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Square-lattice Ising model in a weak uniform magnetic field: Renormalization-group analysis

Miron Kaufman
Department of Physics, Cleveland State Uniuersity, Cleveland, Ohio 44115

(Received 15 January 1987; revised manuscript received 20 April 1987)

For the two-dimensional ferromagnetic Ising critical point, I show that the known values of the
critical exponents imply the absence of logarithms of the reduced temperature in the leading contri-
butions to any field derivative of the free energy at zero magnetic field. For the square-lattice Ising
antiferromagnet in a weak magnetic field, I compute the critical line T, (H) = T, (1 —0.038023 259H )

and the leading contribution to the susceptibility 7 =0.014 718 0066H ln(1/
l
t

l
), where t is the re-

duced temperature.

I. INTRODUCTION

1f= lim —lnZ,x-~ N

where Z is the partition function

(2)

Historically, the square-lattice Ising model has played a
central role in our understanding of phase transitions.
Spins s; =+1, located at the vertices of the square lattice,
interact through the Hamiltonian

—&=+ g s, s, +H gs;,
(ij) i

where the plus sign corresponds to the ferromagnetic
problem and the minus sign to the antiferromagnetic
problem. The free energy per spin is

close to the critical point. According to this conjecture,
there are no logarithmic terms ln

l

t
l

multiplying the
leading singular contribution to any field derivative of f,
e.g. , for the zero-field susceptibility X —

l
t

l

r, rather
than g-

l

t
l

r ln
l
t l, where t is the reduced tempera-

ture. By using the renormalization-group formalism, I
show this conjecture follows from the critical-exponent
values a=O and 6= —", .

Logarithmic modifications of the power-law behavior
are known ' to occur when the critical exponents satisfy
certain relationships for which the Taylor expansion of
the regular part of the free energy breaks down. I consid-
er the general case of a critical point with two scaling
fields: a temperaturelike field ~ and a magneticlike field h.
%ithin a typical position-space renormalization-group
scheme the following recursion equations hold close to the
critical point:

Z= g exp
conf. kr

In zero field, H=O, the free energy, ' the spontaneous
magnetization, the susceptibility (ferromagnetic prob-
lem), and various correlation functions are known exact-
ly.

I report here two results concerning the weak field criti-
cal behavior, results obtained by using the
renormalization-group formalism. For the ferromagnetic
problem, I prove a conjecture by Aharony and Fisher
that no logarithms of the reduced temperature appear in
the leading contributions to any field derivative of the free
energy at H =0. For the antiferromagnetic problem, I
compute the critical curve and the amplitude of the lead-
ing contributions to the susceptibility and other thermo-
dynarnic quantities in a weak field H&0. Essential to
these calculations is the high precision (uncertainty
=10 '

) computation of the amplitude of the zero-field
antiferromagnetic susceptibility by Kong, Au-Yang, and
Perk. '

II. FERROMAGNET IN A WEAK MAGNETIC FIELD

Recently Aharony and Fisher stated the "minimal log-
arithms" conjecture concerning all field derivatives of the
free energy f of the planar ferromagnetic Ising model

h'=b 'h,
f(r, h) =g(r, h)+b f( 'hr'),

(3)

where f is the free energy per degree of freedom, b is the
linear rescaling factor, d is the spatial dimension, and g is
an analytic function of r and h. The free energy f is the
sum of a regular part f„and a singular part f„

and

f„= g f„rh",
m, n =0

f, = lr I'- ~+

(4)

m 03 1 +n 03 2

where 2 —a=d/yi and b, =y2/y, .
The regular part f„ is a particular solution of Eq. (3)

and the coefficients f „can be obtained from Eqs. (3), (4),

andg= g g „r h" as
m, n =0

f „= „/(1 b " ").
If there exists a pair of integers m0, n0 satisfying

36 3697 1987 The American Physical Society



MIRON KAUFMAN 36

or equivalently,

m0+n06=2 —a,
(7) and the regular part is

f„= g f„rh". (9)

then the coefficient f „ is infinite, and Eqs. (4) and (5)
are not valid. To discuss this special case we vary the ex-
ponents a and 5 by continuously changing an appropriate
parameter such as the spatial dimension. In the limit
2 —a —mp —npb, ~0, the singular contribution f, is the
sum of the usual

I
r

I
A+(h/

I

r
I

) and f „r 'h

(formally part of the regular free energy)

m, n =0
m+mp
n&np

It follows from Eq. (6) that for small 2 —a —mp
—npb„ f „behaves as

a +c+0(2—a —mp —npb, ) .
2 —a —rn0 —n06

f, = lim [f
2 —a —mp —nph 0

+ lr
I

A (h/Irl )], (8)

(10)

This divergence has to be canceled by a similar term
which is part of A ~ I

r
I

in Eq. (8). We then write the
right-hand side of Eq. (8) as

f ...r 'h '+A+ lrl' =[f-...+A., '(sgnr) 'lrl ' ' ]r 'h '+[A+ —A', '(h/Irl') 'llrl'
where A„' —' is the coefficient ofx in the power expansion of A~(x) for small x, i.e.,

I

h
I

&&
I
r

I

. By using

2 —a —mp —npk 2=1+(2—a mo —no—~) ln
I

r
I
+0{(2—a —mo npA) ),—

we find

f. „+A„'+I(sgnr) 'Ir I'

(12)

=[f „+A„' —'(sgnr) ]+ A„' —'(sgnr) (2 —a —mo —noh) ln
I

r
I
+O(2 —a —mo —no~) .

In view of Eq. (1()), to keep f „+A„' '(sgnr) finite when 2 —a —mp —noh~0, the coefficient A„' behaves as

(13)

[+] mp a mpA„—(sgnr) —c+c+(sgnr) +O(2 —a —mo no&) . —
2 —a —m0 —n06

(14)

Then the coefficient of ln
I

r
I

in Eq. (13) behaves as

A„—(sgnr) (2 —a —mp —noh, )= —a+O(2 —a —mo —npA) .(+) mp
(15)

By substituting the results of Eqs. (10), (14), and (15) into
Eq. (13), then this result into Eq. (11), and then finally
taking the limit 2 —a —mp —noh ~0 [see Eq. (8)], we find
the singular part of the the free energy

f, = ar h lnlrl—+ lrl A+(h/lrl ), (16)

where A~ ——A+ —(A„,—' —c+)(h/I r
I

) '. Since f „ is

the same above and below the critical temperature, the
constant a is also the same above and below the critical
temperature, see Eq. (10). Note that Eq. (16) can be set in
a form similar to Eq. (3.1) of Ref. 5, namely,

f, =A+(h/lrl )lrl ln(1/lrl)

+ A (h /
I

r
I

')
I

r
I

'

where 2 —a=m0+n06, and

(17)

A+ ——a(h/
I

r
I

) '(sgnr) (18)

Equation (18), absent in Ref. (5), is the central result of
this section. If more than one pair (mp, np) satisfy Eq.

(7), the right-hand side of Eq. (18) is a sum over all pairs.
In the case of the planar ferromagnetic Ising model, the

critical exponents are a=O and 6= —", . The only non-
negative integers mp, np satisfying Eq. (7) are mp ——2 and
np 0 Hen——ce t.he singular free energy as given in Eq. (16)
1s

f, =ar ln(1/Irl)+r A+(h/Ir ' ), (19)

where the leading order ~ is the reduced temperature and
h is the magnetic field. Equivalently, the function
A+(h/

I

r
I

'
) in Eq. (17) is equal to a constant. There-

fore, the amplitude of the logarithmic contribution to f, is
independent of the field h. The leading contributions to
the field derivatives of f, at zero field come from the
second term on the right-hand side of Eq. (19) and thus
are logarithm free, in agreement with the conjecture of
Aharony and Fisher.

The consequences of Eq. (19) for the critical behavior
on the critical isotherm were discussed in full detail by
Aharony and Fisher. In particular, since the scaling field
~ is a function of the reduced temperature t and the mag-



36 SQUARE-LATTICE ISING MODEL IN A WEAK UNIFORM. . . 3699

netic field H, ~=t+uH +, the logarithmic term in
Eq. (19) will give a contribution H ln

~

H
~

to f, at t =0.
The leading singularity comes from the last term in Eq.
(19), and it is f, —

~

H
~

' ' . The last result is the conse-
quence of h =H+ and of the requirement that no
singularity arises when t~0 at finite H, which is satisfied
only if the scaling function behaves as A+ —

~

x
~

' ~' for

III. ANTIFERROMAGNET IN A WEAK
MAGNETIC FIELD

The square-lattice Ising antiferromagnet in zero field is
equivalent to the zero-field ferromagnet. In the presence
of a uniform field the two models diAer substantially.
%'hile in the ferromagnetic problem only an isolated criti-
cal point occurs at zero field, in the antiferromagnetic case
a line of critical points in the temperature, field plane
separates the antiferromagnetic and paramagnetic phases.
By using the renormalization-group formalism and a re-
cent very accurate numerical result on the zero-field sus-
ceptibility, I determine the critical curve and the leading
singular contribution to the susceptibility in a weak uni-
form field.

The temperaturelike scaling field ~ is relevant and the
critical exponent is &x=0. The magnetic field is an ir-
relevant field b, (0. According to Eq. (17) the singular
part of the free energy is

f, =Agr ln(1/
~

~
~

)+ A+r (20)

Besides the pair mo ——2 and no ——0, there may be other
pairs of non-negative integers satisfying the equation
2=mo+noh, and this obviously depends on the actual
value of A. In particular, if 6=0, i.e., the magnetic field
is marginally irrelevant, then mo ——2 and no equals any
non-negative integer. In this case the amplitudes A+ and
A+ are functions of the field H. Since we consider here
only the leading contributions in weak fields, it suffices to
set mp ——2, np ——0 in Eq. (18), and to ignore the second
term in Eq. (20)

f, =ax ln(1/
~

w
~

) . (21)

The scaling field ~ is a nonlinear function of the re-
duced temperature t =(T —T, )/T, and of the field H.
T, is the critical temperature in the presence of the field
H. Due to the up-down symmetry, no odd powers of H
occur

where to is the zero-field reduced temperature. The lead-
ing contribution to susceptibility as obtained from Eqs.
(21) and (22) is

r=r +O(rH r ' ' ' )=rp+uH +O(rp rpH H ' ' '
)

(22)

D =4au(kT, ) and D'=8au (kT, ) (24)

By using the value of the zero-field amplitude determined
with high precision by Kong, Au- Yang, and Perk:
D =0. 193 595 186 3 and the exactly known'
a =[ In(1+&2)] /vr and kT, =2/In(1+&2), we com-
pute from Eqs. (24)

u =0.038023 259 (25)

D'=0.014 718 006 6 . (26)

A dependence as given in Eq. (23) has been predicted by
Fisher from the exact solution of the "superexchange"
antiferromagnet. An immediate consequence of Eq. (23)
is the following formula for the leading contribution to
the zero-field fourth-order susceptibility,

YI, I=(kT) =Eln(1/~ tp ),
II =O

(27)

where E =3D'(KT, ) =0.227 357 966 6. It would be in-

teresting to verify this result with the high accuracy tech-
niques available for the zero-field problem.

The line of critical points starts at T =0 and H=+4
and for small fields is given by t =to+uH + . . =0,
which implies

T, =T, [1—uH +O(H )], (28)

with u =0.038 012 325 9. This highly accurate, essential-
ly exact result departs from the Muller-Hartmann and
Zittartz' conjectured critical line, u =0.03895, by 2.6 Jo.
It does confirm that the latter conjecture is not exact but
is a good approximation. The critical temperature T, (H)
from a recent position-space renormalization-group com-
putation" is smaller than the conjectured' T, (H), which
in turn is smaller than T, (H) from Eq. (28). Hence this
renormalization-group scheme" is a worse approximation
than the Miiller-Hartmann and Zittartz' conjecture. I
mention parenthetically that the exact' T, (H) on the dia-
mond hierarchical lattice is also parabolic for small H as
in Eq. (28). Finally, our u agrees (within uncertainties)
with the estimate of Rapaport and Domb, ' u =0.0380.
This last result was obtained' from high-temperature
series for the staggered susceptibility analyzed by means
of Griffiths's smoothness postulate. ' Eqs. (21) and (22)
are completely consistent with the smoothness postulate.
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~

r
~

)+Dt ln(l/
~

r
~
), (23)
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