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Twin-rainbow metrology. I. Measurement of the
thickness of a thin liquid film draining under gravity

Charles L. Adler, James A. Lock, Ian P. Rafferty, and Wayne Hickok

We describe twin-rainbow metrology, a new optical technique used to measure the thickness of thin films
in a cylindrical geometry. We also present an application of the technique: measurement of the
thickness of a Newtonian fluid draining under gravity. We compare these measurements with fluid
mechanics models. © 2003 Optical Society of America

OCIS codes: 290.3200, 120.0120.

1. Introduction

Rainbow refractometry is the name given to a collec-
tion of optical techniques used to determine the index
of refraction and the cross-sectional shape of large,
transparent scatterers that possess near-circular
cross sections by determination of the position and
interference structure of rainbow caustics of light
scattered by them. The rainbow caustic is an attrac-
tive feature to use in inverse scattering for several
reasons. Its brightness is often orders of magnitude
higher than other features of the scattered light. It
is structurally stable, i.e., limited distortions of the
shape of the scatterer do not destroy the rainbow but
only change its position. It also has a simple inter-
pretation in terms of geometrical optics as a local
extremum in the scattering angle as a function of the
light ray impact parameter. Rainbow refractometry
has been used to measure the temperature of fuel
droplets, the index of refraction of liquids, and the
exact cross-sectional shape of dielectric cylinders.1–7

This is the first in a series of papers in which we
describe the capabilities of twin-rainbow metrology
�TRM�, a new optical technique based on rainbow
refractometry, that allows the measurement of the
thicknesses of thin films in cylindrical geometries to

sub-micrometer resolution. The technique can be
used under the following conditions:

�1� The film must lie on the surface of a cylinder
with a circular cross section. The film thickness
should be radially uniform, although in general it will
vary along the length of the cylinder.

�2� The cylinder and film should be reasonably
transparent at the probe wavelength.

�3� The real part of the index of refraction of the
coating and cylinder at the probe wavelength must be
accurately known and differ by at least 0.05.

TRM is applicable for film thicknesses in the range
from roughly 0.1 �m to over 100 �m and, unlike
conventional microphotographic techniques, allows
the measurement over a wide field of view. The
technique is also high speed, limited only by the cap-
ture rate of the camera used to record the twin rain-
bows. The way in which TRM is used depends on
the film thickness. If the film is more than approx-
imately 4 �m thick, the angular position of one or
both of a pair of twin primary rainbows produced by
the film-coated cylinder are recorded, and the angu-
lar positions of the rainbows are used to determine
the thin-film profile by the numerical quadrature of a
differential equation. However, if the films are of
the order of 4 �m thick or less, the interference of the
overlapping twin rainbows is analyzed to measure
the film profile.

In this paper we report our use of TRM to measure
the thickness of a thin, Newtonian liquid film drain-
ing under the force of gravity in the so-called tail
region of the film. �The tail of a draining fluid film is
the top of the film, i.e. the region between the line of
attachment of the fluid to the rod and a few millime-
ters above the bottom of the film; the head of the film
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is the bottom few millimeters.� We chose this sys-
tem because it allowed us to easily vary the film
thickness by 2 orders of magnitude and to vary other
experimental parameters �such as fluid viscosity� by
changing the liquid used in the experiment. In ad-
dition, the film thickness in the tail is well modeled by
the Jeffreys parabola �discussed in Subsection 3.B�,
which can be used as a check of our experimental
technique. One point that we discuss at greater
length is that, although these solutions are well
known, to our knowledge there are relatively few
accurate experimental measurements that have
checked them. Other extensions of this research are
discussed in the conclusions and in later papers in
this series.

2. Theory of the Coated Cylinder Rainbow

The origin of the rainbows created by a transparent
cylinder with a circular cross section in the context of
ray theory is as follows. Parallel light rays are re-
fracted into the cylinder, internally reflect �p � 1�
times, and are refracted out. The deflection angle �
is a function of the angle of incidence �i between the
incident ray trajectory and the normal to the droplet
surface. At the angle �i

R, the deflection angle � has
an extremal value. For the �p � 1�th-order rainbow,
we have

cos �i
R � �n2 � 1

p2 � 1�
1�2

, (1)

and the deflection angle is

�R � 2�i
R � � p � 1�� � 2p�t

R, (2)

where the angle �t
R is the refracted angle of the rain-

bow ray inside the droplet:

sin �t
R �

sin �i
R

n
� �� p�n�2 � 1

p2 � 1 �1�2

. (3)

For the first-order �p � 2� rainbow, the deflection
angle �R and the scattering angle �R are identical.
The Debye-series expansion of the Rayleigh solution
for scattering of a normally incident plane wave by a
cylinder confirms the ray theory results when the
radius of the cylinder is large compared to the wave-
length of light.8

For typical rainbow refractometry applications,
such as particle temperature measurement, one often
deals with particles that are either aspherical or have
an inhomogeneous index of refraction �or both�.6,9–13

The simplest case of index inhomogeneity is rainbow
scattering by a coated sphere or cylinder. The core
has refractive index n1, and the coating, which com-
pletely surrounds the core, has index n2. Figure 1
shows the geometry that we are considering. Here r
is the thickness of the coating on the cylinder, and a
is the core radius. Because of the two possible one
internal reflection ray paths shown in Fig. 1, there
are two separate minima in the scattering angle,
which we label �	

R and �

R—i.e., the coated sphere

produces twin primary rainbows.

The angles of the rainbows are functions of the
relative thickness of the coating r�a and the refrac-
tive indices of the core and coating. In Ref.14 the
authors derived an approximate formula for �	

R and
�


R, which is correct to first order in r�a. If �R is the
scattering angle of the primary rainbow of a homo-
geneous sphere or cylinder of index n1, then the scat-
tering angles of the twin rainbows are
approximately13,14

�	
R � �R �

2r
a �� 4 � n1

2

3n2
2 � n1

2 � 4�
1�2

� �4 � n1
2

n1
2 � 1�

1�2� ,

(4a)

�

R � �R �

2r
a �2� 4 � n1

2

3n2
2 � n1

2 � 4�
1�2

� �4 � n1
2

n1
2 � 1�

1�2� .

(4b)

This derivation is based on a Taylor-series expansion
of the rainbow angles derived from ray theory and
was checked by the Aden–Kerker extension of Mie
theory for a coated sphere.15

The semiclassical theory of rainbow scattering that
takes into account the wave nature of light is Airy
theory.16–18 The assumption behind the Airy theory
is that the phase front of the light wave exiting near
the rainbow angle is cubic, and the amplitude of the
electromagnetic field is slowly varying. This is an
excellent approximation for the size parameter X �
2�a���2000 or larger, although one must appeal to
Mie theory for its justification.8,19 If we define the
Airy integral as

Ai��w� �
31�3

� 
0

�

cos �t3 � 31�3wt�dt, (5)

the Fraunhofer diffracting the cubic phase into the
far field yields

E��� � Ai�� X2�3

h1�3 �� � �R�� , (6)

Fig. 1. Coated cylinder cross section and the trajectory of the
twin-rainbow rays.
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where � is the scattering angle and

h �
9
4

�4 � n1
2�1�2

�n1
2 � 1�3�2 (7)

is a dimensionless measure of the phase-front curva-
ture.20 Properties of the Airy integral can be found
in Ref. 21.

To find the interference pattern from the overlap of
the twin rainbows, we must also take into account a
phase shift between the two rainbow rays that are
proportional to the film thickness. The phase shift
arises from two causes: First, the ray corresponding
to the 
 rainbow travels a longer distance than that of
the 	 rainbow as it refracts into the coating before
reflecting back �see Fig. 1�; second, the 	 and 
 rain-
bow rays exit the droplet at slightly different points.
From this, the intensity of the scattered light in the
far field is

I��� � I1Ai�� X2�3

h1�3 �� � �	
R��2

� I2Ai�� X2�3

h1�3 �� � �

R��2

� 2�I1 I2�
1�2 Ai�� X2�3

h1�3 �� � �	
R��

� Ai�� X2�3

h1�3 �� � �

R��

� cos�4�r
� �3n2

2 � n1
2 � 4

3 �1�2� , (8)

where I1 is the intensity of the 	 rainbow in the
absence of the 
 rainbow and I2 is the intensity of the

 rainbow in the absence of the 	 rainbow. The ratio
I2�I1 is obtained by use of flat-surface Fresnel coeffi-
cients. For n1 � 1.61 and n2 � 1.40, one finds I2�I1
� 30.

The concept outlined above is the basis of TRM: If
a cylinder is coated with a radially uniform thin film
and a laser beam is incident on the cylinder, the
angular position of the twin primary rainbows can be
used to determine the thickness of the thin-film coat-
ing. For very thin films, one can measure the coat-
ing thickness using interference of the overlapping
twin rainbows.

3. Experiment

To test the utility of TRM, we used the technique to
measure the thickness of thin liquid films draining
under the force of gravity. This is an almost ideal
system for these measurements because the coating
thickness varies over time by 2 orders of magnitude
during the course of an experiment, enabling us to
test TRM over a wide variety of length scales. Fluid
parameters such as refractive index, density, and vis-
cosity are well known and can be varied enormously,
and there is a well-established theory for the shape of
the thin film as a function of time that can be tested
to high precision.

A. Apparatus

Our experimental apparatus is shown in Fig. 2. The
beam from a He–Ne laser is expanded vertically by
use of a cylindrical lens and was incident on a vertical
glass rod near the primary rainbow impact parame-
ter. The twin first-order rainbows were projected
onto a ground-glass screen and imaged with a video
camera and frame grabber. Two polarizing filters
were used. The first was set to ensure that the light
incident on the rod was polarized vertically, and the
second was placed in front of the camera to control
the intensity incident on it. The glass rod itself was
specially manufactured by Collimated Holes, Inc. to
have a nearly circular cross section and uniform in-
dex of refraction. The cylinder radius is a � 0.316 �
0.01 cm, and its refractive index is n1 � 1.6147 �
0.002. The measurement of the cylinder’s index of
refraction was made by rainbow refractometry as de-
scribed in Ref. 6; the uncertainty quoted is based on
a curve fit of the angular position of the primary
rainbow as a function of rod orientation to the two-
half-ellipse model developed in that paper.

To perform an experiment, a cup filled with Corn-
ing 200 Silicone Oil was raised over the bottom of the
rod to a height of 2.3 cm. Once the cup was removed
and the oil-coated rod was illuminated by the laser
beam, the twin rainbows from this section of the rod
were recorded by the video camera. Corning 200
Silicone Oil is available in a wide range of viscosities.
In our experiments, we used fluids with kinematic
viscosities ranging from 0.015 to over 10 cm2�s, a
range of 3 orders of magnitude. �In this paper we
always refer to the kinematic viscosity, which is the
fluid viscosity divided by the fluid density �0.97
g�cm3��. Because of the wide range of viscosities
used, the total duration of an experiment varied from
less than a minute for the least viscous to over 6 h for
the most viscous fluids. Although the lowest-
viscosity fluids we used are somewhat volatile, we did
not attempt to control for evaporation during the
course of these experiments; however, we do not be-
lieve that evaporation was a significant factor in
these experiments. We discuss this point in more
detail in Section 5. The refractive index of the fluid
varied from 1.38 � 0.01 for the low-viscosity fluids to
1.40 � 0.01 for the high-viscosity fluids. The refrac-
tive index of the fluid was measured by rainbow re-

Fig. 2. Experimental setup for twin-rainbow metrology.
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fractometry performed on a pendant droplet; the
uncertainties quoted reflect the predicted accuracy of
the rainbow refractometry setup we used for the mea-
surement and are not based on a standard deviation
taken from repeated measurements. However, they
match values quoted for the refractive indices by
Corning.

B. Jeffreys Parabola for Draining Fluids

The analysis of these experiments relies on a theo-
retical knowledge of the shape of the thin film as a
function of time. The shape of a thin film draining
under gravity down an infinite vertical plate was first
derived by Jeffreys:

z � �g
�� r2t, (9)

where z is the vertical distance �down� from the top of
the thin film, r is its thickness, g is the acceleration of
gravity, and � is the kinematic viscosity of the liq-
uid.22 Figure 3 shows a theoretical profile of a thin
liquid film at several different times for a kinematic
viscosity � � 12 cm2�s. Note that the r and z scales
differ by over 2 orders of magnitude and that the
contact point of the fluid with the rod remains fixed.
Equation �9� is valid for drainage from a cylinder
when23–25 the thickness of the thin film is much
smaller than the cylinder radius, effects that are due
to surface tension are unimportant, and when the
influence of any boundaries such as the bottom of the
rod can be ignored. For these reasons, the Jeffreys
parabola solution is valid for values of z ranging from
roughly 1 mm below the top of the film �the point of
attachment or contact line�, above which effects that
are due to surface tension are important, to 3–4 mm
above the bottom of the rod.24 In the regime where
the Jeffreys solution is valid, the shape of the thin
film should be close to a parabola that thins over
time.

4. Results

A. Rainbow Gap

Figure 4 shows a frame from a video of the twin
rainbows produced by a thin film of silcone oil with
kinematic viscosity � � 0.015 cm2�s at a time t �
10 s. The twin rainbows are clearly visible in the
lower two thirds of the picture. The 	 rainbow is the
dimmer bow because the core–coating internal reflec-
tion is weaker than the internal reflection at the air–
coating interface responsible for the 
 rainbow.
Above the point of attachment, the straight fringes of
the rainbow that are due to the uncoated rod are
clearly visible. The picture has two surprising fea-
tures: The 	 and 
 rainbows are curved over in the
vertical direction, and there is a vertical gap between
the top of each rainbow and the point of attachment.
The gap width is different for each rainbow and was
observed to decrease slowly over time. We call the
vertical coordinate of the twin rainbows on the
ground-glass screen Z	 and Z
, respectively. The
gap width is the distance from the point of attach-
ment to the maximum value of these coordinates, Z	

0

and Z

0. Graphs of Z	

0 and Z

0 as a function of time

for fluids of several different viscosities are shown in
Figs. 5�a� and 5�b�.

The reason the gap exists is as follows. Because
the surface of the silicone oil film is not vertical, an
incoming light ray is deflected vertically downward
because of refraction and reflection at the air–coating
and coating–core interfaces. If the slope of the film
is nearly vertical �i.e., dz�dr �� 1�, a light ray inci-
dent on the rod a distance z below the point of attach-
ment will be deflected vertically to a point Z	 or Z
 on
the screen:

Z	,
 � z�1 �
R
Lf
� �

�	,
R
dz�dr

, (10)

where R is the distance from the center of the rod to
the screen, and �	,
 are constants that depend only on
the refractive indices of the core and coating. The

Fig. 3. Theoretical profile of a draining thin film as a function of
time for � � 12 cm2�s. Note the different scales for the r and z
axes.

Fig. 4. Video image of twin rainbows for � � 0.015 cm2�s and t �
10 s.
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notations �	,
 and Z	,
 are used to refer to each of the
twin rainbows, respectively. The quantities �	 and
�
 differ, as do the gap widths for each of the rain-
bows, because of the difference in the ray paths of the
light making up each bow. Lf is the distance from
the focal point of the cylindrical lens to the rod. The
factor R�Lf in Eq. �10� is necessary because the beam
is expanding as it is scattered from the rod to the
screen. In Appendix A we show that

�	 �
2

31�2 � �3n2
2 � n1

2 � 4�1�2 � �n1
2 � 1�1�2� , (11a)

�
 �
2

31�2 � 2�3n2
2 � n1

2 � 4�1�2 � �n1
2 � 1�1�2� . (11b)

For n1 � 1.61 and n2 � 1.40, �	 � 0.985 and �
 � 3.42.
Setting dZ	,
�dr � 0 to find the gap width and

using Eq. �9� for z�r�, we obtain

Z	,

0�t� �

3
2 ��	,


2R2�1 �
R
Lf
��1�3� �

2gt�
1�3

. (12)

A log–log plot of Z	,

0�t� versus t should have a slope

of �1�3. In practice, there is a correction factor to
Eq. �12� because it was derived from geometrical op-
tics. In our experiments, the gap width is measured
from the peak of the primary rainbow main fringe,
which is shifted slightly from the Descartes position
of the rainbow as predicted by geometrical optics.
This will add a constant offset to Eq. �12�. To exam-
ine our data we performed a least-squares fit of
Z	,


0�t� to the function

Z	,

0�t� � A	,
t

�1�3 � B	,
. (13)

The constant offset B	,
 should be of the order of
R�X23 � 0.05 cm. From our experimental data, B	,

was always found to be between 0.07 and 0.16 cm.
This variation in B	,
 is due to two effects: First, it
is difficult to determine the exact position of the peak
of the primary rainbow fringe �in practice this was
harder to do for the 
 rainbow because the images of
the 
 rainbow were often saturated�, and second the
fringe spacings of the supernumerary rainbows of a
glass rod have large fluctuations as a function of the
rod’s orientation.7 Because the rod was removed
and cleaned between trials, the orientation is ran-
dom, leading to variation in B	,
.

It can be seen from Figs. 5�a� and 5�b� that the t13

scaling law seems to be violated at short times for the
lowest-viscosity fluid. This is an artifact arising
from the way in which the data were taken. It takes
roughly 0.2 s to remove the silicone oil container
when the experiment is started. Because of this, the
exact time from release is approximately 0.2 s earlier
than indicated in Fig. 5. This is unimportant for
high-viscosity fluids, as we did not begin measuring
the gap width until several seconds into the experi-
ment. However, it is important for the � � 0.015
cm2�s viscosity fluid. When determining A for this
fluid, we eliminated all data earlier than t � 0.3 s.

Values for A	,
 in Eq. �12� were determined for the
fluids and compared with theoretical predictions
based on the nominal viscosity of the fluid. The re-
sults are summarized in Table 1. As can be seen,
the comparison between theory and experiment is
quite good.

B. Inversion of Experimental Data

We now turn to the question of how the shape of the
film profile can be determined directly from the scat-

Table 1. Power-Law Scaling Coefficients A�,� for the Rainbow Gapa

�
A	

�theory�
A	

�experiment�
A


�theory�
A


�experiment�
�cm2�s� �cm s1�3� �cm s1�3� �cm s1�3� �cm s1�3�

0.015 0.442 0.442 0.92 1.02
0.5 1.42 1.42 3.27 2.82
3.5 2.72 2.92 6.26 6.66
10 3.86 3.98 8.88 9.04
11 �theory only� 3.98 9.17

aTheoretical values for � � 11 cm2�s are shown for comparison
with the nominal � � 10 cm2�s viscosity fluid.

Fig. 5. �a� 	 rainbow gap width Z	
0�t� as a function of time for

several different viscosity silicone oils. �b� 
 rainbow gap width
Z


0�t� as a function of time for several different viscosity silicone oils.
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tering data. We wish to determine z�r� knowing
Z	,
��	,


R�. To do this inversion we must use Eq.
�10� to invert Z	,
 to find z. Because the film thick-
ness changes with z, the position of the rainbow ray
on the viewing screen, Z	,
, is not proportional to z;
and we find the determination of r�z� more compli-
cated than merely measuring �	,


R as a function of
Z	,
 and using Eqs. �4a� and �4b�. We can rewrite
Eq. �10� as

dz
dr

�
�	,
R

Z	,
�r� � �1 � R�Lf� z
. (14)

From Eqs. �4a� and �4b�, the angular separation of
either rainbow from the position of the rainbow that
is due to the uncoated rod is proportional to r. So we
can obtain Z	,
�r� by digitizing the video image and
then determine z�r� by numerically integrating the
differential equation using the data from the digi-
tized image. When determining Z	,
�r� we subtract
off the constant offset B	,
 found from the gap data.
We use the boundary condition

limr3�
z�r� �

Z	,
�r�

1 � R�Lf
, (15)

corresponding to the asymptotically vertical film sur-
face far below the contact line and integrate from
high r downwards. It is important to integrate this
way as Eq. �14� is numerically unstable when inte-
grated from low r to high r.

Figure 6 shows several profiles of the fluid found
from numerical integration of the differential equa-
tion by use of a fourth-order Runge–Kutta algorithm
and comparison with the Jeffreys theory. In Fig. 6
the profiles were determined from the 	 rainbow scat-
tering data. Here the nominal kinematic viscosity of
the fluid is � � 10 cm2�s, whereas the data is best fit
with � � 12 cm2�s. By comparison, the A	,
 coeffi-
cients determined from Eq. �12� for this fluid corre-

spond to a viscosity of 11 cm2�s. From this, it is
clear that there is good agreement between the Jef-
freys theory and our data. Figure 7 shows two pro-
files of the nominal � � 10 cm2�s fluid at time t �
120 s that we found by inverting both the 	 and the

 rainbow scattering data. As expected, the two pro-
files are similar.

C. Twin-Rainbow Interference

When the liquid film becomes sufficiently thin, the
geometrical-optics model of Eqs. �4a� and �4b� is in-
sufficient because of the overlap and interference of
the twin-rainbow fringes. Interference becomes im-
portant when the angular separation of the two bows
becomes comparable to the angular separation of the
main peak to its first supernumerary; using Eqs. �4a�,
�4b�, and approximation �6�, we can estimate this as

rint �
a
2�3n2

2 � n1
2 � 4

4 � n1
2 �1�2 h1�3

X2�3 � 3 �m. (16)

Figure 8 shows a frame from a video of the twin
rainbows for a viscosity � � 0.015 cm2�s at time t �
45 s. Only the region of the rainbows below the gaps

Fig. 6. Comparison of inverted TRM data �solid curves� to pre-
dictions made by the Jeffreys theory �filled circles�. Data were
taken from the 	 rainbow for � � 10 cm2�s nominal viscosity. The
best-fit viscosity to the data is � � 12 cm2�s.

Fig. 7. Comparison of inverted TRM data for the 	 �filled squares�
and 
 rainbows �filled triangles� at t � 120 s. The nominal vis-
cosity for the fluid is � � 10 cm2�s. The best-fit viscosity to the
data is � � 12 cm2�s.

Fig. 8. Video image of the twin-rainbow interference pattern for
� � 0.015 cm2�s and t � 45 s.
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is shown this time to make Fig. 8 easier to under-
stand. At this time a complex interference pattern
as well as the hint of a moiré structure can be seen
�compare with Fig. 4 where no interference structure
is seen.� We can attempt to simulate this using Eq.
�8� plus the Jeffreys theory �Eq. �9��. The result is
shown in Fig. 9. The overall structure of the exper-
imental data and the theoretical model are similar.

The vertical checkerboard banding of the brighter

 rainbow peak and the first few supernumeraries
that can be seen in the structure are explained as
follows. Imagine a ray incident on the cylinder at an
impact parameter near the rainbow angle. On re-
fracting into the coated rod, part of the light will
internally reflect at the core–coating interface and
part will reflect at the coating–air interface. On re-
fraction out of the coated rod, the two exiting rays will
be almost parallel and will interfere. The nature of
the interference will depend on the thickness of the
coating layer. Constructive interference will occur
for coating thicknesses where the cosine term in Eq.
�8� is positive, and destructive interference will occur
where it is negative. As one moves down the rod, the
change in the coating thickness with height gives
alternating bright and dark fringes. From Eq. �8�,
the change in thickness to go from one bright fringe to
the next is

�rb �
�

2� 3
3n2

2 � n1
2 � 4�

1�2

� 0.277 �m. (17)

We can determine �rb experimentally by examin-
ing a region of the rod where the interference pattern
is visible and the twin rainbows are well resolved.
We can then calculate the change in thickness be-
tween two vertically adjacent bright fringes by mea-
suring the change in the angular separation of the
twin rainbows. From this we find that �rb �
0.266 � 0.05 �m.

The large standard deviation in the experimental
determination of �rb deserves some comment.
One issue that complicates this measurement is
that the supernumerary rainbows are not regularly
spaced. As the scattering angle increases from the

rainbow angle, their spatial frequency increases.
Because two or more fringes of the 	 rainbow over-
lap one fringe of the 
 rainbow and the relative
phase of the light is reversed between adjacent su-
pernumeraries, both constructive and destructive
interference occur within the main peak of the 

rainbow. The consequence of this is that the peak
is split in two lobes. This complicates both the
determination of the angular separation of the twin
rainbows and the vertical separation of adjacent
bright bands. This is also the reason the checker-
board pattern increases its spatial frequency as the
scattering angle increases. In like manner, the in-
terference structure on the first two supernumer-
aries of the 	 rainbow is due to their interference
with the complex ray of the 
 rainbow that extends
into the classical shadow region.

In deriving Eq. �8�, we ignored the vertical curva-
ture of the twin rainbows produced by the parabolic
shape of the surface of the film. This approximation
is valid so long as dz�dr �� 1, but a complete theory
will have to include these curvature effects.

5. Enhancements of the Twin-Rainbow Metrology
Technique

The main conclusion that we draw from the exper-
iments reported in Section 4 is that TRM can be
successfully used to measure the shape of a thin
film in a cylindrical geometry. There are, however,
a number of other related TRM experiments that
should be discussed, which will be reported more
completely in a forthcoming paper. For a Newto-
nian fluid draining off a cylinder, one can use TRM
along with the presumed shape of the film to deter-
mine its viscosity to an accuracy of the order of a few
percent or better. In our experiments, we noted
the temperature of the room in which the experi-
ments occurred �24 °C � 1 °C over the course of the
study� but did not attempt to measure the fluid
temperature or try to control it. We also used the
nominal viscosity as given by the vendor in our
theory, although we did measure the viscosity of the
nominally 0.015-cm2�s fluid with an Ostwald vis-
cometer and found a value of 0.014 � 0.001 cm2�s.
�The error indicated here is the standard deviation
of three measurements.� We are currently plan-
ning a series of experiments with a commercial vis-
cometer to check our results against it. We can
measure viscosity by TRM in two separate ways:
�1� by measuring the gap width as a function of time
and comparing this with Eq. �11�; or �2� by inverting
the data to find the thin-film profile and comparing
it with the Jeffreys parabola. We call these mea-
surement techniques TRM viscometry.

All the fluids used in the experiments discussed
here are Newtonian fluids, i.e., ones in which the
shear rate is proportional to the shear stress. We
are also beginning a series of experiments to deter-
mine the shape of a draining non-Newtonian fluid.
We are investigating a shear-thinning liquid �one for
which the effective viscosity decreases as the shear

Fig. 9. Computer simulation of the twin-rainbow interference
pattern of Fig. 8.
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rate increases� to see if TRM can be used to explore
the fluid dynamics of a non-Newtonian thin film.

Near the top of the thin film, surface tension
effects become important, and the Jeffreys parabola
solution �which does not include them� is invalid.
A model for the shape of a thin film that does in-
clude them is24

z � �g
�� r2t � k��r

�g�
1�3

. (18)

Here � is the surface tension of the fluid, � is the
fluid density, and k � 0.477 is a dimensionless con-
stant derived from fluid dynamics considerations.
This model predicts that the film becomes vertical
at the contact line r � 0. Realistically, the slope
should approach the contact line with a small but
nonzero value �the contact angle� determined by the
free energy of the liquid–solid–air interface.26 The
silicone oils used in the experiments of Section 4
had � � 20 dyn�cm and � � 0.97 g�cm3 for all values

of the viscosity. �At this point, we should mention
that the Tanner model of Ref. 24 is derived for a flat
plate. Because the radius of the rod we are using
is comparable to L� � ����g�1�2 � 1.4 mm, the Tan-
ner model may not adequately represent the true
shape of the thin film on our rod.� Figure 10�a�
shows the theoretical profile for a fluid with kine-
matic viscosity � � 0.015 cm2�s at a time t � 20 s
by use of this model. Note that the shapes of the
film predicted by each model are nearly identical
except for the region z � 0.002 cm �corresponding to
r � 0.05 �m� where the Jeffreys parabola intersects
the rod perpendicularly, whereas the Tanner model
intersects tangentially. The predicted Z coordi-
nate of the 	 rainbow on the viewing screen as a
function of film thickness with Tanner’s model can
be found from Eqs. �10� and �18� and is shown in
Fig. 10�b�. Although the change in the shape of the
film profile is almost unnoticable between the Tan-
ner model and the Jeffreys parabola, the change in
the shape of the rainbow is profound. This is be-
cause there is a second zero of dZ	,
�dr. Instead of
shooting off to infinity as r3 0, Z	,
�r� goes through
a maximum and returns to zero.

We believe that the true shape of the rainbow does
look like that in Fig. 10�b�. It is difficult to observe
this as the rainbow that is due to this short section of
the film is dim. Little of the incoming light is spread
over a large vertical distance. However, by remov-
ing the cylindrical lens and focusing all the power in
the laser beam at the point of attachment, we ob-
served this branch of the rainbow. A simple theory
predicts that this second gap width should narrow as
t�2�5. We are currently attempting to measure the
spacing of the second gap as a function of time; the
results of this research will be reported in a future
publication.

Whether we can detect the effects of surface ten-
sion in measurements made below the region where
surface tension effects dominate is unclear. For ex-
ample, the effects of surface tension subtly change
the gap width in the region of the film examined in
Section 4. A perturbation theory expansion indi-
cates that the gap width of Eq. �12� is increased by the
additive term

�Z	,

0 �

2
3�1 �

R
Lf
�8�9

kL�
2�3��	,
R�2

4g2 �1�9

t� 2�9. (19)

Unfortunately, a scaling law of t�29 is difficult to
distinguish from the scaling law of t�13 in Eq. �12�.
Also, the contribution this makes to the gap width is
only of the order of 1% of the total gap width and
approximately 10% of the constant offset B	,
 of Eq.
�13�. This means that its contribution is of the order
of the resolution of the camera that we are currently
using. If this subtle effect is measurable, it will be
most important in measurements made on low-
viscosity fluids at long times. We have not been able
to measure this effect yet for reasons discussed below.

It is possible to determine the position of the con-
tact line �the point where the film joins the rod� to an

Fig. 10. �a� Theoretical profile of the liquid thin film including
effects of surface tension; �b� predicted shape of the 	 rainbow
including effects of surface tension for � � 0.015 cm2�s and t �
20 s.
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accuracy of approximately 10 �m with TRM. It is
the top of the rainbow gap in Fig. 4. For the lowest-
viscosity fluid examined, we found that, after approx-
imately 1 min, the contact line began to slip down the
rod. Figure 11 shows a graph of the contact line
motion over time. As can be seen, it does not slip
steadily, but sticks irregularly as it descends. If this
is actually the case, it represents a macroscopic vio-
lation of the no-slip boundary condition of fluid me-
chanics. These results are not confirmed, however,
because the lowest-viscosity fluids are more volatile
than the higher-viscosity fluids, and we need to rule
out evaporation as the cause of this apparent motion.
We do not believe that evaporation is the cause, as we
have also investigated TRM using highly volatile liq-
uids such as methanol, and the results of these ex-
periments appear completely different than what we
see in Fig. 11, but the possibility is still open.

Appendix A

Consider a circular cylinder of radius a and refractive
index n1 whose symmetry axis coincides with the z
axis of an x,y,z rectangular coordinate system. The
cylinder is coated with a liquid of refractive index n2
whose thickness tapers as r�z�. For the Jeffreys pa-
rabola,

r� z� � ��z
gt �

1�2

, (A1)

as in Eq. �9�. A light ray whose trajectory is initially
confined to the x,y plane approaches the cylinder par-
allel to the x axis. In this appendix we calculate the
trajectory of the ray making one internal reflection at
either the cylinder–coating interface or the coating–
air interface before exiting the coated cylinder and
propagating to the scattering far zone using the an-
alytical ray-tracing method described in Ref. 27.

The incident ray intersects the coating surface at
point 0. Let �0 be the angle in the x,y plane that the
vector from the cylinder axis to point 0 makes with
the �x axis. The quantity �a sin��0�� is commonly

called the impact parameter of the incident ray. The
inward normal to the coating surface at point 0 is

n0 � cos���cos��0�ux � cos���sin��0�uy � sin���uz,
(A2)

where � is the angle the coating surface makes with
the z axis at point 0, i.e.,

tan � �
dr
dz�0

. (A3)

We assume that the surface of the coating is nearly
vertical so that � �� 1 and the coating is always of
negligible thickness compared to the cylinder radius.
We take the incident ray to be the first-order rainbow
ray of the cylinder in the absence of the coating so
that

cos �0 � �n1
2 � 1
3 �1�2

, sin �0 � �4 � n1
2

3 �1�2

(A4)

and assume that propagation through the coating
does not substantially change the impact parameter
of the rainbow ray from that of Eqs. �A4�. The tra-
jectory of a ray diagonally incident on a circular cyl-
inder can be decomposed into a trajectory in the x,y
plane as can be seen from above by use of the Bravais
refractive index of the cylinder and a vertical trajec-
tory as can be seen from the side by use of the cylin-
der’s actual refractive index.28 In like manner, we
similarly decompose the trajectory of a ray horizon-
tally incident on a circular cylinder with a tapered
coating.

As the initially horizontal ray refracts from the air
into the coating, it deflects vertically by an angle

� �
��n2

2 � sin2 �0�
1�2 � cos �0��

n2
. (A5)

Because the coating is of negligible thickness, we can
neglect the presence of the coating when examining
the trajectory of the ray in the x,y plane, and, because
� �� 1, the Bravais refractive index of the cylinder is
nearly the same as its actual refractive index. As a
result, the x,y trajectory of the ray as seen from above
is nearly identical to that of a horizontal ray incident
on an uncoated cylinder. At point 1 in Fig. 1, the ray
is vertically deflected by the angle � with respect to
the horizontal where

n1 sin � � n2 sin �. (A6)

The 
 ray of Fig. 1 is then transmitted from the
cylinder to the coating at point 2 in Fig. 1, it inter-
nally reflects from the coating–air interface at point
3, is transmitted back into the cylinder at point 4, is
transmitted back into the coating at point 5, and
finally refracts from the coating to the air at point 6.
Although the ray continues to rise vertically through-
out its trajectory, we assume that r�z� is a relatively
slowly varying function so that the angle the coating
surface makes with the z axis at points 0,3, and 6 is
nearly identical. This assumption is quite accurate

Fig. 11. Contact line position as a function of time for � � 0.015
cm2�s.
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for the Jeffreys parabola far from the contact line.
The angle the ray makes with respect to the x,y plane
in the coating between points 2 and 3 is again ��, and
after internal reflection by the tilted interface at
point 3, the ray makes the angle

�3 � � �
2�

n2
�n2

2 � sin2 �0�
1�2 (A7)

with the x,y plane. After the ray is transmitted back
into the cylinder at point 4, it makes an angle �3 with
respect to the x,y plane where

n1 sin �3 � n2 sin �3, (A8)

and when back in the coating between points 5 and 6,
it again makes the angle �3 with respect to the ver-
tical. After refraction back into the air, the exiting
ray makes the angle

�6 � n2�3 � ��cos �0 � �n2
2 � sin2 �0�

1�2�

�
2�

31�2 �2�3n2
2 � n1

2 � 4�1�2 � �n1
2 � 1�1�2� , (A9)

which is equivalent to Eq. �11b�.
The 	 ray, on the other hand, internally reflects

from the vertical cylinder–coating interface at point
2� in Fig. 1 with the angle � with respect to the
vertical, is transmitted back into the coating at point
3�, and refracts out of the coating into the air at point
4�. When in the coating between points 3� and 4�,
the ray again makes an angle � with respect to the x,y
plane; and after refraction into the air, the exiting ray
makes the angle

�4� � n2� � ��cos �0 � �n2
2 � sin2 �0�

1�2�

�
2�

31�2 ��3n2
2 � n1

2 � 4�1�2 � �n1
2 � 1�1�2� (A10)

with the x,y plane, which is equivalent to Eq �11a�.
If the height of the incident ray above the contact

line at point 0 is z, the height Z	,
 where the far-zone
scattered 	 or 
 rainbow ray intersects the viewing
screen a distance R from the cylinder axis is

Z	,
 � z � d � �R � 	��	,
, (A11)

where �	 � �4�, �
 � �6, and d � 4	�. The d term is
ignored because � is assumed to be small. Last,
consider the case in which the family of incident rays
is not initially horizontally propagating. Rather,
the ray family is a diverging laser beam that has been
passed through a cylindrical lens of focal length f. In
this case, for a ray in the family initially making the
angle � with the x,y plane and arriving at point 0 at
the height z, the ray-tracing calculation through the
coated cylinder proceeds as before. In approxima-
tions �A9� and �A10� the exiting angles �6 and �4� are
each increased by �, and Eq. �A11� becomes

Z	,
 � z �
�R � a�� z � zc�

f
� �R � a��	,
 , (A12)

where zc is the height of the center of the diverging
beam. Equation �A12� is equivalent to Eq. �10�.
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