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Multiple-scattering suppression by cross correlation

William V. Meyer, David S. Cannell, Anthony E. Smart, Thomas W. Taylor, and
Padetha Tin

We describe a new method for characterizing particles in turbid media by cross correlating the scattered
intensity fluctuations at two nearby points in the far field. The cross-correlation function selectively
emphasizes single scattering over multiple scattering. The usual dynamic light-scattering capability of
inferring particle size from decay rate is thus extended to samples that are so turbid as to be visually
opaque. The method relies on single-scattering speckle being physically larger than multiple-scattering
speckle. With a suitable optical geometry to select nearby points in the far field or equivalently slightly
different scattering wave vectors ~of the same magnitude!, the multiple-scattering contribution to the
cross-correlation function may be reduced and in some cases rendered insignificant. Experimental
results demonstrating the feasibility of this approach are presented. © 1997 Optical Society of America

Key words: Particle sizing, dynamic light scattering, cross correlation, multiple-scattering suppres-
sion, static light scattering.

1. Introduction

Dynamic light scattering is a powerful experimental
technique for characterizing small particles sus-
pended in a fluid. For example, light scattered from
a collection of colloidal particles and detected at a
point in the far field fluctuates in time as the sus-
pended particles diffuse. The intensity autocorrela-
tion function is determined by the diffusion
coefficient of the particles, which in turn depends on
their diameter. In practice, measurement of the au-
tocorrelation function is the most accurate and reli-
able method for determining the diffusion coefficient
and hence the diameter of particles in suspension.
The accuracy available in a reasonable measurement
time is typically ;1% or a little better. This tech-
nique may be applied to particle sizes extending from
a few tens of angstroms typical of small proteins up to
micrometers typical of large colloids.

In colloidal suspensions that are sufficiently con-

centrated to appear opaque and in some cases trans-
lucent, significant light is multiply scattered,
severely distorting the correlation function and com-
promising the applicability of this technique. This
difficulty can be overcome with the two-beam cross-
correlation technique invented by Phillies1,2 and ex-
tended by others.3–5 This technique relies on the
relationship ks 2 ki 5 q that connects the wave
vectors ki of the incident light and ks of the scattered
light with the wave vector q of the fluctuation respon-
sible for the scattering. The outputs of two optical
systems, each consisting of a laser beam, a detector,
and the necessary optics, which are arranged to col-
lect light scattered by fluctuations of wave vectors q
and 2q, are strongly correlated with regard to only
single scattering. The multiply scattered light is
much less strongly cross correlated. Consequently,
if one measures the temporal cross-correlation func-
tion ^iA~t 1 t!iB~t!& of the two detector outputs iA~t!
and iB~t!, the result contains the same information as
would normally be obtained by a measurement of the
autocorrelation function of singly scattered light.
Alternatively, in the strong scattering limit, one may
deduce useful information directly from the autocor-
relation function of the multiply scattered light.6–8

Despite its appeal, Phillies’ technique has not been
extensively used in practice. Believing this to be
related to the difficulty and the expense of the
method, we have been motivated to explore a new and
simpler cross-correlation geometry.9,10 Our basic
idea is simple. Single scattering can be arranged to
come from a tightly focused incident beam, whereas
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multiple scattering tends to arise from a larger fuzzy
sort of halo around the incident beam. Thus we ex-
pect the time-dependent speckle field corresponding
to single scattering to have high spatial coherence
over a larger region than does the speckle field of
multiply scattered light. More specifically, if a
tightly collimated beam of diameter d passes through
a sample, the resulting speckle is correlated in the
direction transverse to the beam over an angular
range of the order of ~lyd! and thus over a distance of
the order of ~lyd!R, a distance R from the beam.
Because multiple scattering originates from a source
of larger diameter, it is correlated over only a smaller
distance transverse to the beam direction. By col-
lecting light from two locations slightly separated in
the direction transverse to the beam, we have shown
that it is possible to strongly favor single scattering
over multiple scattering by cross correlating the two
detector outputs. A simple physical interpretation
is that the singly scattered light produces speckle
larger than the separation of the two points from
which the light is collected, whereas the speckle from
multiple scattering is much smaller than the separa-
tion. Equivalently, one may view the two collection
points as being separated by a small angle du in the
direction transverse to the beam. When du is kept
less than or comparable with ~lyd!, strong preferen-
tial cross correlation of single scattering is achieved.

We have demonstrated this effect with two optical
fibers whose cores were separated by ;0.25 mm at
170 mm from the sample ~du 5 1.5 mrad! to collect
light and convey it to two separate detectors. We
find that the cross-correlation function measured un-
der these conditions gives useful information about
the particle diameter, even for suspensions that scat-
ter so strongly as to be visually opaque.9,10

A theoretical analysis is provided as the subject of
another paper in this volume.11

2. Experimental Method

Our experimental arrangement is shown schemati-
cally in Fig. 1. The cylindrical sample cells were
10.1-mm inner-diameter glass test tubes of 11.6-mm
outer diameter held rigidly on the axis of a cylindrical
glass vat containing either water or decalin as the

index-matching fluid. The vat had an inner diame-
ter of 80 mm and an outer diameter of 84.6 mm.
Light from an argon-ion laser of vacuum wavelength
l0 5 514.5 nm was brought to a focus near the axis,
with a 1ye2 diameter of ;88 mm by a lens of 100-mm
focal length. The beam entered the vat through a
small polished flat area ~not shown in Fig. 1!. Be-
cause the samples were suspensions of colloidal par-
ticles in water, some distortion of the focus occurred
on the beam’s entering the sample cell when decalin
~refractive index 1.48! was used as the matching
fluid, but this had no observable effect on the results.
Better optics may be envisaged with a square cuvette
but do not affect the conclusions reported here.

To collect scattered light from two nearby points in
the far field, we arranged the polished ends of two
optical fibers, which are single mode for 633 nm so
that the cores were 0.25 mm apart. We placed the
end of this fiber pair 170 mm from the system axis,
just above the horizontal plane containing the inci-
dent beam. This distance was chosen to minimize q
spreading. At this position all light scattered at a
given angle is mapped by refraction at the cell and
vat surfaces to a thin vertical line. Thus, despite
their wide field of view, the fibers each accept light
that corresponds to a well-defined scattering angle.
The fibers were oriented one above the other, that is,
separated in the direction transverse to the beam, the
direction in which the single-scattering speckle is
large. Being slightly above the plane reduced the
flare effects of multiple internal reflections for this
geometric configuration. Flare effects are more se-
rious at the lower concentrations but they are of
lesser interest here. Given a beam diameter of 88
mm, the vertical extent of the single-scattering
speckle should be of the order of ~l0yd!R > 1.0 mm at
a distance of 170 mm. Consequently the two fibers,
separated by only 0.25 mm, should collect light that is
well correlated, provided it originates only within the
incident focused beam. For our geometry, the scat-
tered light consists of small speckles that are much
taller than they are wide. We may estimate the hor-
izontal extent of the speckle as equal to the
diffraction-limited spot size of the 13-cm focal-length
cylindrical vat illuminated by a 1-cm-wide beam.
This results in speckle widths comparable with the
fiber core diameter of 5 mm.

The scattered intensity at a given point varies con-
tinually in time as the particles diffuse. Because the
two fibers often lie within a single speckle, the optical
powers they each collect tend to be correlated. Care-
ful visual observation of samples that exhibit multi-
ple scattering reveals an apparent bright line
~scattered light emerging directly from the beam it-
self ! lying within a much larger and more diffuse
region. This diffuse source is light that has been
scattered out of the illuminating beam and has sub-
sequently been rescattered one or more times, with
the final scattering event directing it into the eye.
Because this source appears larger than the beam, we
expect it to produce speckle that is much shorter
vertically than the 0.25-mm separation of the fibers

Fig. 1. Optical geometry used to verify the concept of multiple-
scattering suppression by spatial cross correlation. APD’s, ava-
lanche photodiodes.
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and thus to contribute little to the cross correlation of
optical powers collected by the two fibers. Because
both the single- and the multiple-scattering sources
have approximately the same dimension parallel to
the incident beam, we would not expect to discrimi-
nate single scattering were the fibers separated hor-
izontally rather than vertically.

We have not yet attempted to optimize the fiber
spacing chosen by using the rough criteria described
above. No single optimum spacing ~angular separa-
tion! may exist that is independent of the sample.
The multiple-scattering speckle size is determined by
the intensity distribution of the multiple-scattering
source by means of the van Cittert–Zernike theo-
rem.12 This source dimension in turn depends on
not only the optical geometry, but also on the mag-
nitude and the angular dependence of the sample’s
scattering cross-section. Thus from a practical point
of view optimization will also probably depend on the
nature and the concentration of the sample. See,
however, the paper by Nobbmann et al.13 in this fea-
ture that reports results obtained with this method
but with variable fiber spacing.

The light collected by each fiber was delivered to an
actively quenched silicon avalanche photodiode
~EG&G Optoelectronics Canada, Model SPCM-AQ-
141-FL! capable of single photon counting. These
detectors produce ;10-ns transistor–transistor logic
level pulses at rates proportional to the instanta-
neous optical power reaching each detector. The re-
sulting pulse streams nA~t! and nB~t! were fed to a
Brookhaven Instruments Model BI-9000AT digital
correlator that can compute either the temporal au-
tocorrelation function

G~t! 5 ^n~t 1 t!n~t!& (1)

for either pulse stream or the temporal cross-
correlation function

GAB~t! 5 ^nA~t 1 t!nB~t!& 5 ^nB~t 1 t!nA~t!& (2)

for both.
The correlator determines the number of counts

received during each interval ~t, t 1 T!, which we
have denoted by n~t! in Eqs. ~1! and ~2!. By simul-
taneously forming the products of the current n value
and the n values corresponding to 256 different delay
times t and accumulating these products for a suffi-
cient time, we can form an acceptably accurate mea-
surement of either G~t! or GAB~t!.

The nominally 107- or 204-nm-diameter particle
samples obtained from Bangs Laboratories were sus-
pensions of polystyrene latex spheres in distilled wa-
ter. We show data with concentrations that range
from 0.0017 wt. % to as high as 5 wt. % in some cases.
We initially measured particle diameters for dilute
suspensions that were essentially free from multiple
scattering by using conventional optics at a 90° scat-
tering angle. The extremely dilute samples scat-
tered so little light compared with residual flare that
more consistent measurements were obtained from
0.01-wt. % samples that were still essentially trans-

parent. Samples of different concentrations were
prepared by the dilution of a suspension of polysty-
rene latex spheres, supplied at a nominal concentra-
tion of 10 wt. %, determined by the manufacturer by
evaporation to dryness and stated to vary by as much
as 610%. The diluent was distilled water filtered
with a pore size of 0.22 mm to remove dust. It was
not found necessary to filter the samples further after
dilution. The specimen tubes were rinsed with sim-
ilarly filtered water before charging and sealing with
polyethylene stopper plugs or parafilm.

3. Results

To quantify the way multiple scattering affects the
autocorrelation function, we measured G~t! for a
number of suspensions of the nominally 107-nm-
diameter spheres with concentrations ranging from
0.0017 wt. % initially up to 1 wt. %. The measure-
ments were made at a 90° scattering angle with one
of the two optical fibers to collect the scattered light.
Results for the normalized autocorrelation functions
@G~t!yB 2 1# versus correlator delay time t are shown
on a semilog plot in Fig. 2 for six different concentra-
tions. Figure 2 was prepared with baseline values B
determined by the fitting of a single exponential in
which intercept, baseline, and exponential coefficient
were all allowed to float. Typically the fitted base-
line and the baseline calculated within the correlator
from the sample time and actual number of pulses
received agreed to within a few tenths of a percent or
better. As we see below, this difference should not
be ignored for the later cross-correlation functions
from which it is possible to extract good size mea-
surements even when the zero-delay time intercept
becomes extremely small.

For monodisperse samples of sufficiently low con-
centration such that they are free from multiple scat-
tering, plots such as those shown in Fig. 2 should be
linear, and indeed those corresponding to the two
lowest concentrations appear nearly so. Examining

Fig. 2. Normalized autocorrelation functions for increasing con-
centrations of nominally 107-nm-diameter polystyrene latex
spheres in aqueous suspension.
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the autocorrelation functions of the higher concentra-
tion samples reveals that G~t! becomes increasingly
nonexponential. The rapid initial decay evident for
the 0.5- and 1.0-wt. % samples is characteristic of
strong multiple scattering,6–8 supported by the obvi-
ous visual opacity of the samples.

Cross-correlation functions GAB~t! for the same
samples were measured with each of the fibers to
collect the scattered light at points separated verti-
cally by 0.25, 0.50, and 0.75 mm. No significant de-
pendence of decay time on fiber spacing was observed.
All the results presented in this paper were obtained
with a 0.25-mm fiber spacing. Some of these mea-
surements are presented in Fig. 3, which shows
@GAB~t!yB 2 1# versus correlator delay time t on a
semilog plot. Because the decaying portion of GAB~t!
is only a small fraction of the baseline B for the cross-
correlation data, especially for the higher-
concentration samples, we determined B for each
data set by fitting to a single exponential decay plus
a baseline. That the curves of @GAB~t!yB 2 1# pre-
sented in Fig. 3 are linear to within experimental
accuracy shows that the cross-correlation data for all
the concentrations studied are consistent with single
exponential decay. This is in marked contrast with
the results for the autocorrelation measurements
shown in Fig. 2, which clearly contain a broad spec-
trum of decay rates for the higher concentration sam-
ples.

Quantitative analysis of the data was performed on
the measured cross-correlation and autocorrelation
functions by the two-cumulant expansion,

GAB~t! 5 A expF22SK1t 2
K2

2
t2DG 1 B, (3)

where A, B, K1, and K2 are adjustable. This method
of analysis is commonly used for polydisperse sam-
ples that exhibit a range of decay rates, as do our

autocorrelation functions. We related the first cu-
mulant to an effective diffusion coefficient14 D by

K1 5 Dq2, (4)

where q is the magnitude of the scattering wave vec-
tor given by

q 5
4pn
l0

sinSu

2D . (5)

Here n is the refractive index of the suspension and u
is the scattering angle. We obtained an apparent
particle diameter from

D 5
kBT

6pha
, (6)

where kB is Boltzmann’s constant, T is the absolute
temperature, h is the viscosity, and a is the apparent
particle radius. The results of this analysis are
summarized in Fig. 4, which presents the apparent
particle diameter versus sample concentration derived
from both the autocorrelation and cross-correlation
functions. The results from autocorrelation and cross
correlation agree reasonably well at the lowest con-
centrations, but disagree seriously for the higher-
concentration samples. Two main conclusions can
be drawn from Fig. 4. First, multiple scattering can
so severely distort autocorrelation function data as to
result in apparent particle diameters more than an
order of magnitude smaller than the true diameter.
Second, the simple artifice of cross correlating the
scattered intensity at two nearby points virtually
eliminates this effect.

Further results from the data analysis are shown
in Fig. 5, which displays the zero-delay time intercept
for each correlation function analyzed to produce the
results already shown in Fig. 4. Here we see that,
while the autocorrelation intercept changes little for
the more concentrated samples, the intercept for
cross correlation falls steeply. This occurs because a

Fig. 3. Normalized cross-correlation functions for increasing con-
centrations of nominally 107-nm-diameter polystyrene latex
spheres in aqueous suspension.

Fig. 4. Particle diameter inferred from autocorrelation and cross-
correlation functions by a two-cumulant fit.
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smaller fraction of the detected light is correlated for
the more turbid samples as the ratio of multiply scat-
tered light to singly scattered light increases. We
find that excellent estimates of particle diameter are
obtainable from cross-correlation functions acquired
in times not significantly longer than those conven-
tionally used for autocorrelation and dilute suspen-
sions. This is the case even for the cross-correlated
signal for the more concentrated samples, which have
an extremely small signal amplitude. Both theory
and our experience with samples that have an even
higher concentration than those shown in Fig. 4 have
shown that for the case of even higher concentrations
either a longer run time or a smaller-diameter sam-
ple cell may be required. Note that because of the
rapid initial decay of the autocorrelation functions for
the more concentrated samples, the near constancy of
the zero-delay time intercept is not apparent when
the data are displayed as they are in Fig. 2.

To give some impression of the quality of the fits,
Fig. 6 shows deviation plots of the difference between
fit and data, normalized by the amplitude A1 of the
decaying portion of the correlation function. Figure
6 is for the cross-correlation data of Fig. 3 that cor-
respond to sample concentrations of 0.2, 0.5, and 1.0
wt. %. Clearly Eq. ~3! provides a good but not per-
fect description of the cross correlation. For compar-
ison, Fig. 7 displays similar plots for the three
autocorrelation functions of Fig. 2 for the same high-
concentration samples. As expected, these data are
clearly and systematically nonexponential. In com-
paring Figs. 6 and 7, the reader should bear in mind
that because of the normalization used in presenting
the results, the actual deviations shown in Fig. 6 are
as much as 3 orders of magnitude smaller than those
shown for the same sample in Fig. 7.

A quantitative measure of the overall scattering
power of the various samples may be obtained from
the fraction of the incident-beam power transmitted
through the 10.1-mm-diameter samples. Results of
our attempts to make such measurements for various

concentration samples of the nominally 107-nm-
diameter particles are shown in Fig. 8. The points
show the results of two separate measurements of
transmission for the same samples taken some weeks
apart and with different optics. The solid curve is
calculated from the theoretical Mie scattering cross
section. The calculated and the measured results
agree reasonably for concentrations below ;0.5
wt. %, but above that concentration the measure-
ments lie increasingly above those of the theory. We
believe that the increasing excess of measured power
over expected direct transmission is due to multiply
scattered light, which becomes increasingly more sig-
nificant as the transmission reduces.15

The main conclusion from these results is that even
for samples transmitting less than 1 part per million
of the incident power, spatial cross correlation allows
accurate determination of particle size. Note, how-
ever, that under such strong scattering conditions
most of the single-scattered light detected must have
originated within a millimeter or so of the point
where the beam enters the samples.

We now extend the measurements to angles other
than 90°. We measured both autocorrelation and

Fig. 5. Zero-delay time of normalized autocorrelation and cross-
correlation functions for increasing concentration.

Fig. 6. Normalized deviation plots for cross-correlation functions
for 0.2, 0.5, and 1.0 wt. % of nominally 107-nm particles.
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cross-correlation functions for the same set of various
concentration samples of the nominally 107-nm
spheres at scattering angles of 60°, 90°, 120°, and
135°. We analyzed these data by fitting the corre-
lation function by using Eq. ~3! as above, with A, B,
K1, and K2 adjustable. The apparent particle diam-
eters are presented in Fig. 9. The values of diameter
inferred from the autocorrelation functions are se-
verely influenced by multiple scattering for the
higher-concentration samples. They are also depen-
dent on the scattering angle, yielding a systematic
underestimate of the particle size that gets worse as
the angle is moved more to the forward direction. In
contrast, the values of diameter inferred from the
cross-correlation functions show no systematic de-
pendence on the scattering angle. However, the
values of the diameter estimated from the cross-
correlation functions do show a progressive decrease
at concentrations of 1 wt. % and above. This effect
could arise from repulsive interactions among the
particles or it might be an artifact of our optical ge-
ometry.

To verify the applicability of the method to parti-
cles of a different diameter we present results in Fig.

10 for 90° scattering from particles of a similar ma-
terial but with a nominal diameter of 204 nm. The
stability of the first cumulant from the cross-
correlation function and hence the inferred particle
diameter, as the suspension concentration increases
to opacity, is encouraging. The rapid increase in
value of the first cumulant from the autocorrelation
functions shows the usual particle-size underesti-
mate from the autocorrelation function when multi-
ple scattering is significant. The cross-correlation
results correspond to a diameter of 214 nm in rea-
sonable agreement with the nominal value.

4. Discussion

Our experimental results demonstrate the promise of
this new method of spatial cross correlation.9,10 The
ability to make reliable, easily interpretable, dy-
namic light-scattering measurements on strongly
scattering samples is valuable in both basic research

Fig. 8. Measured and calculated transmissions for 10.1-mm-
diameter samples of nominally 107-nm particles.

Fig. 9. Particle diameter inferred from autocorrelation and cross-
correlation functions by use of a two-cumulant fit for measure-
ments made at scattering angles of 60°, 90°, 120°, and 135°.

Fig. 7. Normalized deviation plots for autocorrelation functions
for 0.2, 0.5, and 1.0 wt. % of nominally 107-nm particles.
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and in industrial applications. Examples of re-
search areas in which multiple scattering is signifi-
cant and measurements currently difficult include
the study of particle dynamics in strongly interacting
systems, critical-point phenomena, and in vivo bio-
logical and medical studies. Examples of the many
industrial applications include characterization of
various slurries used for grinding and polishing,
paint-particle studies, sizing of particles in concen-
trated suspensions, and quality control of products
that may involve colloidal intermediate stages.

In this paper we have emphasized and demon-
strated the feasibility and the reliability of the
method as applied only to colloidal suspensions. We
have used simple collection optics consisting of adja-
cent bare fibers without collimation lenses. Each
fiber collects light from along the entire sample,
which is not the most effective way to discriminate
selectively against multiply scattered light. A bet-
ter method might be to use collimating lenses to re-
strict the accepted light to that originating in a
localized portion of the sample. Using bare fibers
has the advantage, however, of being extremely easy.
We calculated and confirmed experimentally that the
distance of the fibers from the focus formed by the
sample cell or the sample cell and its accompanying
index-matching vat is rather forgiving. The only
critical alignment is the vertical alignment of the
fibers so that the line joining the centers of their
exposed faces is perpendicular to the beam. In prac-
tice we achieved this by rotating the fiber pair about
an axis parallel to the fiber axes to maximize the
amplitude of the cross-correlation function measured
for a single-scattering sample. No other alignment
was necessary, and the fibers remained aligned for
many months.

For isotropic particles, single scattering is highly
polarized, contributing nothing to IVH. Because
multiple scattering is not highly polarized, it contrib-
utes significantly to IVH. An analyzer that allows
the fibers to accept only IVH results in a cross-

correlation function sensitive only to multiple scat-
tering. This rather simple test was used to confirm
that the chosen fiber spacing was adequate to sup-
press the multiple-scattering contribution to the
cross-correlation function. For our fiber spacing,
corresponding to an angular separation of 1.5 mrad,
the multiple-scattering contribution was immeasur-
ably small. By making such measurements as a
function of the fiber spacing or, equivalently, the an-
gular separation of the two fibers, one can quantify
exactly how the multiple-scattering contribution to
the cross-correlation function reduces with increas-
ing fiber separation. Such measurements have been
made both for IVV and IVH by Nobbmann et al.,13 who
used an arrangement nearly identical with ours, but
with each fiber terminated by a collimating lens.
Their results are reported in this feature and clearly
demonstrate the correctness of the physical ideas
that underlie this technique, specifically the rela-
tively much greater extent of single-scattering
speckle as opposed to multiple-scattering speckle in
the direction transverse to the beam.

As our results show, the amplitude of the cross-
correlation function relative to the baseline falls dra-
matically as multiple scattering increases ~see Fig. 5!.
This is because the baseline is proportional to the
square of the detected total intensity, whereas the
amplitude of the decaying portion is proportional to
the square of the detected intensity from single scat-
tering alone. This observation leads to the possibil-
ity of using the measured zero-delay time intercept
for cross correlation to deduce the fraction of the total
scattered intensity arising from single scattering.
Specifically, the ratio of the measured intercept to its
value for single-scattering from dilute samples is
equal to the square of the ratio of the detected single-
scattered intensity to the total intensity.

Applying this reasoning to the data for the 1-wt. %
sample, for example, suggests that only ;4% of the
light reaching the detectors was singly scattered. If
this sort of analysis proves robust in practice, spatial
cross correlation may make static light-scattering
measurements usefully quantitative even for
strongly scattering samples.

The authors thank James A. Lock of Cleveland
State University for providing a theoretical analysis
of the phenomena described here. His analysis is
the subject of another paper in this feature.11 We
also thank Joanne C. Walton for assistance in the
observations. This research was supported by the
Microgravity Research Division of NASA.
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Křepelka, and J. Peřina, “Effect of multiple scattering on
transmitted and scattered light,” Appl. Opt. 30, 4865–4867
~1991!.

7558 APPLIED OPTICS y Vol. 36, No. 30 y 20 October 1997


	Cleveland State University
	EngagedScholarship@CSU
	10-20-1997

	Multiple-Scattering Suppression by Cross Correlation
	William V. Meyer
	David S. Cannell
	Anthony E. Smart
	Thomas W. Taylor
	Padetha Tin
	Publisher's Statement
	Original Citation
	Repository Citation


	Multiple-scattering suppression by cross correlation

