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Using refraction caustics to monitor evaporation of
liquid drop lenses

James A. Lock, Jearl D. Walker, and James H. Andrews

Irregularities in the perimeter of a water droplet adhering to a vertical pane of glass cause perturbations in the
curvature of the droplet surface. When laser light passes through such a droplet, the perturbations produce a
far field refraction caustic, which is a section of the caustic known as the parabolic umbilic in the catastrophe
theory classification. As the water evaporates and the droplet surface curvature changes, the section of the
parabolic umbilic caustic on the viewing screen also changes. We determine the evolution of curvature of the
droplet surface by observing the evolution of the far field caustic and the locations on the droplet responsible
for the various features of the caustic.

1. Introduction
Optical caustics have been defined in three equiva-

lent ways. When light is deflected (i.e., reflected or
refracted) from an interface, an optical caustic is the
locus of the points at which the intensity of the de-
flected rays becomes infinite.1 It is also the envelope
of the deflected rays2 and the locus of the principal
centers of curvature of the deflected wavefronts. 3

Since the shape of a caustic is related to the shape of
the deflecting surface which causes it, various proper-
ties of an irregularly shaped transparent object may be
determined by the analysis of the far field refraction
caustic that it produces... The purpose of this paper is
to determine the changes in the curvature of the sur-
face of a water droplet adhering to a vertical pane of
glass as it evaporates by analyzing its far field caustic.

There are two approaches to analysis of optical caus-
tics. The first approach employs the eikonal approxi-
mation for the deflected wavefield and expresses the
caustic in terms of the metric properties of the deflect-
ing surface. 3-7 This approach has been widely used in
the analysis of the aberrations of imaging systems.
The second approach classifies and describes certain
types of caustics using the mathematics of catastrophe
theory.8'9 This second approach is the paraxial ap-
proximation to the first approach and directly gives
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both the caustic and the diffraction structure which
surrounds it. Although the second approach gives
simple descriptions to only a subset of the caustics
analyzable using the first approach, the subset is suffi-
ciently large and the simplifications are sufficiently
great that the second approach has enjoyed substantial
success in describing many diverse natural phenome-
na. 1 0-1 5

Because the observed caustic in our experiment ap-
pears to be a progression between different sections of
the caustic known as the parabolic umbilic in the catas-
trophe classification scheme, the observations are
most easily and naturally described by the second ap-
proach, as we employ here. The relevant techniques
from catastrophe theory are reviewed briefly in Sec. II.
Our visual observations of the caustic are described in
Sec. III. The evolution of the caustic during the evap-
oration of the droplet is analyzed in Sec. IV. Lastly,
the curvature of the droplet surface is determined from
the evolution in Sec. V.

II. Optical Caustics and Catastrophe Theory
We consider plane waves of wavelength A propagat-

ing along the z-axis toward the z = 0 entrance plane
where there is a transparent refracting material with
refractive index n and thickness t(x,y). The light
refracted through the material is observed in the far
field at the point (x0,y0) on a viewing screen a distance
z0 from the entrance plane. The advance in the phase
of a wave propagating from (x,y) in the entrance plane
to (xo,yozo) on the viewing screen is

0(xyx"0,yZ = p(n- 1)t(xy) + - - X o Yo]AL 2z0 2z0 z0 Zo (1)

in the paraxial approximation.141 6 The optical caus-
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tic that appears on the viewing screen may be deter-
mined by the following procedure. The electric field
on the viewing screen is written as a diffraction integral
over the entrance plane coordinates as

E(xo,yo,zo) = f dxdy exp[io(xyx 0,y0,Z0)]- (2)

The source of the caustic is the curve in the entrance
plane given by the vanishing of the Hessian of X, i.e.,

H( x2o(dy ) (xy)

This curve in the entrance plane is then mapped into
the caustic observed on the viewing screen by the
transformation

f = , a = . 4
ax ay

This prescription is known as the "optical path ma-
trix"'7 or "singularity of the gradient map"' 8 prescrip-
tion and has been shown9"17"18 to be equivalent to the
standard definitions of the caustic given in Refs. 1-3.

If 0 is a polynomial of low degree in x and y, the
shapes of the resulting caustics and the wave interfer-
ence structure that surrounds them may be easily cal-
culated. In catastrophe theory, such caustics are
named and studied. The names and photographs of
several of them are given in Refs. 8, 9, and 19.

In an analysis of an evaporating water droplet, one
useful property of a caustic is the connection between
its shape and the shape of its H(0) = 0 source curve in
the entrance plane.20 If the source curve locally re-
sembles a line, a parabola, an ellipse, a hyperbola, an x
shape, or a cubic, the curve maps via Eq. (4) into
caustics that are known as the fold, cusp, elliptic umbi-
lic, hyperbolic umbilic, the singular section of a hyper-
bolic umbilic, and a swallowtail, 2 ' respectively.

In an analysis of experiments similar to the one
performed here, Nye found that the solution to the
differential equation describing the equilibrium shape
of water droplet spanning a vertical template hole is
identical to the shape of the refracting surface that
produces a portion of the caustic known as the parabol-
ic umbilic in the catastrophe theory classification."
Our experiment differs from that of Nye in that he
explored different sections of the parabolic umbilic by
varying the position of the viewing screen in the near
field while maintaining the shape of the droplet. In
our case, we allow evaporation to change the drop's
shape and keep the position of the viewing screen fixed
in the far field.

The phase function of Eqs. (1)-(4) for the parabolic
umbilic is

,(Xy) = y4 + _qX2y + Yx2 + by2 -. X - fy. (5)
4

The equation of the curve in the x-y plane of the water
droplet that is mapped into the parabolic umbilic on
the viewing screen is given from Eq. (3) by

('iy + y)(3fy 2 + 25) = 2712X2. (6)

Using Eq. (4), the 2-D section in a-: space of the
parabolic umbilic is given parametrically by

a = 2x(iny + y),

= 1x2 + y(ey 2 + 26),

(7)

(8)

where x and y are solutions to Eq. (6).
When the coordinates x and y are scaled in such a

way that the magnitudes of e and are unity, the shape
of the caustic depends on the parameters a, A, y, and 6.
In that case, the parabolic umbilic's structure lies in
the 4-D space of these parameters. Since a and are
proportional to the viewing screen coordinates x0 and
yo, the caustic's cross section in an a-: plane is the
same as on the screen. That fact allows the cross-
sectional shapes to be organized. For given values of y
and 6, the shape in a-f space is determined and associ-
ated with the values. The procedure is repeated for
other points in the y-6 plane. Such an organization,
with the constraint that e = 7 = 1 is shown in Fig. 7 of
Ref. 11 and in Fig. 5.24 of Ref. 22.

Ill. Observation of the Refraction Caustic of the
Evaporating Water Droplet

Some of the experimental observations described
here have already been reported elsewhere by one of
us.23 A portion of a commercially manufactured plas-
tic template was glued to a clean microscope slide.
The template was 0.76 mm thick, and the portion used
had circular holes 2.5, 3.0, and 3.5 mm in diameter.
Droplets of water were placed into a template hole with
a syringe until the water in the hole spanned it and
behaved like a small converging lens. The microscope
slide was then placed vertically in the expanded beam
of a 60-mW He-Ne laser with the curved side of the
droplet facing away from the laser. A caustic consist-
ing of a number of cusps joined by folds appeared on a
viewing screen in the far field 2 m away.

Each cusp sprung from an irregularity in the dro-
plet's perimeter that resulted from either minute
scratches in the template, grease or dust motes at the
junction of the water and the edge of the hole, or
imperfections in the shape of the hole. Similar caustic
patterns produced by raindrops on a window pane
have been described by Minnaert24 and have been
analyzed for both horizontally and vertical" glass sub-
strates by Nye.

The vertical microscope slide was rotated in its own
plane until the prominent cusp was located at the
bottom of the caustic pattern on the viewing screen.
As the water slowly evaporated, the caustic at the
bottom of the viewing screen came to dominate the
entire field of view and its shape evolved as shown in
Figs. 1(a)-(f).

The evolution was studied in four ways. First, the
caustic's shape was recorded and its major features
were identified with certain elementary caustics in the
catastrophe theory classification. Second, the posi-
tions on the viewing screen of the major features were
measured during the evolution. Third, the locations
on the water droplet responsible for those features
were determined. Fourth, the focal length of the wa-
ter droplet lens was measured at various times during
the evolution.
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Cd)

(e) Cf)
Fig. 1. Evolution of the caustic produced by an evaporating water droplet. Photographs (a)-(f) represent successively later times. After
photograph (f), the evolution of the caustic reversed, finally returning to a form resembling photograph (a). (The photographs were taken

with different droplets, with slightly different magnifications.)

As shown in Fig. 1, the prominent initial cusp at the
bottom of the pattern (a) shrank and retracted (b) to
form a fold caustic (c). At the retraction point a fea-
ture, which has been called a diffraction star because of
its three-pointed starlike shape,'0 appeared on the fold
caustic and rose above it. The diffraction star is not a
caustic; rather, it is the interference pattern that sur-

rounds the elliptic umbilic caustic when the elliptic
umbilic is too small to be readily visible.25 As the
evolution continued, the diffraction star transformed
into a three-cusped elliptic umbilic caustic [Fig. 1(d)].
The elliptic umbilic caustic then grew in size while its
upper two cusps dimmed and the lower cusp remained
bright and approached the fold caustic [Fig. 1(e)].
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Fig. 2. Location on the viewing screen of the initial cusp point (IC), the bottom of the fold caustic (F), and the diffraction star/elliptic umbilic
(DS/C) as a function of time. The points labeled a-f represent the stages of the evolution of the caustic shown in Figs. 1(a)-(f). Shortly after
the start of the reversal of the caustic, the cusp inside the fold temporarily disappeared and is thus not shown in the figure. Its return as a dim,
featureless patch of light is indicated by the dashed segment. The time at which the dim patch became a recognizable diffraction star

corresponds to the end of the dashed segment.

The cusp widened while the fold closed until they
merged [Fig. 1(f)]. The entire process then reversed,
until the entire caustic pattern once again consisted of
several cusps joined by folds as in Fig. 1(a). The full
evolution took about an hour. Although Figs. 1(a)-(f)
are photographs of the caustics produced by a number
of different water droplets and have slightly different
magnifications, the caustic evolution was identical for
every trial and for each of the three template holes
tested. During the reversed phase of the evolution,
the surface of the water droplet was outwardly con-
cave, a shape that cannot occur for a raindrop on a
window pane or for the geometry considered by Nye,"
but which was allowed by the 0.76-mm depth of the
template hole.

As the caustic evolved on the screen, the vertical
coordinates of the cusp points, the lowest position of
the fold caustic, and the center of the diffraction star
were measured (Fig. 2). Shortly after the reversal of
the caustic began, the cusp grew dim and then van-
ished for -5 min. It slowly reappeared as a very dim
diffraction star which thereafter increased in bright-
ness and evolved into the final cusp.

As the water droplet slowly evaporated during the
caustic evolution, portions of the laser beam were
masked between the laser and the water droplet to
determine where light rays passed through the droplet

surface to produce the different caustic features. The
locations of the rays are indicated in Figs. 3(a)-(f).
The location responsible for the initial cusp and the
diffraction star which grew from its retraction 're-
mained at the top of the droplet. The location respon-
sible for the fold that followed the retraction slowly fell
from the top to approximately the middle of the drop-
let. Then the location responsible for the elliptic um-
bilic and its lowermost cusp similarly but more rapidly
fell from the top to the middle. During the reversal of
the caustic, the location responsible for the diffraction
star quickly dropped from the middle to the bottom of
the droplet, but the location responsible for the fold
lingered near the middle before it finally slid to the
bottom. The location responsible for the final cusp
was at the bottom of the droplet.

The focal length of the water droplet as a whole was
measured by placing a card at various positions be-
tween the droplet and the screen. For Fig. 1(a), the
focal length was -1 cm. By Fig. 1(d) it was -3 cm, and
prior to Fig. 1(e) it was -5 cm. For Fig. 1(e), the focal
length remained at 5 cm but progressively less of the
light passing through the droplet was focused. Just
prior to Fig. 1(f) the focusing ceased. During the
reversal of the caustic, the droplet had evaporated to
such an extent that its surface was concave outward
and did not focus the laser light passing through it.

4602 APPLIED OPTICS / Vol. 29, No. 31 / 1 November 1990



where to is the thickness of the droplet above the
template surface at the center of the hole. The focal
length of the water droplet lens is

f= n-= (11)

In the thin lens approximation, t(xy) can be ex-
panded in a Taylor series and only the terms quadratic
in x and y need be retained. The thin lens approxima-
tion is valid for our experiment since at the beginning
of the caustic evolution when the curvature of the
droplet is the greatest, the focal length is -1 cm and a!
r, is <0.5. As the droplet evaporates, its surface flat-
tens and a/r, decreases further.

Since the caustics in Fig. 1 are indicative of the
parabolic umbilic caustic and since the symmetry axis
of the caustic in Fig. 1 is vertical, the perturbation in
the droplet surface that results from the perimeter
irregularity is taken to be of the form

P(xpyp) = (n _ I) P 2r y

(e) (f)
Fig. 3. Approximate location of the light rays passing through the
water droplet which produce the initial cusp point (triangle), the
bottom of the fold (circle), and the diffraction star/elliptic umbilic
(star) of the caustic in Fig. 1. The droplet cross sections labeled (a)-
(f) correspond to the stages of the evolution of the caustic shown in

Figs. 1(a)-(f).

IV. Analysis of the Refraction Caustic of the Evaporating
Water Droplet

The evolution of the caustic as shown in Figs. 1(a)-
(f) is typical of a progression through various sections
taken through the parabolic umbilic caustic, as orga-
nized in Fig. 7 of Ref. 11 and in Fig. 5.24 of Ref. 22 for e
> 0 and q > 0. As mentioned in Sec. III, the observed
caustic is produced by a perturbation in the shape of
the surface of the water droplet. We model the drop-
let surface shape in the following way. The entrance
plane (x,y) coordinate system is in the plane of the
template with its origin at the center of the template
hole. The y-axis is vertical and the x-axis is horizon-
tal. The center of the surface perturbation is on the y-
axis at a distance K above the center of the hole. We
employ (xp,yp) as the coordinates of a point on the
surface measured with respect to the center of surface
perturbation. The two sets of entrance plane coordi-
nates are related by

xxp, y=yp+K. (9)

We assume that the shape of the droplet as a whole is
a portion of a sphere whose radius of curvature is r.
The thickness of the water droplet lens is then

t,(x,y) = to + (rc - _ y2)/
2

- r, (10)

(12)

where e and i7 are constants with the units m-3 and m-2,
respectively, and where the rx and ry terms describe an
astigmatic perturbation to the underlying spherical
cap of Eq. (10) in the immediate neighborhood of the
surface irregularity. Equation (12) and the Taylor
series expansion of Eq. (10) may be combined to give
the total thickness function of the droplet. With this
inserted into Eq. (1), the phase function 0 written in
terms of xp and yp assumes the form of Eq. (5) for the
parabolic umbilic caustic with the identifications

xO

zo

Yo +K K
z fz z .

1 l _ 1 (n- 1)
2 Lzo fc r, J

(13)

(14)

(15)

(16)

The parameters y and have the units m-1 . The
parameters a and f are dimensionless and'are propor-
tional to the x and yo coordinates on the viewing
screen. Thus the appearance of the caustic in a-f
space is the same as its appearance on the screen, as
stated in the preceding section.

The goal of this section is to determine the path of
the caustic evolution of Fig. 1 in the y-6 plane. The
first step is to obtain the signs of K, e, and q since these
signs determine the orientation of the caustic in a-f
space and the organization of the sections of the caus-
tic at various points in the y-6 plane. At the beginning
of the caustic evolution, the cusp at the bottom of the
viewing screen in Fig. 1(a) is produced by light rays
passing through the very top of the droplet as shown in
Fig. 3(a). Thus the perimeter irregularity that pro-
duces the first half of the evolution is located at the top
of the droplet and K is initially positive. Since the
dominant cusp in Fig. 1(a) points vertically downward,

1 November 1990 / Vol. 29, No. 31 / APPLIED OPTICS 4603
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Fig. 4. (a) Finger perimeter irregularity and (b) an indentation perimeter irregularity both shown greatly exaggerated. The double lines R
represent surface ridges and the dashed lines r represent surface ravines. The surface perturbation ey4/4 + nX2 with e < 0 and in > 0 is shown

in (c) as a function of xp and yp. The double lines M are relative maxima and the dashed lines m are relative minima.

the graph of Eqs. (7) and (8) shows that the possible
signs of the parameters e and w in Eq. (5) are either e <
0, > or > 0, > . For the other two choices of
signs e < 0, t < 0 and e > 0, X < 0, the graphs of Eqs. (7)
and (8) have the cusp pointing upward instead.

After the dominant intitial cusp retracted to form
the fold and diffraction star in Fig. 1(c), the location on
the droplet responsible for the diffraction star in Fig.
3(c) was higher than the location responsible for the
fold which is consistent with one choice of signs: e < 0,
q > 0. For this case, the portion of the H(O) = 0 curve
on the droplet producing the diffraction star also oc-
curs at a larger y value than does the portion producing
the fold. For the other choice of sign, e > 0 and q > 0,
the fold-producing portion of the H(k) = 0 curve of Eq.
(6) occurs higher on the droplet instead.

Physically, the choice of signs for E and X reveals that
the irregularity in the droplet perimeter of the droplet
which causes the surface shape perturbation is a small
indentation rather than a small finger of water extend-
ing outward. A finger irregularity at the top of the
droplet produces a small ridge on the droplet surface
along the y-axis, flanked on each side by a small ravine.
In contrast, an indentation irregularity at the top of
the droplet produces a central ravine that is flanked on
each side by a ridge. These two possibilities are shown
greatly exaggerated in Figs. 4(a) and (b). The surface
perturbation thickness function ey4/4 + 77xyp is
shown in Fig. 4(c) for e < 0, in > 0. A comparison
between Figs. 4(b) and (c) indicates that the control-
ling irregularity for the first stage of the caustic evolu-
tion is an indentation in the droplet perimeter at the
top of the droplet.

The second step in determining the path of the
evolution of the caustic in the y-6 plane is to organize of
the sections of the caustic. For our situation with e <
0, X7 > 0 the point in the -y-6 plane that corresponds to a
given caustic section is rotated by 1800 from its posi-
tion if e > 0, n > O as is the case in Fig. 7 of Ref. 11 and in
Fig. 5.24 of Ref. 22.

6

e

C

b

a

f

Y

Fig. 5. Path of the first half of the evolution in the y- plane of the
caustic produced by the evaporating water droplet. Points a-f
correspond to the stages of the evolution of the caustic shown in Figs.

1(a)-(f).

All the data in Figs. 1-3 support the assertion that
the path in the y-6 plane for the first half of the caustic
evolution is given by Fig. 5, where the points labeled a-
f correspond to the caustics of Figs. 1(a)-(f). Along
the initial portion of the path, -y is a negative constant
while 6 increases from negative to positive. Then after
the path changes direction, the value of remains
constant while y increases from negative to positive.

To ensure that the caustics in Fig. 1 are consistent
with this path, in Figs. 6(a)-(f) we graphed the H(O) =
0 curves of Eq. (6) corresponding to the points labeled
a-f in Fig. 5. In Figs. 7(a)-(f) we then graphed the
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Fig. 6. The H(4) = 0 curves in the xp-yp plane on the droplet
surface for the parabolic umbilic phase function of Eq. (5). The
graphs labeled (a)-(f) correspond to the stages of the evolution of the
caustic shown in Figs. 1(a)-(f). The points labeled 1-3 are the

solutions of Eq. (6) for x = 0.

Fig. 7. Sections through the parabolic umbilic caustic in a-: space.
The graphs labeled (a)-(f) are identical to the observed caustic in
Figs. 1(a)-(f). The points labeled 1-3 are the images of the analo-

gous points in Fig. 6.

caustics derived from the curves via Eqs. (7) and (8).
The caustic shapes in Fig. 7 are identical to the appear-
ance of the actual caustics in Fig. 1, except that some-
times an actual caustic is masked by its surrounding
interference pattern.

The locations of the fold, cusp points, and diffrac-
tion star on the screen given in Fig. 2 also support our
choice of the path in the y-6 plane shown in Fig. 5. In
the far field where zo >> K, the vertical coordinate of a
given caustic feature on the screen is obtained via Eq.
-(14) and is approximately given by

Yo - Z: (17)

If K remains nearly constant as the water evaporates
and as the focal length f increases, Eq. (17) reveals
that an initially negative coordinate y rises on the
screen due to the change in focal length. Before the
initial cusp retracts, Figs. 7(a) and (b) show that it is

also rising in a-: space. Thus, since these changes are
in the same direction, the initial cusp rises quickly on
the screen (Fig. 2). After the retraction and as the
focal length continues to increase, the coordinate yo
continues to rise according to Eq. (17). As shown in
Figs. 7(c) and (d), in a-fl space the diffraction star/
elliptic umbilic also rises. Again, with the two types of
change in the same direction, the caustic moves rapidly
upward on the s6reen. In contrast, the fold drops in a-
# space, and so it moves upward more slowly on the
screen. For Figs. 7(e) and (f) when y is variable and 6
is fixed, the surface of the water droplet is nearly flat
and the focal length is very large. As a result, the
vertical coordinate of a caustic feature on the viewing
screen is

Yo f ozo (18)

Using Eqs. (6) and (8) with x = 0 and substituting for #,
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the vertical coordinate of the fold on the viewing screen
is

4 / 26 1/2
3 1, I (19)

which is constant as is observed in Fig.. 2 assuming e
remains constant as well.

The vertical coordinate of the interior cusp point on
the viewing screen is

Yo - ' lel 2 + 26) O. (20)

This is an increasing function of 6 until the path of the
caustic evolution in the y-6 plane changes direction at
point d in Fig. 5. Then the coordinate becomes a
decreasing function of y for constant and t7 and has a
relative minimum when the cusp and the fold merge at

= ( 2n26 )1/2

- - -_ 

f
(21)

(point f in Fig. 2).
The data in Fig. 3 also support the choice of the path

for the caustic evolution shown in Fig. 5. The connec-
tion between the shape of the caustic and the shape of
its H(,O) = 0 curve produces the following identifica-
tions. The approximate parabolic shape of the H(O) =
0 curve near point 1 in Fig. 6(a) corresponds to the cusp
at point 1 in Fig. 7(a). The ellipse containing points 1
and 3 in Figs. 6(b)-(e) corresponds to the elliptic umbi-
lic in Figs. 7(b)-(e). The region about point 2 and the
bottom of the ellipse in Figs. 6(b)-(e), taken together,
resemble a hyperbola and correspond to the presence
of both a cusp and fold in Figs. 7(b)-(e), characteristic
of the hyperbolic umbilic. Finally, the x-shape at
points 1 and 2 in Fig. 6(f) corresponds to the singular
section of the hyperbolic umbilic at points 1 and 2 in
Fig. 7(f). The migration of the locations on the H(,) =
0 curve in Fig. 6 that correspond to the initial cusp, the
fold, and the diffraction star/elliptic umbilic is identi-
cal to the migration of the locations on the droplet that
are summarized in Fig. 3.

After Fig. 1(f), the caustic on the screen reversed its
progression until it again resembled Fig. 1(a). At Fig.
1(f) or shortly after, control of the caustic was ex-
changed from the indentation perimeter irregularity at
the top of the droplet to another perimeter irregularity
at the bottom of the droplet. Thus K quickly de-
creased from positive to negative at about the same
time that the general droplet outward curvature
changed from convex to concave. From the exchange
point onward in the evolution, with K and f, being both
negative, the dominant caustic features located ac-
cording to Eq. (17) still occurred at the bottom of the
screen. An analysis identical to that employed for the
first half of the evolution shows that after the exchange
of control and during the caustic reversal (i) the signs
of e and are both positive; (ii) the dominant perimeter
irregularity at the bottom of the droplet is a finger of
water that extends downward; (iii) the organization of
the caustic in the y-6 plane is the case treated in Refs.
11 and 22; and (iv) the path of the last half of the

a

Y

b

C

_/-

e

Fig. 8. Path of the second half of the evolution in the y-6 plane of
the caustic produced by the evaporating water droplet. The dashed
portion of the path can only be inferred since it corresponds to the
time interval during which the cusp caustic temporarily disappeared

as indicated in Fig. 2.

evolution of the caustic in this new y-6 plane is given in
Fig. 8. The portion of the path corresponding to the
temporary vanishing of the interior cusp is indicated
by the dashed segment.

V. Changes in the Surface Curvature of an Evaporating
Water Droplet

In this section we relate the caustic parameters -y
and 6 of Eqs. (15) and (16) to the perturbation in the
shape of the droplet surface that is produced by the
controlling perimeter irregularity. Since the caustics
are in the far field with z0 2m and with f, initially
being about a centimeter, the 1izo terms in Eqs. (15)
and (16) can be neglected. Such neglect is not justified
for the portion of the evolution near Fig. 1(f) where (i)
the focal length became comparable to z0, (ii) the con-
trol of the caustic changed from an upper perimeter
irregularity to one at the bottom, and (iii) when the
evolutionary path switched from Fig. 5 to Fig. 8. Near
the center of the perturbation the droplet curvature in
the horizontal x-z plane is the sum of the f and r.
contributions. In the vertical y-z plane it is the sum of
the f, and ry contributions. Thus from Eqs. (15) and
(16) sign changes of oy and 6 correspond to sign changes
in the curvature of the droplet.

The caustic path in Fig. 5 suggests that, as the drop-
let evaporates, the surface curvature near the top of
the droplet does not change isotropically. Initially y
and 6 are both negative and thus the top of the droplet
is convex outward in both the x-z and y-z planes.
When evaporation first begins, while is constant and
6 is varying, the curvature in the horizontal x-z plane
remains convex outward and the curvature in the verti-
cal y-z plane changes from convex outward, to flat, to
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concave outward. Then, while 6 is constant and is
varying, the curvature in the y-z plane remains con-
cave outward and the curvature in the x-z plane
changes from convex outward, to flat, to concave out-
ward. This progression of surface shape of the upper
half of the droplet is from a relative maximum (y < 0, 6
< 0), to a saddle point (y < 0, > 0), to a relative
minimum (y > 0, 6 > 0). During the first part of the
evolution, the slight gravitational sagging of the drop-
let keeps the curvature of the lower portion of the
droplet convex outward in both the x-z and y-z planes.

With the top and bottom of the droplet having oppo-
site curvatures at this stage of the evolution, the drop-
let as a whole is nearly flat on the average, and it ceases
to focus light effectively. This is the time at which the
control of the caustic transfers from the perimeter
irregularity at the top of the droplet to one at the
bottom. Upon further evaporation, more of the sur-
face of the droplet sinks into the template hole. With
the top of the droplet already being concave outward,
the variations of y and 6 in Fig. 8 suggest that near the
bottom of the droplet the curvature in the vertical y-z
plane remains convex outward while the curvature in
the horizontal x-z plane changes from convex outward,
to flat, to concave outward. This change on the lower
portion of the droplet may, in fact, have begun while
the curvature of the x-z plane was changing on the top
half of the droplet. Lastly, the curvature in the y-z
plane near the bottom of the droplet changes from
convex outward, to flat, to concave outward. The
entire droplet is finally concave outward at the end of
the evaporation sequence.

IV. Summary
Evaporation of liquid drop lenses provides a good

test case in which caustics may be employed to provide
surface shape information. Since a number of differ-
ent surfaces can produce similar-looking caustics,
measurements of other quantities, such as the loca-
tions of the caustic features on the viewing screen and
the locations on the surface responsible for the caustic
features, provide valuable information for unambigu-
ously determining the surface shape.
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