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Abstract. We explore numerically the feasibility of enhancing the mixing capability of microchannels
by employing the Weierstrass fractal function to generate a pattern of V-shaped ridges on the channel
floor. Motivated by experimental limitations such as the finite resolution (∼10 µm) associated with rapid
prototyping through soft lithography techniques, we study the influence on the quality of mixing of having
finite width ridges. The mixing capability of the designs studied is evaluated using an entropic measure and
the designs are optimized with respect to: the distances between the ridges and the position range of their
tip along the width of the channels. The results are evaluated with respect to the benchmarks established
by the very successful staggered herring bone (SHB) design. We find that the use of a non periodic
protocol to generate the geometry of the bottom surface of the microchannels can lead to consistently
larger entropic mixing indices than in cyclic structures. Furthermore, since the optimization curves (mixing
index vs. geometric parameters) are broader at the maximum for fractal microchannels than for their
SHB counterparts, the microchannel designs using the Weierstrass fractal function are less sensitive to
experimental uncertainties.

PACS. 47.85.lk Mixing enhancement – 47.53.+n Fractals in fluid dynamics – 47.61.Ne Micromixing

1 Introduction

Recent years have seen a tremendous increase in the level
of research efforts targeted towards the use of microflu-
idic devices [1,2] in medicine, biology, and chemistry. The
applications of such systems range from chemical synthe-
sis [3] and analysis [4], to enabling tools for biotechnol-
ogy, such as DNA or protein analysis [5] and drug discov-
ery [6]. The benefits of replacing “macro” fluid handling
systems include the reduction in the consumption of sam-
ples and reagents; the enhanced performance in the re-
actions’ speed due to increased surface to volume ratios;
the ability to implement high throughput parallel sam-
ple processing [7] and the increased portability associated
with the integration of various analytical processes within
areas of the order of square centimeters [8,9].

For drug delivery applications the microfluidic systems
must efficiently mix different fluid components. However,
in microchannels the Reynolds number is small (<100),
while the Peclet number is large (>100) [10]. Thus the
fluid flow in a pressure driven systems is typically laminar
and the diffusion processes are slow compared to convec-
tion. Hence the design of microfluidic systems that are
efficient mixers is challenging.

Broadly, the strategies employed to achieve efficient
mixing of two or more fluid components within a microsys-

a e-mail: p.fodor@csuohio.edu

tem are classified as active and passive strategies. Active
strategies rely on external sources of energy such as elec-
trokinetic phenomena [11], magnetic forces [12], electroos-
motic flows [13] or ultrasonic effects [14] to induce mixing.
While these designs have demonstrated good mixing ca-
pabilities, this comes at the expense of increased complex-
ity during the fabrication process which consequently pre-
cludes rapid prototyping during the optimization process.
Also, the use of control signals, such as large electric fields
might require strategies for heat management at the mi-
crofluidic chip level. On the other hand, passive micromix-
ers, rely only on the geometry of the channels to perturb
the laminar flow of the fluid and promote mixing. Thus,
since they do not require interfacing with mechanical or
electrical forces, they have the potential of reducing the
manufacturing overhead and eliminating the challenges
of interfacing with active control systems. Some passive
mixers rely on the baker’s transformation, in which the
fluid streams are systematically split and recombined to
geometrically increase the surface area between the fluid
components. While this strategy has already been imple-
mented [15–17] it extensively employs complicated 3D ge-
ometries which require multiple lithography steps. Other
passive mixers have the shape of spirals [18,19], where non-
axial flows (Dean flows) arise as a result of the centrifugal
forces experienced by the fluids as they travel along curved
trajectories. These flows are characterized by the presence
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of two counter-rotating vortices located below and above
the symmetry plane of the channel.

In their pioneering work, Stroock et al. [20] have
demonstrated that surface patterning of channels also pro-
vides a practical method to induce transversal flows across
the channel cross section and thus promote mixing. In
straight channels, slanted grooves present an anisotropic
resistance profile to the fluid flow allowing for the ax-
ial pressure gradient between the inlet and outlet of the
channels to drive transversal components of the flow.
One of the designs investigated by Strook et al. [20], the
staggered herring bone (SHB), which uses asymmetric
V-shaped grooves to produce counter-rotating transversal
flows, has achieved two fluid components mixing within
channel length scales of the order of centimetres mak-
ing it relevant for lab-on-a-chip applications. Given the
relatively straightforward fabrication that involves only
a few lithographic steps and replica molding [8], several
experimental studies have been aimed at improving the
performance of this mixer by patterning structures on
both the top and the bottom of the channel [21] or by
adding oblique grooves on the side walls [22]. Moreover
the geometrical simplicity of these designs makes them
ideally suitable for computational fluid dynamics mod-
elling through finite element analysis [23,24] and lattice
Boltzmann approaches [25] and even simple analytical
analysis [26]. Some of these studies have focused on de-
termining the geometrical parameters that can affect the
mixing performance, such as the groove depth to chan-
nel height ratio [27], the number of grooves per half cy-
cle [25], the width of the grooves [28], the ratio between
the width of the grooves with respect to the neighbouring
ridges [29], or the ratio of the long arm to the short arm
of the grooves [30].

A recent numerical investigation by Camesasca
et al. [31] suggests that the quality of mixing can be fur-
ther improved by replacing the periodic structure of ridges
with a non-periodic one. In this approach the locations
of the apexes are generated using the Weierstrass fractal
function. In this study, we expand on the idea of using
fractal surface patterning to enhance the chaotic charac-
ter of the fluid flow to which the mixing in SHB channels
is attributed [20]. We perform a computational optimiza-
tion to identify the optimum ridge spacing and position
range of the ridge apex. The performance of the proposed
designs is compared with that of SHB designs with similar
geometrical parameters, in order to asses the potential of
these more complex systems to promote increased mixing
of two fluid components.

2 Microchannel geometry generation

All the channels considered in this study have a length of
5000 μm, a width of 200 μm and a height of 150 μm. The
ratio between the ridge height and the height of the chan-
nel is fixed at 0.25, the optimal ratio found for grooved mi-
cromixers [27]. As in the case of the SHB, a set of V-shaped
ridge structures equally distributed along the channel bot-
tom is employed. However, while in the case of the SHB

Fig. 1. Ridge apex y-coordinates as a function of the position
along the channel length, for a SHB design and for a fractal di-
mension F = 1.25 geometry, respectively. For both geometries
the spacing between the ridges is 125 µm.

the apex position periodically alternates between two po-
sitions, corresponding to the short arm/long arm optimal
ratio of 2/3 [30], our strategy involves using a Weierstrass
function to generate non-periodic sets of y-coordinates for
the ridge tips (Fig. 1). The Weierstrass function used in
this study is defined as:

W (x) =
∞∑

n=0

sin(2nx)
2n(2−F )

(1)

where F is its fractal dimension and x is the coordinate
along the channel length.

For each predetermined ridge spacing, the domain of
one period of the Weierstrass function, is evaluated at
a number of points equal with (5000 μm)/[ridge width
(=50 μm) + spacing (μm)] distributed at equi-sized in-
tervals. Subsequently, a stretching transformation is ap-
plied to the set to distribute the apex points across the
width of the channel. As described later, the performance
of the mixer is sensitive to the apex position range allowed
during the stretching transformation. For example for the
design exemplified in Figure 1 the allowed apex range is
±60 μm, rather than the full 200 μm width of the channel.

Following the determination of the coordinates of the
ridges’ apexes along the width and length of the channels,
the V-shaped ridges are completed through a procedure
similar with the SHB designs in which the ridges make
a 45◦ angle with the channel axis (Fig. 2b). This pro-
cedure is different from the one employed by Camesasca
et al. [31] in their exploratory study of the effect of fractal
surface patterning on mixing effectiveness in microchan-
nels. In that case the ends of the arms of each V-ridge
are aligned with the apex of the next ridge. The intro-
duction of the new protocol for generating the geometry
of the ridges was motivated by the restrictions imposed
by the resolution capacity of rapid prototyping through
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Fig. 2. (a) Typical 3D geometries for the rectangular microchannels with patterned bottom surface. (b) Top view of the ridge
design for a structure based on the Weierstrass function with the fractal dimension F = 1.25 (for the case illustrated the
ridge spacing is 125 µm). The apex range is defined as the domain of ridge tips y-coordinates allowed during the stretching
transformation.

soft lithography (∼10 μm) techniques, which are becoming
popular experimental approaches for implementing these
designs.

To explore the consistency of this protocol in creating
surface patterns capable to induce efficient mixing, several
designs with different fractal dimensions F = 1.25, 1.5,
and 1.75 have been analyzed.

3 Numerical procedure and mixing analysis

For all the simulations described in this work the finite
element analysis package COMSOL Multiphysics and its
Chemical Engineering Module were used. The flow fields
for each channel are obtained by solving the Navier-
Stokes equations of motion for an incompressible New-
tonian fluid:

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + η∇2u (2)

∇ · u = 0 (3)

where u is the velocity vector, ρ is the fluid density, η is
the fluid viscosity, t is the time, and p is the pressure.
Typically, the values for the density and the viscosity are
set to those for water at room temperature, i.e. 103 kg/m3

and 10−3 kg/(ms), respectively. The equations are solved

for the steady state flow for a pressure driven fluid. The
boundary conditions are a 0.01 m/s inlet velocity oriented
along the longitudinal axis of the channel, zero pressure
at the outlet, and no-slip at all the solid surfaces. The
flow field equations are solved using a generalized minimal
residual method (GMRES) iterative solver with a geomet-
rical multigrid pre-conditioner and a Vanka algorithm for
the pre- and post-smoothing. The typical number of ele-
ments in the mesh used is 60 000, which in the limit of low
Reynolds numbers ensures that the element size is suffi-
ciently small for the solution to be independent on the
mesh size.

The mixing profiles of the two fluids are visualized us-
ing the solution to the convection-diffusion equation for a
concentration field:

∂c

∂t
= D∇2c − u · ∇c (4)

where c is the concentration of tracer species in the flu-
ids, D is the diffusion constant, and u is the vector field.
The tracers are considered to be non-interacting mass-
less points that are not affecting the flow field. Thus after
solving the Navier-Stokes equations for the flow, the solu-
tion to the velocity field is saved and it is subsequently
used to solve the convection-diffusion equation for the
steady state. To avoid the numerical errors sometimes as-
sociated with the convection-diffusion equation, the mesh
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used was denser (up to 140 000 elements). Consequently
the solution for the velocity field obtained from the Navier-
Stokes equations was mapped onto the new mesh. Also,
the convection-diffusion equation was solved by employing
a direct solver using Gaussian elimination, rather than an
iterative one. The diffusion constant D was fixed within
the range of 0.5−1.2 × 10−9 m2/s, which is the corre-
sponding diffusion range for most ions in aqueous solu-
tions. The solution to the diffusion equation is evaluated
in the steady flow state with discontinuous concentration
profiles across the inlet, generated using an Heaviside step
function smoothed to the second order.

To quantify the mixing quality we are using an en-
tropic measure applied to the tracer species concentration
images obtained at different positions along the channel
length. The entropy is the unique and universal mixing
measure [32,33] that depends only on the tracer probabil-
ity distribution. We evaluate the quality of mixing of two
fluids carrying two types of tracers. The space of interest is
divided into M equal sized regions labeled j = 1, 2, . . .M ,
and there are two species of tracers t = 1, 2. The overall
entropy is given by:

S = −
2∑

t=1

M∑

j=1

pt,j ln pt,j (5)

where pt,j, the joint probability for a tracer to be of
species t and in region j, is estimated by the fraction of
tracers of species t located in region j out of all tracers.
Following [34–36], the following probabilities are used to
express the entropy S as a sum of conditional entropies:

S = S(locations) + Slocations(species) (6)

where:

S(locations) = −
M∑

j=1

pj ln pj (7)

Slocations(species) =
M∑

j=1

pjSj(species) (8)

Sj(species) = −
2∑

t=1

pt/j ln pt/j , (9)

S(locations) is the entropy associated with the overall spa-
tial distribution of tracers irrespective of species. Since the
fluid is incompressible, S(locations) does not change along
the length of the mixer. For this reason, we concentrate on
the second term on the right hand side of equation (6), i.e.
Slocations(species) which is an average of the Sj(species)
entropy of mixing of tracers species conditional on loca-
tion. Since 0 � Slocations(species) � ln(2), we get can de-
fine the mixing index as: Slocations(species)/ ln(2). Thus
the mixing index has its lowest value 0 when for all the
locations the pt/j probabilities are either zero or one (com-
plete segregation), and it has its largest value 1 when all
probabilities are equal to each other (complete mixing).
In all the results reported here the entropy was computed
using M = 30 351 bins.

Fig. 3. Comparison between mixing in different fractal dimen-
sion mixers generated using reference [31] protocol and the new
protocol described in the text. (F = 1.25, 1.5 and 1.75 respec-
tively.)

4 Results and discussion

While the first computational analysis of fractal surface
patterning induced flows [31], has demonstrated the po-
tential for these designs to be superior in terms of mixing
quality to geometrically similar SHB channels, no attempt
has been made to optimize their performance for geomet-
rical parameters achievable through replica molding based
lithography. For example, the width of the ridges con-
sidered was far smaller than the approximately ∼10 μm
achievable through soft lithography without costly pho-
tomasks. While in our modelling and optimization we have
used experimentally feasible widths for the ridges and as
described in Section 2 above a new protocol for the struc-
ture design, the new geometries still show similar improve-
ments in the value of the mixing indices (Fig. 3).

In this study, we have chosen to focus on the geometri-
cal optimization of the micromixers with respect to two ge-
ometrical parameters: the spacing between the ridges and
the range of the y-position of their apex. For all the designs
the ridge height and width are fixed at 50 μm. Similar with
computational results on the SHB the performance of our
mixers is dependent on both these geometrical parame-
ters (Fig. 4). For a narrow spacing between the ridges the
mixing is poor because the amount of fluid entering the
grooves between the ridges and gaining a non-axial com-
ponent to the velocity is relatively small compared with
the total fluid volume transmitted through the channel. In
the other extreme case, i.e. very large ridge spacing, the
number of instances at which the flow field is disturbed
from the global axial direction is greatly reduced, leading
to an increase of the distance required for efficient mixing.
Regarding the apex range, a maximum is observed for an
intermediate range between the two extremes considered.
In the extreme case in which the apex of all the ridges
is fixed along the median of the channel bottom, even in
the presence of the two counter rotating flows, due to the
symmetry of the problem the fluid mixing is still limited
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Fig. 4. Mixing index as function of groove spacing and apex position range for channels with patterns of fractal dimension
F = 1.25. The spacing is changed in increments of 25 µm from 50 to 250 µm, while the limits of the apex position range are
increased in steps of 15 µm.

to the initial interface between the two fluids. If the ridge
apex is allowed to span the entire width of the channel,
for a sizable number of ridges the apex is too close to the
sidewalls of the channel to induce comparable counter ro-
tating flows. In this extreme case, the design resembles
the less efficient slanted groove micromixer one [37,38].
To optimize the design and fully map the mixing index,
the spacing between the ridges is changed from 50 μm
to 250 μm in 25 μm steps, while the apex range is ad-
justed from the full width of the channel (=200 μm) to
the extreme in which all the ridge tips are aligned along
the longitudinal symmetry axis of the channel. The global
maximum for the mixing measure is obtained for a spac-
ing between the ridges, corresponding to 125 μm and an
apex range of ±55 μm around the symmetry axis of the
channel.

After identifying the optimal geometrical parameters
for the fractal based designs, three geometries with fractal
dimension F = 1.25, 1.5, and 1.75, were compared with
the benchmark provided by SHB geometry. For the fractal
designs, the ridge apex range is fixed at ±55 μm, while
for the SHB the optimal 2/3 ratio [30] (i.e. the apexes
y-coordinate is either −66 μm or +66 μm) is used. For
the SHB designs, the number of grooves per half-period
changes from 3 to 9 as the spacing between the ridges
is decreased from 250 μm to 50 μm. Calculations of the
mixing index at the outlet, using the entropic measure,
indicate that for all the spacing values considered the frac-
tal designs show consistently better mixing quality than
the SHB counterparts for all the fractal dimensions used
(Fig. 5). One important feature of the fractal based de-
signs is the broader set of spacing values at which optimal
mixing is achieved when compared with the SHB design.
This statement can be debated based on the fact that
the fractal designs require a larger set of different values
for the groove apex positions that have to be experimen-
tally implemented with good spatial resolution during the
fabrication step of the channels. Nevertheless, numerical

Fig. 5. Mixing dependence at the outlet of the microchan-
nels for optimized F = 1.25, F = 1.5, F = 1.75 (apex range
±55 µm, spacing 125 µm) and SHB designs.

results show that even if an experimental resolution limit
of 10 μm is imposed on these designs, their mixing effi-
ciency remains practically unchanged. From the point of
view of the actual experimental implementation of this
protocol, this could help relax the requirements on the
resolution of the soft lithography fabrication process. In
particular during the replica molding step some stretching
of the PDMS elastomer can occur distorting the features
transferred from the master.

A qualitative analysis of the dynamics of the mixing
from tracer images at different cross sections along the
channels (Fig. 6), reveals that similarly with the case of
SHB designs the mixing is driven by the helical flows gen-
erated as the fluid is pressure driven over the V-shaped
grooves and ridges. The apparent blurring of the inter-
face between different tracer species is a consequence of
the inclusion in the convection-diffusion equation of finite
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Fig. 6. Snapshots of the mixing at different positions on the channel longitudinal axis for F = 1.25, 1.5, 1.75 and SHB
geometries.

values for the diffusion constant. Evaluating the mixing
efficiency, for different diffusion coefficients but similar
flow fields can allow the decoupling, in the evaluation
of the mixing quality of the geometrically driven convec-
tion from the diffusion effects. For all the designs investi-
gated the contribution of the diffusion to the mixing is
estimated to be less than 10% by evaluating the mix-
ing for different diffusion constant D values. This value
also corresponds to the mixing value obtained through an
identical computational procedure, in benchmark rectan-
gular channels without surface patterning in which the
mixing is only diffusive in nature. The Reynolds number
for most of the systems investigated is: Re = ρvL/η =
(103 kg/m3)(10−2 m/s)(10−4 m)/(10−3 kg/(ms)) = 1.
This value implies that the flow is laminar. On the other
hand, the Peclet number, is Pe = vL/D ∼ 103, for dif-
fusion constants D of the order of 10−9 m2/s. Thus the
mixing observed in this study is primarily due to transver-
sal flows induced by nonlinearities in the boundary condi-
tions, i.e. ridges on the walls, and is not due to turbulence
or diffusion.

While it is relatively easy to conclude from the tracer
maps the presence of transversal flows within all the pat-
terned channels investigated, no fundamental difference is
observed between the nature of these flows in the SHB
designs and the fractal pattern ones. The better mixing
quality in the later is probably related with a system that
is more complex due to the non-periodic boundary con-
ditions imposed. However, in this study no attempt has
been made to quantify the chaotic character of the flow

fields. Nevertheless, the enhancement in the mixing qual-
ity is also observable in the dependence of the mixing in-
dex along the channel (Fig. 7). Past the first ridge, both for
the fractal design with F = 1.25 as well as for the SHB ge-
ometry the mixing index increases almost monotonically
along the channel length. The small non-zero value for
the evaluation of the mixing index at the beginning of the
channel is related with the smoothed step function used to
generate the tracer concentration profile at the inlet. The
maximum mixing achieved within the length of the chan-
nels is 98% for the fractal design and 95% for the SHB one.
For the SHB channel the mixing length (the length over
which 90% mixing is achieved) is estimated to be about
0.45 cm. This value corresponds well with previously re-
ported values [20,25], with the slight discrepancy being
due to the finite value for the diffusion constant used in
our study. For exactly the same geometrical parameters
and fluid properties, the F = 1.25 fractal design achieves
the same mixing quality within a length of about 0.4 cm.
This is also qualitatively observed in tracer concentration
image slices (Fig. 7b) along the length of the channel which
show a faster homogenization for the F = 1.25 geometry.

5 Conclusions

We have performed an extensive computational assess-
ment of the mixing efficiency of rectangular microchan-
nels in which a fractal function protocol is used to create
a complex set of ridges on the channel floor. The quality of
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Fig. 7. (a) Calculated dependence of the mixing index on the x-position along the channel. (b) Top-down view along the
channel for SHB and F = 1.25 geometries.

mixing, calculated using an entropic measure, is found to
be sensitive to geometrical parameters such as the spac-
ing between the ridges and the allowed range for their
apex. While the dependence on the geometrical parame-
ters and the flow fields is qualitatively similar between the
fractal channels and the SHB channels, a better mixing is
achieved for the former ones. We also find that the range
of the geometrical parameters for which optimal perfor-
mance is achieved is broader for the non-periodic designs.
This is a desirable feature as it relaxes the demands on the
fabrication process. For all the microchannels explored,
the geometrical parameters used were chosen within the
range accessible to soft lithography techniques. Despite
their more complicated geometry, for the experimental im-
plementation of the designs proposed, the only overhead,
when compared with other similar microchannels, would
occur during the computer aided design (CAD) of the pho-
tolithography mask. Nevertheless, the script and data im-
port features of the majority of CAD packages will allow
this overhead to be reduced to a minimum. While all the
fractal dimensions used showed the capability to promote
enhanced mixing, no attempt has been made in this study
to quantify a dependence on it. Future work will focus on
microchannels with a sufficiently large numbers of ridges
to allow an analysis of the fractal character of the fluid
mixing. Another interesting problem is the dispersion of
advected particles due to stress forces imparted by the

fluid. This was studied analytically [39] for a rectangular
channel without ridges and we plan to extend that work
to the flow conditions of the fractal channels studied here.

This work was supported through a research grant from the
Cleveland State University Provost office.
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