliability. 
Silva et al. [23] have used a FORM single-loop approach for reliabil
ity-based design on both component and system level for the case 
when uncertainty is present in loading. Their methodology utilizes 
an approximation to MPP and the gradient, and is suitable for inte
gration with available finite-element software. Park et al. [24] have 
proposed an efficient methodology for computing system reliability 
indices in terms of component reliability. Their methodology is 
based on considering correlation between modes of failure. 

There is a rich literature on various applications of reliability-
based design, and the reader is referred to Tsompanakis et al. 
[25] for a recent collection of state-of-the-art papers, Schueller 
and Jensen [26] for an excellent review on the recent advance
ments on design under uncertainty, and Igusa and Der Kiureghian 
[27] for a review in dynamics problems and the importance of con
sidering randomness in structural characteristics. Specifically in 
the context of structural topology optimization, a significant 
amount of work has considered RBTO under uncertainty in loading 
for structures defined on truss [28] and continuum [29] domains. 

An emerging trend in topology optimization has been the formal 
consideration of uncertainty in structural characteristics. This has 
largely fallen under the regime of robust topology optimization, 
i.e., design for insensitivity to variations in manufactured stiffness. 
The standard measure of structural response is the compliance, de
fined as c = fTd, which is a proxy for structural stiffness. Guest and 
Igusa [30] used a perturbation-based approach to minimize the ex
pected value of compliance under geometric uncertainties. This 
work was later extended to include uncertainties in material proper
ties [31], more general robust design optimization [32], and global 
instability effects [33]. Chen et al. [34] used Karhunen–Loeve expan
sion and multivariate dimension reduction to minimize the ex
pected value of compliance under uncertainty in material 
properties as well as applied loads. Schevenels et al. [35] use Monte 
Carlo simulation to formally account for over- and under-etching in 
manufacturing to optimize the expected value of response. Tootka
boni et al. [36] use polynomial chaos to minimize the expected value 
and variability of stiffness under material property uncertainties. 

In the present article, it is shown that the probability distribu
tion of the compliance of optimally designed trusses with uncer
tain nodal locations and/or members Young’s modulus can be 
approximated by the Gumbel distribution, provided that the truss 
is not a trivial structure with only a few nodes. Because of this ob

served property the probability of failure can be readily estimated 
from first- and second-moments of the response, circumventing 
the need for a nested-loop approach. This enables straightforward 
expressions for sensitivity analysis and produces an effective and 
computationally efficient topology optimization design algorithm, 
especially in system-level RBTO, and ultimately allows the de
signer to perform RBTO at the computational cost of RTO. 

This article is structured as follows. We begin by formulating 
the limit-state function and structural reliability in terms of a dis
placement-based metric. We then derive the expressions for the 
statistical moments of the metric using stochastic perturbations 
and show how these moments are related to the parameters of 
the Gumbel distribution. We then propose a single-loop reliabil
ity-based topology optimization method for truss systems. Numer
ical examples are presented for trusses with geometric and 
material property uncertainties and the accuracy of the method 
is verified using Monte Carlo simulation. 

2. Reliability-based topology optimization formulation 

In this section, we begin with defining the structural reliability 
in terms of a displacement-based metric, obtain the required sta
tistics of the metric, and present the reliability-based topology 
optimization (RBTO) formulation. 

2.1. Structural reliability 

To assess the structural reliability, structural performance has 
to be measured in terms of a load effect (stress, deflection, ...), 
and a limit-state or performance function is defined for the struc
ture. We measure structural performance in terms of a linear func
tion of displacement vector using: 

c ¼ lT d ð2Þ 

where l is a vector that linearly combines the degrees of freedom of 
interest from the displacement vector d. Throughout this article 
boldface lower and upper case letters represent vectors and matri
ces, respectively. We can constrain deflection at degree of freedom i 
by using l = ei, where ei is a unit vector with zeros at all degrees of 
freedom other than i. We can now define the limit-state function in 
terms of the displacement metric as 

*g ¼ c - c ð3Þ 

where c* is the predetermined structure capacity. For example, under 
a deflection constraint (l = ei), c* represents the maximum allowable 
deflection (capacity) at degree of freedom i and c represents the cor
responding actual (demand) deflection. This problem formulation is 
natural, as typically design requires that, for instance, the structure 
displacement be less than a given deterministic value (e.g., 1/360 of 
span). The probability of failure can be evaluated using: 

* *Pfail ¼ P½g < 0] ¼ P½c < c] ¼ 1 - P½c : c ] ð4Þ 

There are now two challenges in using the above formulations: 
obtaining the displacement metric and obtaining its distribution. 
These challenges and possible mitigation strategies are discussed 
in further detail in the remaining parts of this section. 

2.2. Structural response 

When uncertainty is introduced into structural stiffness, such as 
in the form of geometric imperfections or material variability, 
obtaining structural displacement becomes challenging, because it 
is related to the inverse of a stochastic matrix. In this subsection, 
we review a perturbation approach to this problem that closely fol
lows Guest and Igusa [30]. First we express each random quantity as: 
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Û d̂
1gi ¼ gi0 þ dgi	 ð5Þ TT T 

jKU ¼ K0U - 0 K0;ijd0 e ð14Þei2where gi0 is the deterministic and dgi is the additive random com
ponent. Information about the distribution of dg and its first and It is noted that KU is symmetric due to symmetry of the stiffness 

second statistical moments are assumed known (e.g., through mea- matrix. Substituting (14) into (13) yields the final form for the dis
surement). Without loss of generality we may assume that dg has placement metric as: 

d̂
Tzero mean. Structural equilibrium is given as: c ¼ lT d0 þ T KUx0 K0 Ux þ x ð15Þ 

f ¼ KðgÞdðgÞ	 ð6Þ 
Two types of uncertainties are considered in this work: geometric 

where the applied loads f are assumed deterministic. It is observed 
that the input variability in structural stiffness makes the displace
ment a random vector. Because the uncertainties of interest are due 
to manufacturing defects or material variability, it assumed that 
these uncertainties are relatively small. This enables the displace
ment for any structure with stochastic response to be obtained using 
perturbations of the stiffness matrix to the second order, yielding: 

1 1 1d ¼ K- f - K- K0;iK
- fdgi0 0 0
 

1 1 1
þ K- K0;i K
- K0;jK

- fdgidgj0 0 0
 

1 1 1
 - K- K0;ij K
- fdgidgj	 ð7Þ

2 0 0 

where we have used standard indicial notation with repeated index 
meaning summation. The matrix K0,i denotes the derivative of the 
deterministic stiffness matrix with respect to the ith basic variable. 

^

To obtain the displacement metric, let us rewrite (7) in vector for
mat to produce a more compact form. We first express the random
ness as: 

x ¼ eidgi	 ð8Þ 

d0 :and denote the solution of the following adjoint problem as

imperfections and material variability. Expressions for the deriva
tives K0,i and K0,ij for geometric uncertainties are available in [30] 
and are straightforward for trusses. They are likewise straightfor
ward for uncertainty in Young’s modulus [32,36], where in particu
lar we note: 

K0;ij ¼ 0 8i; j	 ð16Þ 

Eq. (15) is general and can be used to obtain the displacement 
metric for any source of uncertainty and for all structural 
systems. 

2.3. Gumbel distribution 

We can view the displacement-based metric as a mechanical 
transformation of the input variability in structural characteristics. 
Now depending on the form of this transformation, the metric 
might have various distributions, and obtaining them is not a triv
ial task. It has been shown that FORM and SORM methods perform 
very well in estimating the probability of failure [5–7,37]. How
ever, as discussed in the introduction, these methods may become 
computationally prohibitive in the context of the iterative struc
tural topology optimization.
 

One approach to overcome this difficulty is to look for an
d0 ¼ l 
appropriate distribution to accurately model the displacement 

It is common practice in topology optimization to use l = f, making c metric. We used Liu and Der Kiureghian [38], which lists the 
proportional to the external work, or compliance, which can be most widely used two-parameter distributions for reliability 
interpreted as a proxy for structural stiffness. For this case 

^K ð9Þ 

analysis (Normal, Lognormal, Weibull, Shifted exponential and 
d0 ¼ d0, which is the deterministic solution under applied loads. Gumbel) and observed that Gumbel distribution provides, by 
However, let us continue the derivations with the general case. far, the closest fit to the empirical distributions of the demand 
Substituting (9) and (7) into (2) gives: metric in Eq. (2) for all non-trivial trusses when the basic vari

^

ables are normally distributed. It is noted that using the normal T T 
c ¼ lT d0 

1^d d 

T	 T dratic terms in x in Eq. (13). 
j x 

^ T T 
i x þ x T 

j x0K0;id0e 0 K0;iK
-
0 K0;jd0eei-

d̂

distribution for the demand is inappropriate because of the qua
1 T 

0 K0;ijd0e ð10Þx ei-
Gumbel, or extreme type I, is a two parameter distribution 2 

Observe that the random displacement-related performance 
metric c is now written in terms of the deterministic stiffness ma
trix of structure and its derivatives, which are straightforward to 
compute [30]. Therefore, under the assumption of small uncertain
ties, we can evaluate the structural response using Eq. (10) for any 
structural system. To rewrite the above in a more compact format, 

dependent on location and scale variables, denoted by l and s, 
respectively. The cumulative distribution function (CDF) is given 
by [39]: 

*	 
( ( (

- l 
)))

c * 
FC ðc Þ ¼ exp - exp - ð17Þ 

s 

Assuming that the displacement metric c follows this distribution, Û as dimensionless matrices that can be under-
we can establish a relation between the distribution parameters stood as the structural normalized displacements under a system 
and demand using the method of moments: of equivalent normalized loads [33] as follows: pffiffiffi 

1	 6rcU ¼ K-0	 F s ¼ ð18Þ 

let us define U and

p
^^ F 

where the system of equivalent normalized loads F and

ð11ÞU ¼ K-0 
l ¼ lc - cs	 ð19Þ 

F̂ can be de
fined as: where c is the Euler–Mascheroni constant, and lc and rc are the ex

pected value and standard deviation of c, respectively. Combining 
F ¼ -K0;i d0eT 

i	 Eqs. (4) and (17) and following Ditlevsen [40], we can express the 

^^^

^F̂ ¼ -K0;i d0e

b ¼ q-1 ðFC ðkÞÞ	 ð20ÞSubstituting (11) into (10) yields: 

d U d 

T	 ð12Þ reliability index as: 
i 

where we have defined: 1T TT 
c ¼ lT d0 þ T T T 

j x0K0 Ux þ x K0 Ux - 0K0;ijd0e ð13Þx ei2 c * - l 
k ¼	 ð21Þ 

We can transform (13) into a more compact form by defining: s 

1 



44 

Computation of the reliability index requires estimation of the 
expected value and standard deviation of the displacement-based 
metric (demand). These statistics are estimated using perturbation 
expansions and are derived in the next subsection. 

2.4. Response statistics 

Equations for estimating the expected value and standard devia
tion of compliance under stochastic stiffness have previously been 
derived using perturbation in Guest and Igusa [30], Asadpoure 
et al. [32], and Jalalpour et al. [33]. Herein, we extend these results 
for the more general displacement-based metric in (15). Following 
Jalalpour et al. [33], we can write the expected value of (15) as: 

E½c] ¼ lT d0 þ trfKUC0g ð22Þ 

where C0 is the covariance matrix of the basic random variables and 
tr is the trace operator. Eq. (22) is general and does not depend on 
the distribution of basic variables. 

It is useful to derive the demand variance for a general covari
ance matrix of normally distributed basic variables. The variance 
can be expressed as: 

T^var½c] ¼ var½d0 K0Ux] þ var½xTKUx] ð23Þ 

We note that the terms involving 3rd order statistics have been 
dropped because they are zero for normally distributed variables. 
The variance of the first term in (23) is straightforward to derive 
and is given as: 

d 
T 

d0 

T 
K0UC0 U

T K0d0 
^^^var½ 0 K0Ux] ¼  

Design sensitivities are derived using the direct differentiation 

ðE½xT KUx]Þ 2 ¼ ðtrfKUE½xxT ]gÞ 2 ¼ trfKUC0 gtrfKUC0g ð26Þ 

To derive the variance of the first term of Eq. (25), we use Isserlis’ 
theorem and indicial notation to get the 4th order statistics as: 

E½xT KUxxT KUx] ¼ kij krs E½xi xjxr xs] 
¼ rijkijrrskrs þ rir kijrjskrs þ riskijrjr krs 

¼ rijkijrrskrs þ 2rir kij rjs krs ð27Þ 

where we have taken advantage of the symmetry of the matrices. 
Eq. (27) is now expressed using vector form and trace operator as: 

E½xT KUxxT KUx] ¼ trfKUC0 gtrfKUC0 g 
þ 2trfKUC0KUC0g ð28Þ 

Substituting Eqs. (28) and (26) into Eq. (25) yields: n o 
var½xT KUx] ¼ 2tr ðKUC0Þ2 ð29Þ 

Substituting Eqs. (24) and (29) into Eq. (23) gives the final form of 
variance as: n 

2 
o 

var½c] ¼ lT UC0UT l þ 2tr ðKUC0Þ ð30Þ 

where we have used the equilibrium condition of the adjoint problem 
defined in Eq. (9). It is noted that for uncorrelated basic variables, C0 

would be a diagonal matrix. The above estimate for the variance in
cludes terms up to 4th order statistics as noted in Eq. (27). 

For cases where the basic random variables are not normally 
distributed Eq. (30) would no longer hold and the expression for 
the variance would have to be truncated to include only the sec
ond-order moments, as given by the first term in Eq. (30). 

2.5. Optimization formulation 

Using the above, we now present the reliability-based topology 
optimization formulation that minimizes structural volume V (or 
equivalently weight) subject to a constraint on the probability of 
failure. This is formulated as a constraint on the reliability index 
as follows: 

min V ¼ qT v 
q 

s:t: K0ðqÞdðqÞ ¼ f 
K0 ðqÞUðqÞ ¼ FðqÞ 
bðqÞ ? bt 

0\qmin\qe ð31Þ 

where q is the vector containing independent design variables (qe) 
and v is the vector of element volumes for unit q. For truss systems, 
these vectors are cross-sectional areas and element lengths respec
tively. Variable b is the reliability index that has to exceed a target 
reliability bt (or equivalently the probability of failure has to be low
er than a prescribed accepted risk). The lower design variable bound 
qmin is set to a small positive number to avoid singularity of the glo
bal stiffness matrix. The remaining constraints are for satisfying the 
equilibrium of the deterministic structure (with stiffness matrix K0) 
under the applied loads f and equivalent random loads F. Consistent 
units are used throughout, hence all magnitudes are presented as 
unitless. 

Problem (31) is continuous and thus is solved using gradient-
based optimizers, selected herein as sequential quadratic program

ð24Þ ming as implemented in the MATLAB optimization toolbox [41]. 

The variance for the second term of Eq. (23) is given as: method [33]. Expressions for these sensitivities are straightforward 
to derive, and details are presented in the appendix. 

The proposed RBTO algorithm for stochastic stiffness offers com-

T KUx] ¼ E½ðxT KUxÞ 2 ] - ðE½xT KUx]Þ 2 ð25Þvar½x


Using the trace operator we can derive the second term of Eq.
 putational efficiency in comparison to other MPP-based or Monte 
(25) using: Carlo-based methods. The key advantages are: (1) using perturba

tion of the stiffness matrix the stochastic stiffness problem is recast 
in terms of equivalent normalized loads, meaning the linear systems 
to be solved feature one left-hand side (K0 in Eq. (31)) with multiple 
right-hand sides (f and F in Eq. (31)), and (2) the Gumbel approxima
tion eliminates the need to solve the inner MPP problem. Computa
tional savings associated with advantage (1) were discussed in [30] 
and quantified in [32]. In short, the number of operations associated 
with evaluating demand statistical moments using perturbation is 
on the order of np ðOÞ ¼ n3 =3 þ nrv * n2 and using Monte Carlo simeq eq 

ulation is nMC ðOÞ ¼ M * n3 =3, where neq is the number of equations eq 

to solve (free degrees of freedom), nrv is the number of random vari
ables, and M is the number of Monte Carlo realizations needed to 
accurately quantify the demand variability. As M is typically much 
larger than nrv, the computational savings of using perturbation over 
Monte Carlo simulation are significant. With regard to the second 
advantage, double-loop algorithms use FORM or SORM which re
quires another minimization loop to estimate the reliability index 
at every design iteration. Assuming that this inner loop converges 
in F iterations, it is straightforward to show that the total computa
tional savings of the proposed algorithm over Monte Carlo-based 
FORM (or SORM) are on the order of (F - 1) * nMC(O)/np(O). This is 
typically two or three orders of magnitude difference for the prob
lems considered in this manuscript. More fundamentally regarding 
advantage (2), the estimates of structural reliability in Sections 2.3 
and 2.4 enable us to achieve RBTO at the computational cost of RTO. 

3. Numerical examples 

The proposed algorithm is used to design several truss struc
tures with uncertain nodal locations (geometric uncertainties) 
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(a) (b) 
Fig. 2. Optimal cantilever truss designs for various values of target reliability. (a) bt 

= 1.46, (b) bt = 2.29 and (c) bt = 3.01.Fig. 1. Ground structure and deterministic design for cantilever truss – symmetric 
loading. (a) Ground structure and (b) deterministic design. 

0 0
10 10

and uncertain Young’s modulus (material uncertainties). The 
−1 

well-known ground structure approach to topology optimization 
is used [42–44]. In this approach, the design domain is densely 
meshed with candidate truss elements and material is distributed 
uniformly across the elements, which is the initial guess for the 
structural design. The proposed algorithm then optimizes 
cross-sectional areas throughout this ground structure. Inefficient 
(low-area) members are then removed and the optimization is 
re-run to ‘clean-up’ the result. This second optimization typically 
requires only a few iterations and does not lead to significant 
topological changes. In all cases, the random (basic) variables are 
Gaussian. For the examples with geometric uncertainties, the ran
domly located nodes associated with free degrees of freedom have 
standard deviations that are proportional to the mean spacing be
tween nodes in the horizontal direction. For the example with 
material property uncertainties, the Young’s modulus of each truss 
element is random with the same standard deviation from the 
deterministic modulus. The coefficient of variation for material 
uncertainty is 0.2 so the likelihood of negative Young’s modulus 
is insignificant for the ranges of reliability of interest herein. Monte 
Carlo (MC) simulation using 10,000 realizations is used to verify 
the accuracy of the probability of failure estimates in all presented 
examples. 

3.1. Geometric uncertainty examples 

3.1.1. Cantilever truss – symmetric loading 
We begin with a cantilever truss example to illustrate the direct 

effect of topology optimization using target reliabilities on design. 
The ground structure is shown in Fig. 1 (a). The dimensions are 
60 x30. This example has been widely studied in topology optimi
zation literature using continuum, frame, or truss structures. For 
instance, Mogami et al. [45] studied this with beam elements un
der random loads using FORM. We consider geometric uncertain
ties of 8% nodal location variability, with a deterministic load of 
magnitude 0.25. 

We begin with deterministic design conditions and the standard 
minimum compliance problem meaning l = f in Eq. (15). The mini
mum compliance solution under a total available volume constraint 
of Vallow = 900 is shown in Fig. 1 (b). This design serves as our base
line for the subsequent discussion in this example. The compliance 
for this design is 3.52, which is now chosen as the capacity for the 
RBTO (c* = 3.52), and the volume of the optimized designs will be 
normalized against Vallow. When randomness is introduced to the 
nodal locations, a larger volume of material will be needed so that 
the probability of exceeding c* meets pre-assigned target reliabili
ties bt. This volume will increase as the probability of exceedance de
creases (and the corresponding target reliability increases). 

Designs using formulation (31) that optimally satisfy three dif
ferent values of target reliability, are shown in Fig. 2. It can be seen 
that material is added to the truss in two manners: (1) increased 
member sizing, where cross-sectional areas are increased (shown 
by line thickness in all design figures), and (2) changes in system 
topology, where new members are added to diversify the load 
path. Interestingly, no topological changes were observed from bt 

= 2.66 to bt = 3.01. 
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Fig. 3. Comparison between Gumbel and normal distribution fit for the designs in 
Fig. 2(b) and (c). (a) Design in Fig. 2(b), and (b) design in Fig. 2(c). 

Fig. 4. Minimum expected value design for cantilever truss with 8% node location 
variability. 

The accuracy of the estimates is verified using Monte Carlo sim
ulation. Table 1 summarizes the results of this study. It is seen that 
the perturbation estimates of expected value and standard devia
tion are accurate. The table further confirms the assertion that 
the Gumbel distribution accurately captures behavior at the tails 
of the response distribution, even for low probabilities of failure. 

In Table 1, the first column is normalized volume of each design, 
normalized by dividing by the volume of the deterministic design. 
This illustrates material cost associated with reduced probability of 
failure. It is noted that even in cases when topology does not 
change (bt ?2.66), member sizes increases, leading to larger total 
volume. 

We examine the accuracy of the Gumbel prediction for Pfail by 
plotting the empirical, Gumbel, and normal estimates on probabil
ities of failure with respect to the compliance capacity c *. The prob
abilities for the designs in Fig. 2 (b) and (c) are shown in Fig. 3, 
which indicates that the Gumbel distribution closely follows the 
right tails of the Monte Carlo results. The plot also indicates that 
using a normal distribution for the demand would significantly 
underestimate the probability of failure. 

We now compare these RBTO solutions to the solution found 
using robust design when considering only expected value of com
pliance, as originally presented in Guest and Igusa [30]. To make this 
comparison, we use the volume in the design of Fig. 2 (c) as the vol
ume constraint and perform optimization to find the design with the 
minimum expected compliance (RTO). The result is shown in Fig. 4. 
While the structures in Figs. 2 (c) and 4 contain the same volume of 
material, the former which is optimized with respect to reliability 
has a more complex topology and is more redundant than the latter 
which is optimized with respect to expected compliance. 

To compare the performance of RTO and RBTO, we conducted 
Monte Carlo simulations and plotted the corresponding PDFs in 
Fig. 5. As expected, the RTO solution has a lower expected value 
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Table 1 
Comparison summary between the proposed methodology and Monte Carlo simulation. 

Perturbation MC Gaussian Gumbel MC 

Volumea 

1.09 
1.20 
1.27 
1.31 
1.35 
1.41 

bt 

0.50 
1.46 
2.09 
2.29 
2.66 
3.01 

lc 

3.44 
3.20 
3.02 
2.97 
2.86 
2.76 

rc 

0.23 
0.21 
0.19 
0.18 
0.17 
0.16 

lc 

3.45 
3.20 
3.02 
2.97 
2.86 
2.76 

rc 

0.25 
0.22 
0.20 
0.19 
0.18 
0.17 

Pfail (%) 

37.08 
5.74 
0.39 
0.11 
0.00 
0.00 

Pfail (%) 

30.80 
7.16 
1.81 
1.10 
0.39 
0.13 

Pfail (%) 

34.50 
8.20 
1.86 
1.20 
0.35 
0.11 

a Normalized volume. 

L 

4L / 6 

H 

Fig. 7. Ground structure for simply supported truss. 

(a) (b) 

Fig. 8. Designs for simply supported truss at two levels of target reliability. (a) bt 

= 1.00 and (b) bt = 3.01. 

Fig. 5. Comparison of performance of RTO (expected value only) and RBTO for 10
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Fig. 6. Modes of failure for the RTO (expected value only) and RBTO for cantilever 
truss with identical Vallow. (a) Robust design and (b) reliability-based design. 

of compliance (lc = 2.71) but larger standard deviation (rc = 0.19) 
than the RBTO solution. This leads to a probability of failure of 
P[F] = 0.25%, nearly double that of the corresponding RBTO solu
tion. It is noted that including multiple standard deviation of re
sponse in the RTO formulation, as in [32], would reduce this gap. 

Another way to compare the two designs is to look at the failure 
modes, which are shown in Fig. 6. We see that the excessive defor
mation in the compressive member has been mitigated by the 
RBTO approach through the introduction of additional paths. 

3.1.2. Simply supported truss 
We now consider the simply supported ground structure shown 

in Fig. 7. The dimensions are L = 90 and H = 30 and the truss is sub
jected to three point loads with a common magnitude of 0.1. We 
consider 6% randomness in node location (with respect to mean 
spacing in horizontal direction) and choose a compliance capacity 
of c* = 4.6. 

Fig. 8 displays the optimal topology for two target reliabilities. 
We plot the empirical, normal and Gumbel estimates for probabil
ities of failure for both designs in Fig. 9. It is interesting to observe 
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il 
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il
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Fig. 9. Probability of failure plots with respect to c* for designs in Fig. 8. (a) Design 
in Fig. 8(a), and (b) design in Fig. 8(b). 

that both normal and Gumbel estimates (PNormal ¼ 17:20% andfail 

PGumbel 
fail ¼ 16:66%) are close to the Monte Carlo estimate 

(PMC 
fail ¼ 18:73%) for the design in Fig. 8 (a), but the Gumbel distri

bution offers a significantly better estimate for lower probabilities 
¼ PMCof failure (PGumbel 

fail ¼ 0:13%) for the design in Fig. 8 (b).fail 

3.2. Material properties 

We now demonstrate the algorithm considering uncertainty in 
Young’s modulus. It is noted that the second derivatives of the stiff
ness matrix are zero for material property uncertainty, so that the 
last term in (13) can be dropped. Basic variables (Young’s modulus 
of truss members) are assumed correlated. To obtain a stationery 
correlation field we use the following exponential decay correla
tion function: ! 

dpffiffiffiffiffiffiffiffiffiffiffi kddi - dj k rij ¼ riirjjexp ð32Þ
Lexp

where rij is the correlation between element i and j, rii = rjj is the 
variance, ddi is the coordinate for center of element i, and Lexp is 
the correlation length. The larger the correlation length the stronger 
the correlation. 
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Fig. 12. Normalized weight versus correlation length for the asymmetrically loaded 
cantilever truss. 

Fig. 10. Ground structure for the asymmetrically loaded cantilever truss. 
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Fig. 11. Designs for material uncertainty for the asymmetrically loaded cantilever 
truss and bt = 3.01 with various levels of correlation. (a) Uncorrelated, (b) Lexp = 1  
and (c) Lexp = 10. 

3.2.1. Asymmetrically loaded cantilever truss 
We conclude the example section with the cantilever truss 

shown in Fig. 10, previously studied in Jalalpour et al. [33]. Domain 
dimensions are 60 x30, load magnitude is 1 and c * = 20. We choose 
rE = 0.2, and design for a target reliability of bt = 3.01. Fig. 11 shows 
results for uncorrelated and two correlation lengths. 

It is interesting to note that the design in Fig. 11 (c) is the same 
as deterministic design despite considering randomness in mate
rial properties. This is in line with previous findings [31] where a 
higher correlation length would lead to less complexity in struc
tural design. However, it should be noted that this design requires 
significantly higher volume of material in comparison to the deter
ministic case. This can be observed in Fig. 12, which plots normal
ized volume of the structural system against correlation length. 
The curve for the normalized weight has a discontinuity at Lexp 

= 3; this is due to the fact that the topology of the optimized design 
undergoes a very distinct and abrupt change as the correlation 
length exceeds 3. 

The plot of empirical and fitted distributions for correlated basic 
variables design is shown in Fig. 13. This figure again shows the 
accuracy of Gumbel fit. The estimated PGumbel ¼ 1% is in agreement f ail 

with Monte Carlo result PMC 
f ail ¼ 1:8%. 

It can be observed that the design for uncorrelated basic vari
ables in Fig. 11 (a) is more complex than the case of correlated ran

10


Compliance
 

Fig. 13. Probability of failure plot with respect to c* for the design in Fig. 11(b). 

dom variables (b, c). As we discussed in previous examples, the 
design is also dependent on the target reliability. Therefore, we 
now investigate this effect, and present two designs for lower tar
get reliabilities in Fig. 14. It is interesting that the design for 
bt = 0.51 is again similar to the deterministic design. This is in con
trast to considering geometric uncertainty, which consistently 
leads to increased bracing throughout the structure. This is consis
tent with previous findings [30,32,33]. The primary reason for this 
phenomenon is that consideration of material uncertainty leads to 
K0,ij = 0 as shown with Eq. (16), and that the matrices K0,j have dif
ferent structures when considering material property versus geo
metric uncertainties which is discussed in detail in [32]. 

4. Concluding remarks 

In this article, a reliability-based topology optimization algo
rithm has been proposed for truss structural systems with geomet
ric and/or material Young’s modulus uncertainties. These 
uncertainties may result from manufacturing flaws or damage, 
and are assumed to be relatively small and normally distributed. 
Under such conditions a Gumbel probability model is used to esti
mate structural reliability using only first- and second-moments of 

24 
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(a)	 (b) 

Fig. 14. Design for uncorrelated material uncertainty for the asymmetrically loaded 
cantilever truss and two levels of target reliability. (a) bt = 2.34 and (b) bt = 0.51. 

the response, estimated using stochastic perturbation. The accu
racy of the perturbation-based estimates of first- and second-mo
ments and the Gumbel estimate of the structural reliability is 
verified with Monte Carlo simulation for several structures. It is ob
served that the estimates are acceptable without significant loss of 
accuracy, even for probabilities of failure as low as 0.1%. Therefore, 
a computationally efficient single-loop RBTO algorithm without a 
search for the MPP is proposed. 

The computational efficiency of the algorithm as compared to 
Monte Carlo simulation and MPP methods makes it attractive par
ticulary in iterative structural topology optimization. The limita
tion of the approach are that the Gumbel model is based on the 
assumption of normally distributed basic variables, and may lose 
accuracy for very simple designs with few nodes. Regardless, under 
such conditions the preliminary design obtained from the pro
posed algorithm can be verified using more computationally inten
sive MPP-based reliability methods. 

The field of topology optimization is currently undergoing rapid 
growth and finding use in structural engineering design, in addi
tion to a wide-range of other engineering applications. It is becom
ing common knowledge, however, that ultra-efficient topology-
optimized solutions found under deterministic design conditions 
may be susceptible to uncertainties in stiffness, such as due to 
manufacturing defects, thus necessitating formal treatment of such 
uncertainties in the design problem formulation and algorithm. 
This work provides an efficient first step towards a reliability-
based topology optimization under such conditions. 
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Appendix A. Sensitivities 

In the following we use direct differentiation to derive the sen
sitivity of the variance of compliance with respect to the design 
variables for use with gradient-based optimizers. The reader is re
ferred to Jalalpour et al. [33] for the sensitivity of expected value of 
compliance. 

To begin, we repeat the expression for variance when l=f in Eq. 
(2) for convenience: 

var½c] ¼ trffT UC0UT fg((( ) )2
)

þ 2tr UT K0U - 1 
eid

T 
0 K0;ijd0eT C0 ðA:1Þj2 

Using chain rule results in: 

0ðvar½c]Þ ¼ trffT U0C0UT fg{(
1

UT K0þ 4tr 0U þ 2UT K0U0 - eiðdT 
0 K
0 
0;ijd02 ) }

þ 2dT 
0 K0;ij d

0 
0 ÞeT 

j C0KUC0	 ðA:2Þ 

where primes denote the gradient with respect to the design vari
able (cross sectional areas for trusses). Differentiating Eqs. (9) and 
(11) and solving yields: 

U0 ¼ K-1 
0 ðK

0 
0K-1 

0 K0;i - K0 0;i þ K0;iK
-1 
0 K0 0Þd0ei ðA:3Þ 

d0 0 ¼ -K-1 
0 K0 0 d0 ðA:4Þ 

Eq. (A.3) can be simplified to the following: 

U0 ¼ K-1 
0 ð-K0 0 U - ðK0 0;id0 þ K0;id

0 
0 ÞeT 

i Þ ðA:5Þ 

Substituting (A.5) into and taking advantage of symmetric matrices 
gives the final form of sensitivity as: 

ðvar½c]Þ0 ¼ 2trfd0 
T ð-K0 0U þ ð-K0 0;id0 þ K0;id

0 
0 ÞÞeT 

i 

C0UT fg þ 4trf-UT K0 0U þ 2UT ðð-K0 0;id0 þ K0;id
0Þei 

T Þ 
C0KUC0g - 2trfeiðdT 

0 K
0 
0;ijd0 þ 2dT 

0 K0;ijd
0 
0Þej 

T C0KUC0g ðA:6Þ 

Finally, the gradient of k in Eq. (21) can be found using: 
pffiffiffi 

6r0 
s0 ¼ c	 ðA:7Þ 

p 

l0 ¼ l0 cS0 c -	 ðA:8Þ 

-l0 s þ s0ðclÞ 
k0 ¼	 ðA:9Þ 

s2 

where rc0 and lc0 are gradients of the standard deviation and 
expected value of compliance, respectively. 
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