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Multicritical susceptibility sum rules
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Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

(Received 8 September 1986)

Asymptotically close to the Nth-order multicritical point of an N-phase system, there are N —1

sum rules involving the mean-field susceptibilities measured in each of the coexisting phases.
These sum rules provide the experimentalist with a convenient and stringent test of the theory. In
particular, they facilitate the detection of nonclassical effects, especially valuable for N ) 3 where
the fluctuation effect is dominated by the classical contribution for three-dimensional systems.

The theory of multicritical points is, in general, prone to
ambiguous experimental verifications because of the large
number of relevant thermodynamic fields compared to a
simple critical point. This is particularly true for liquid
mixtures, where symmetry-breaking fields have to be con-
sidered because of the lack of symmetries otherwise
present in magnets. In experiments, densities rather than
chemical potentials are kept fixed, which further compli-
cates the power-law analyses of singular quantities. It is
therefore desirable to have theoretical predictions involv-
ing measurable quantities; predictions not strongly depen-
dent on the precise thermodynamic state of the system or
on the path of approaching the multicritical point. Ac-
cordingly, Kaufman, Bardhan, and GriSths' have derived
from Griffiths's classical theory of tricritical points a sum
rule involving susceptibilities measured in each phase of a
three-phase near-tricritical system.

In this paper we show that a similar sum rule holds for
any N-phase system close to an Nth-order multicritical
point. We also show, more generally, that there are N —1

sum rules involving not only the order-parameter suscepti-
bility but less divergent susceptibilities as well. Hence for
a tricritical point N =3, there is a second sum rule involv-
ing a nonordering susceptibility. This sum rule is diff'erent
from the second sum rule of Ref. l.

Experimental studies3 of the first tricritical sum rule
revealed deviations from the asymptotic prediction. In a
detailed thermodynamic model 5 of the ammonium
sulfate+water+ethanol+benzene mixture based on the
composition data of Lang and Widom, deviations from
the first tricritical sum rule, comparable to the experimen-
tal ones, 3 were produced by the factors of proportionality
connecting the intensity of scattered light and the square
of the correlation length, respectively, to the order-
parameter susce tibility. Deviations from the sum rules
are also induced by the nonclassical spatial fiuctuations of
the order parameter. This provides further motivation for
studying the sum rules: Since they are combinations of
diverging quantities (combinations which vanish at the
mean-field level), corrections to scaling including nonclas-
sical ones become the leading contributions, thus facilitat-
ing their experimental detection.

We now derive the sum rules from the classical theory

N
g(n) t1+i+j—2 2a2N Q (y —y )

m 1

(man)

(4)

We derive now a set of N —1 identities concerning any
N numbers. We start by defining an Nth order polynomi-
al:

P(y) =(y —yi)(y —ltr2). . . (tlt —ytv) . (5)

Next we integrate yk '[P(y)] ' on a circle of large ra-
dius R centered on the origin of the complex plane:

II) d++k
—1 [P(+)] t cr~k —N~ 0

for R ~ if k=1,2, . . . , N —1. By expressing the line
integral as the sum of residuals of the integrand we find

N

Ã

H (~.—w )
m 1

(men)

=0 for k =1,2, . . . , N —l. (7)

The nth term in this sum is, up to the sign, proportional to
(Xttj"~) ' [Eq. (4)] if i+j 2k. Without loss of generality
we assume yt & y2 . . . «y„and then rewrite Eq. (7)

of an Nth-order multicritical point. The singular part of
the thermodynamic potential is

n, =min 4 (y),
where p(y) =+2+

i a„y", a2N & 0, and y is the order pa-
rameter. At the multicritical point y a ~ a2
=a2N —

~
=0. when N phases coexist

N N

e(y) =a2tv H(y —y. )' —H y.' (2)
n 1 n 1

The singular contributions to the susceptibilities are~

t) 0'-Jy'" ' (3)
Ba'8aj dilr

In the nth phase y y„and
r
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as the susceptibilities sum rules

N
( 1 ) n(sg np ) k —1(X(n)) 1/2 p

n 1

which is equivalent to

(8)

RN
,n 1,3, . . . ,

(Sgn+„) k —1(g(n)) 1/2'

,n 24, . . . ,

(Sgn p ) k —
1 (g (n) ) 1/2 '

where sgny„ is +1 if y„&0 and —1 if y„&0, and
k =1,2, . . . , N —1. We order the sum rules according to
the values of k, i.e., the first sum rule for k =1, the second
sum rule for k =2, etc. The only sum rule published' pre-
viously is the first tricritical sum rule, N =3,k =1.

To account for corrections to scaling within the classical
theory, we keep in 4)(1/f) powers of y higher than 2N:

gN k =o(1 g2N 21»( —»/2+« —»/2)

or

I +o(I Q2N 21
/ ) (is)

quasibinary mixtures of Ref. 4. By using Eq. (12) and the
classical result Z;J. a:

I a2N 21,where i+j=2k, we find
the leading nonclassical correction to the sum rules:

N N

(('(Y) =V(1//)a2N Q (y —yn) —a2N + y„,
n 1 n 1

(IP) In three dimensions

where v ()l/) is a positive polynomial, v (y) & 0, and
v (0) =1. Then from Eqs. (3) and (10) we find

N —1

Z;(/") =ij 1//„'+ ' 2a2Nv(y„) Q (1/I„—y )' . (l l)
m 1

(mWn)

By expanding [v()i/„)] '/ and using the identities of Eq.
(7), we find that, to leading order, ZN k, defined in Eq. (8)
is a constant:

ZN k =const . (i2)

c=cM, [i+o( I a2N —21 (i3)
where d is the spatial dimension and d, =2N/(N —1) is
the upper critical dimension. The field a2N 2 measures
the distance to the Nth order multicritical point. It is pro-
portional to the reduced temperature for ammonium
sulfate+water+ethanol+benzene and to the depar-
ture of the carbon number from its tricritical value for the

The coefficient a3N —k of y in the po~er expansion of
4)(y) contributes to the constant. Hence, to obtain the
leading nonvanishing classical correction to the asymptotic
sum rules, all terms up to y have to be kept in p(y),
e.g. , for the first tricritical sum this is y .

An equivalent effect is obtained by allowing the propor-
tionality factor relating a measured quantity to a theoreti-
cal susceptibility to depend on 1/f [e.g. , scattered light in-
tensity I=-(de/dy) X)1, where e(1)/) is the dielectric con-
stant]. The leading nonvanishing correction to XN k ex-
pressed now in terms of the experimental quantity, e.g., in-
tensity I, is again a constant. It is obtained by keeping in
the expansion of the proportionality factor, e.g. , (de/dy) 2,

all powers up to y . For the first tricritical sum rules
this is '

Spatial fluctuations of the order parameter induce non-
classical deviations from the sum rules. After adding the
squared gradient of 1//, —,

' (Vy) to the classical (j)(y) it can
be shown, to first order in the loop expansion, that the de-
viation of any thermodynamic quantity C from its mean-
field value CMF is

~N, k 0( I a2N 21
'" ""—)

i.e. , the exponent is (k —3)/2 independent of N, and

RN k =1+0(
I &2N 21—

It follows that the nonclassical correction is stronger than
the classical correction [ZN k ~

I a2N —21, see Eq. (12)l for
k & 3, while the reverse is true for k & 3. For the three-
dimensional tricritical point, d, =3, logarithmic deviations
from the sum rules are produced by the marginal field
a6a: I ln I a411 ' as shown by Rudnick and Jasnow for
the first sum rule:

R31=1+o(Iln10411 1/2) .

We now offer further remarks on the sum rules for the
three-dimensional critical, tricritical, and fourth-order
multicritical points. If N=2, i.e., critical point, there is a
single sum rule which reduces to X(I /X)1 =1. This classi-
cal prediction survives the divergent fluctuations
(d=3 &4=d, ) because the only relevant symmetry-
breaking field is zero on the coexistence manifold close to
the critical point.

For N 3 we have two tricritical sum rules

(g(1)) 1/2+ (g(3)) 1/2 —(g(2)) 1/2

and

1(g(. )) 1/2 —(g(3)) 1/21 = (g(2))»2 f()1 i+j=2k =4 (17)

Equation (17) is obtained from Eq. (8), N=3, k =2, by
assuming y1 &0 and y3&0. These signs for y1 and y3
follow from the convention y1 & @2& y3 and from the
choice' of the origin of y such that y1+y2+p3 0.
Observed ' deviations of roughly 20% from the first tri-
critical sum rule could be a result of (i) the order parame-
ter dependence' of the coefficient relating the measured
intensity of scattered light to the susceptibility, or (ii) the
spatial fluctuations of the order parameter. These Auc-
tuations induce deviations ' from the mean-field predic-
tions for other ratios such as (xU —xL )/(xr —xU ), denot-
ed R 1y, in Ref. 10, where xU, xU, xL, , and xL, are composi-
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tions of the critical phase and the coexisting noncritical
phase at the two critical end points U and L at a given dis-
tance away from the tricritical point. In fact, a 20% fluc-
tuation deviation from the susceptibility sum rule corre-
sponds" to about 10% fluctuation deviation for Ri/, .
However, a deviation of only 5% (within experimental er-
rors) from the classical value of Ri/, is observed in quasi-
binary mixtures, ' and this ratio takes the classical value
of 2 (within experimental errors) close to the tricritical
temperatures of two quaternary mixtures. ' Furthermore,
various ratios of intensities and correlation lengths
which should be equal if I and g2 are strictly proportional
to Xii, differ systematically. ' This evidence suggests
that the observed departures from the first tricritical sum
rule are due in part to the fact that I/Xti and g /Lit, re-
spectively, take different values in the different coexisting
phases. '5 In the immediate vicinity of the tricritical point,
however, the fluctuation correction dominates the classical
one because k 1 & 3.

The nonordering susceptibility X22 was inferred from
various measurements on the symmetrical tricritical sys-
tems: dyprosium aluminium garnet and 3He- He mix-
tures. In the symmetric case X2) XQ and the second

I

rule reduces to XQ 0, i.e., the nonordering susceptibility
in the disordered phase is zero. However, XQ is observed
experimentally to diverge. This deviation from the classi-
cal prediction is due to the order-parameter fluctuations.
Indeed the one-loop correction to the renormalized mean-
field theory gives "

z22'/xQ' = j2a6/4ir,

where a6~ ( in)a4~ [ '. This ratio was calculated within
the spherical model by Fisher and Sarbach. s We do not
know how to directly measure X22 in liquid mixtures.
However, the classical theory predicts X2z~ y Xi i, Eq. (3).
IIv is a measure of the deviation of any density from its tri-
critical value, e.g. , n —n&~y, where n is the index of re-
fraction and n& is its tricritical value. Therefore, by com-
bining data from a thermodynamic or optical measure-
ment of a composition or index of refraction, and from a
light scattering measureinent of the leading susceptibility
Xi i, one can obtain a measure of Xzz and check the second
tricritical sum rule of Eq. (17).

For N 4, fourth-order multricritical point, the follow-
ing sum rules hold:

(g(l)) i/2 (g(2)) i/2+(g(3)) i/2 (g(4)) t/2 0 for i. +J
(X ' )' +(Z" )' ((2,'" )' —s n( )(2,'" )'

( for i+j=2k=4 . (20)

Equation (20) was obtained from Eq. (8) and from yi & 0
and y4& 0. The signs of y~ and y4 follow from the con-
vention yt & y2 & iii3 & y4 and from the choice of the ori-
gin of such that @~+@2+ 3+y4 0. In the symmetric
case X,ji) X~g) and X(/2) X,(/) and the first and third sum
rules, k 1 and 3, are trivially satisfied. However, for
nonsymmetric liquid mixtures these sum rules are not ob-
vious or trivial results. In the symmetric case the second
sum rule, Eq. (20), reduces to Z ' X" X" X"
i+j 4.

In conclusion, we have derived N —1 sum rules valid
asymptotically close to an Nth order multicritical point.
All these classical results hold in three dimensions even for
the critical (d, 4) and the tricritical (d, 3) point. The
nonclassical deviations from the tricritical sum rules van-
ish, however, logarithmically slowly. Further experimen-
tal studies of the sum rules are needed. The first sum rule
can be verified in other near-tricritical systems:
water+ nonionic amphiphile+ oil ' or polymer mixtures
such as polystyrene (molecular weight 1.73 x 104)+polys-
tyrene (molecular weight 7.19x 10 )+methylcyclohex-
ane. 's It can also be analyzed by means of neutron

scattering in the metamagnet dyprosium aluminum gar-
net. A study of the first sum rule in four-phase liquid mix-
tures close to a fourth-order point constitutes a convenient
way to detect nonclassical corrections to scaling. We pre-
dict

&4, t~ la61 'or R, , =I+O([a, )
'/'),

where a6 measures the distance to the multicritical point,
and it can be proportional to the reduced temperature. A
system suitable for such a study could be sodium
dodecylsulfate+ water+ pentanol+ dodecane for which
four opalescent coexisting phases have been reported. '

Trutzer has independently proved the identities in Eq.
(7) 17

We have benefited from discussions with Victor Trutzer,
Robert Grifltths, and David Jasnow. One of us (M.K.) ac-
knowledges the support of the Ohio Board of Regents
through a Research Challenge Grant. The other (M.M.)
acknowledges the support of the Faculty Research Partici-
pation Program administered by the Argonne Division of
Education Programs.
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