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Supernumerary spacing of rainbows produced by an
elliptical-cross-section cylinder. II. Experiment

Charles L. Adler, David Phipps, Kirk W. Saunders, Justin K. Nash, and James A. Lock

We measured the supernumerary spacing parameter of the first- and second-order rainbows of two glass
rods, each having an approximately elliptical cross section, as a function of the rod’s rotation angle. We
attribute large fluctuations in the supernumerary spacing parameter to small local inhomogeneities in
the rod’s refractive index. The low-pass filtered first-order rainbow experimental data agree with the
prediction of ray-tracing–wave-front modeling to within a few percent, and the second-order rainbow data
exhibit additional effects that are due to rod nonellipticity. © 2001 Optical Society of America

OCIS codes: 290.0290, 290.3030, 290.5820, 080.1510.

1. Introduction

When a beam of light is scattered by a homogeneous
cylinder whose cross section is circular or nearly so, a
series of rainbows occur in the scattered intensity,
each corresponding to a different number of internal
reflections of the light before exiting the cylinder.
Each rainbow is flanked on one side by a supernu-
merary interference pattern, caused by the alternat-
ing constructive and destructive interference of rays
incident on the cylinder to either side of the rainbow
ray. When the incident beam is normal to the axis of
a cylinder having a circular cross section, each rain-
bow remains unchanged as the cylinder is rotated
about its axis. But if the cylinder’s cross section is
elliptical, the rainbow angle, the intensity of the rain-
bow, and the spacing of the supernumerary maxima
oscillate about their respective circular cross-
sectional values as the cylinder is rotated about its
axis. For a slightly elliptical cylinder, the oscillation
of the first-order rainbow angle was calculated in
1909 by Möbius1,2 who truncated the equations for
ray propagation inside the cylinder at first order in
the cylinder ellipticity. More recently, the Möbius
calculation was extended to the second-order rainbow

angle,3 and the effect that the elliptiticy of falling
raindrops has on the supernumeraries of the first-
order rainbow in rain showers4,5 and the observed
absence of supernumeraries of the second-order rain-
bow3 were investigated.

In Ref. 6 we theoretically examined the dependence
of the supernumerary spacing parameter h of the
first-order rainbow of an elliptical cross-sectional cyl-
inder on the cylinder’s rotation angle j. We numer-
ically traced a collection of closely spaced rays in the
vicinity of the rainbow ray through the cylinder and
computed the optical path length of the rays with
respect to that of the rainbow ray. We fitted the
phase front of the rays exiting the cylinder to a
fourth-degree polynomial and identified the coeffi-
cient of the cubic term with the supernumerary spac-
ing parameter.7 Based on our numerical results, we
obtained an approximate expression for h~j! for the
first-order rainbow.

In this paper we compare the ray-tracing–wave-
front modeling prediction with the experimentally
measured supernumerary spacing parameter of the
first- and second-order rainbows for two near-optical
quality glass rods, each of which has a nearly ellip-
tical cross section. The principal result of Ref. 6 was
that h is a remarkably delicate feature of the rainbow
caustic, and its accurate determination requires that
the relative position of a number of supernumerary
maxima be measured with great accuracy. Simi-
larly, our principal result here is that, although small
local inhomogeneities in the rod’s refractive index
affect the rainbow angle only negligibly, the super-
numerary spacing parameter appears to be surpris-
ingly sensitive to them. We can compensate for this
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sensitivity by measuring h~j! at small intervals of Dj
and low-pass filtering the result.

This paper is organized as follows. In Section 2
we briefly review the dependence of the first-order
rainbow angle u2

R and supernumerary spacing pa-
rameter h2 of an elliptical cross-sectional cylinder on
the angle j that the incident plane-wave’s propaga-
tion direction makes with the major axis of the cross
section. We then determine both the effect that the
j dependence of h2 has on the measurement of the
rainbow angle and the effect that the precision of the
measurement of the angular position of the supernu-
merary maxima has on h2. In Section 3.A we deter-
mine h2~j! for the rainbow data of one of the cylinders
examined by Möbius, and in Sections 3.B and 3.C we
determine h2~j! for two larger glass rods examined in
our laboratory. Based on the close agreement be-
tween the low-pass filtered experimental data and
the ray-tracing–wave-front modeling predictions, in
Section 3.D we determine h3~j! for the second-order
rainbow for the two glass rods and compare the re-
sults with the theoretical prediction. Finally, in
Section 4 we discuss the relevance of these results to
the nonintrusive flow diagnostic technique of rainbow
refractometry.

2. Measurement of the Supernumerary Spacing
Parameter

Consider an electromagnetic plane wave of wave-
length l normally incident on a homogeneous circular
cylinder of refractive index n, radius a, and size pa-
rameter

x 5 2payl. (1)

When x is of the order of a few thousand or more, the
scattered intensity in the vicinity of the p rainbow is
approximated quantitatively by Airy theory7–9:

I~u! } Ai2@2x2y3~u 2 up
c!y~hp

c!1y3#, (2)

where p 5 2 denotes the first-order rainbow, p 5 3
denotes the second-order rainbow, etc., and Ai is the
Airy integral.10 The Descartes angle of the p rain-
bow up

c of a circular cross-sectional cylinder ~denoted
by the superscript c! in ray theory is11

cos~fi
c! 5 @~n2 2 1!y~ p2 2 1!#1y2,

sin ~ft
c! 5 ~1yn!sin~fi

c!,

up
c 5 ~ p 2 1!p 1 2fi

c 2 2pft
c, (3)

where fi
c and ft

c are the angle of incidence and re-
fraction of the Descartes rainbow ray at the cylinder
surface. The supernumerary spacing parameter hp

c

is8

hp
c 5 @~ p2 2 1!2~ p2 2 n2!1y2#y@ p2~n2 2 1!3y2#. (4)

The region of quantitative validity of Airy theory for
the p 5 2 rainbow extends8,9 approximately 2° to

either side of u2
c. For n ' 1.5, this corresponds ap-

proximately to

N < 0.02x2y3 (5)

supernumerary fringes.
Because the rainbow is a structurally stable caus-

tic, its basic morphology does not change under small
perturbations of the cylinder shape.12 Thus for an
elliptical cross-sectional cylinder with semimajor and
semiminor axes b and a and eccentricity

e 5 ~bya! 2 1, (6)

the various features of the rainbow become functions
of the cylinder’s rotation angle j. The scattered in-
tensity in the vicinity of the p rainbow is approxi-
mately6

I~u, j! } Ai2$2xave
2y3@u 2 up

R~j!#yhp~j!1y3%, (7)

where xave is the average cylinder size parameter. If
the cylinder size parameter is in the geometrical-
optics regime and e is less than a few percent, the p 5
2 rainbow angle is approximated accurately by the
ray theory result of Möbius1,2:

u2
R~j! 5 u2

c 2 Du2
R cos~2j 1 u2

c! 1 O~e2!, (8)

where

Du2
R 5 8e sin~ft

c!cos3~ft
c! (9)

is the amplitude of oscillation of the rainbow angle.
Similarly, in Ref. 6 we found that the supernumerary
spacing parameter of the p 5 2 rainbow is approxi-
mated accurately in the geometrical-optics regime for
small e and 1.25 # n # 1.7 by

h2~j! < h2
c 1 Dh2 cos~2j 1 F2!, (10)

where

Dh2 < 19e@sin~ft
c!#3y4@cos~ft

c!#210y3 (11)

is the amplitude of oscillation of the supernumerary
spacing parameter and

F2 < ~250°!n 2 285° (12)

is the phase of the oscillation.
Experimentally, we can obtain the p 5 2 rainbow

angle as a function of j for an elliptical cross-sectional
cylinder by measuring the angle of the first supernu-
merary maximum ua

max~j! in degrees and by using
the Airy theory result of relation ~7!,

1.018 793 5 ~py180! xave
2y3@ua

max~j!

2 u2
R~j!#y@h2~j!#1y3, (13)

to obtain

u2
R~j! 5 ua

max~j! 2 1.018 793 ~180yp!

3 @h2~j!#1y3y~ xave!
2y3, (14)
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where Ai~21.018 793! is the first relative maximum
of the Airy integral.10 In practice, the j dependence
of h2 is ignored,13 and u2

R~j! is obtained by

u2
R~j! < ua

max~j! 2 1.018 793 ~180yp!

3 ~h2
c!1y3y~ xave!

2y3. (15)

The replacement of h2~j! for an elliptical cross-
sectional cylinder by h2

c for a circular cross-
sectional cylinder in approximation ~15! is of no
practical consequence in the measurement of the
rainbow angle in the geometrical-optics regime,
e.g., x * 104, when the eccentricity e is small as is
illustrated by the following three examples. First,
in Refs. 1 and 2, Möbius reported the measurement
of the position of a number of the supernumerary
maxima of the p 5 2 rainbow as a function of j for
three glass rods and three glass spheres illumi-
nated by a sodium lamp of l 5 0.5894 mm. His rod
C2 had a 5 1.0 mm, n 5 1.511, and size parameter
x ' 10,600. With e ' 0.00155, it had the largest
eccentricity of any of the six samples. Thus, ac-
cording to approximation ~11!, it should have had
the largest and most easily observable oscillation of
h2~j!. The p 5 2 supernumerary spacing parame-
ter of Eq. ~4! for a circular cross-sectional cylinder
with n 5 1.511 is h2

c 5 2.028; and for an elliptical
cross section with e ' 0.00155, the amplitudes of
the oscillation of u2

R~j! and h2~j! in Eq. ~9! and
approximation ~11! are Du2

R ' 0.231° and Dh2 '
0.028. Substitution of the range of h values
2.000 # h2 # 2.056 into Eq. ~14! causes an uncer-
tainty in Du2

R of only 0.31%. Second, in our pre-
vious experiments13–16 on the p 5 2 and p 5 3
rainbows of a glass rod with a 5 8.05 mm, n 5
1.474, and x ' 80,000 illuminated by l 5 0.6328-mm
He–Ne laser light, the rod’s cross section was found
to be nearly elliptical with e ' 20.037. Equation
~4! for a circular cross-sectional cylinder with n 5
1.474 yields h2

c 5 2.395; and for an elliptical cross
section with e ' 20.037, the amplitudes of the os-
cillation of u2

R~j! and h2 ~j! are Du2
R ' 5.48° and

Dh2 ' 0.755. The j dependence of h2 causes an
uncertainty in Du2

R of only 0.08%. Third, in Sec-
tion 3 we also report measurements made in our
laboratory on the p 5 2 and p 5 3 rainbows of
another glass rod with a 5 2.44 mm, n 5 1.502, and
x ' 24,000 illuminated by l 5 0.6328-mm He–Ne
laser light. The rod’s cross section is nearly ellip-
tical with e ' 0.0054. Equation ~4! for a circular
cross-sectional cylinder with n 5 1.502 yields h2

c 5
2.111; and for e ' 0.0054, the amplitude of the
oscillation of u2

R~j! and h2~j! is Du2
R ' 0.80° and

Dh2 ' 0.101. The j dependence of h2 causes an
uncertainty in Du2

R of only 0.18%.
Experimentally, both the p 5 2 rainbow angle and

the supernumerary spacing parameter can be ob-
tained as a function of j when we measure the angle
of the first and second supernumerary maxima

ua
max~j! and ub

max~j! in degrees and use the Airy the-
ory result of relation ~7!,

1.018 793 5 ~py180!~ xave!
2y3@ua

max~j!

2 u2
R~j!#y@h2~j!#1y3,

3.248 198 5 ~py180!~ xave!
2y3@ub

max~j!

2 u2
R~j!#y@h2~j!#1y3, (16)

to obtain

u2
R~j! 5 ~1.456 980!ua

max~j! 2 ~0.456 980!ub
max~j!,

(17)

h2~j! 5 ~0.479 806!~1026!~ xave!
2@ub

max~j! 2 ua
max~j!#3,

(18)

where Ai~23.248 198! is the first relative minimum of
the Airy integral.10 If duab is the uncertainty in the
measured angle of each of the two supernumerary
maxima in degrees, the resulting uncertainty in
u2

R~j! and h2~j! is obtained when we differentiate
Eqs. ~17! and ~18!, yielding

~du2
R!measured < duab, (19)

~dh2!measured < ~0.02349!duab~ xaveh2
c!2y3. (20)

In the complex angular momentum approximation
to Mie theory, a number of corrections to Airy theory
are derived for a spherical particle or a circular cross-
sectional cylinder.17 These include a progressive
stretching of the supernumerary interference pattern
with respect to the predictions of Airy theory, which
introduces small corrections to Eqs. ~16!. These cor-
rections were addressed in Ref. 6 and were found to
improve the agreement between Mie theory and the
complex angular momentum-corrected version of
Eqs. ~16! for rainbows produced by a circular cross-
sectional cylinder. The complex angular momen-
tum circular cross-sectional corrections applied to the
first few supernumerary maxima for an elliptical
cross-sectional cylinder, however, did not improve the
agreement and thus are not pursued further here.

We now demonstrate, using the three examples
considered in the previous paragraph, that the p 5 2
rainbow angle is not especially sensitive to the pre-
cision of the measurement of the two supernumerary
maxima. But an accurate determination of h2~j! re-
quires that the two supernumerary maxima be mea-
sured with great precision. For the Möbius
measurements of the rod C2, the supernumerary an-
gle accuracy was duab 5 2.78 3 1024 deg, yielding
~du2

R!measured 5 1.2 3 1023 ~Du2
R!. Thus the oscil-

lation in the rainbow angle should be resolvable to
approximately 0.1%. Rather than using the first
and second supernumerary maxima, Möbius mea-
sured the relative position of the second and tenth
intensity maxima. When the quantitative validity
of Airy theory is assumed out to the tenth supernu-
merary for a rod of this size @see approximation ~5!#,
approximation ~20! yields ~dh2!measured 5 0.04~Dh2!.
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Again, the oscillation in the supernumerary spacing
parameter should be resolvable to approximately 4%.
In a comparison of the ratio ~dh2!measuredy~Dh2! with
~du2

R!measuredy~Du2
R!, the measured uncertainty in h2

is approximately 36 times greater than the measured
uncertainty in u2

R. Similarly, in the experiment de-
scribed in Subsection 3.B for the 8.05-mm-radius
glass rod, we measured the position of the first and
second supernumerary maxima of the p 5 2 rainbow
using a CCD camera with pixels of width 9.61 6 0.32
mm located r 5 341 mm from the rod’s axis. The
supernumerary maxima are determined with an ac-
curacy of 61.5 pixels, or duab 5 2.4 3 1023 deg, which
yields ~duab!measured 5 4.4 3 1024 ~Du2

R! and
~dh2!measured 5 0.25 ~Dh2!. Again, when we compare
the ratios, the uncertainty in the measured value of
h2 is approximately 570 times greater than the mea-
sured uncertainty in u2

R. The measurement uncer-
tainty in h2~j! should be substantial in this case, but
the oscillation of amplitude Dh2 should certainly be
observable. Finally, for the experiment described in
Subsection 3.C on the 2.44-mm-radius glass rod, the
CCD array was r 5 132 mm from the rod’s axis
yielding duab 5 6.3 3 1023 deg, ~duab!measured 5 7.8 3
1023~Du2

R!, and ~dh2!measured 5 2.01~Dh2!. The un-
certainty in the measured value of h2 is approxi-
mately 260 times greater than the measured
uncertainty in u2

R.
Because the measurement uncertainty in h2 for the

second glass rod is twice the amplitude of oscillation
of h2~j!, we would not expect the oscillation to be
resolvable unless some type of averaging procedure
were used. For example, if the first and third, or the
first and fourth, supernumerary maxima were mea-
sured with a precision of 6duab deg and Airy theory
was presumed to be quantitatively accurate to the
fourth supernumerary for the size parameter of the
second rod @see approximation ~5!#, the resulting un-
certainty in h2 falls to ~dh2!measured 5 1.17~Dh2! and
~dh2!measured 5 0.88~Dh2!, respectively. By measur-
ing the positions of the supernumerary maxima using
a small Dj interval, averaging the results obtained
from a number of pairs of supernumeraries, and then
low-pass filtering the average as a function of j, we
would sufficiently decrease the uncertainty noise so
as to resolve the oscillation in h2~j! experimentally for
this case.

3. Experimental Determination of h2~j!

A. Möbius Sample C2

For the glass rod C2, Möbius measured the position of
the second and tenth supernumerary maxima of the
p 5 2 rainbow at intervals of Dj 5 22.5°. His results
are given in Table 12 of Ref. 1 and Table 10 of Ref. 2.
Analyzing these data with Eqs. ~17! and ~18! modified
to the second and tenth supernumerary maxima, cor-
responding to Ai~23.248 198! and Ai~212.384 788!,
we determined u2

R~j! and h2~j!, which are shown as
the solid circles in Figs. 1~a! and 1~b!, respectively.
The experimental data yield Du2

R ' 0.231° and
~h2!ave ' 2.0274 averaged over the 17 values of j.

Möbius measured the eccentricity of rod C2 to be e 5
0.001 using a micrometer to test the validity of Eqs.
~8! and ~9!. We previously found,13 however, that
assuming the correctness of Eqs. ~8! and ~9! and fit-
ting the observed oscillation of u2

R~j! to the equations
yields a much more accurate estimate of the eccen-
tricity. The dashed curve in Fig. 1~a!, corresponding
to an eccentricity of e 5 0.00155 obtained from Eqs.
~8! and ~9!, matches the p 5 2 rainbow position data
quite nicely.

We analyzed the experimental results for the su-
pernumerary spacing parameter of Fig. 1~b! as fol-
lows. First we computed h2~j! for n 5 1.511 and e 5
0.00155 using the ray-tracing–wave-front modeling
procedure of Ref. 6. The results are shown as the
dashed curve in Fig. 1~b!. We then performed the
Fourier-series decomposition of the ray-tracing–
wave-front modeling result,

h2~j! 5 e0 1 (
m51

`

em cos~mj! 1 (
m51

`

fm sin~mj!, (21)

Fig. 1. ~a! Deviation of the p 5 2 rainbow angle from its average
value and ~b! supernumerary spacing parameter of a 1.0-mm-
radius glass rod with refractive index n 5 1.511 and eccentricity
e 5 0.00155 as a function of the rod’s rotation angle. The solid
circles are the experimental data of Ref. 1, and the dashed curves
are the predictions of the ray-tracing–wave-front modeling proce-
dure of Ref. 6.
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and compared the average of the experimental re-
sults with the m 5 0 theoretical Fourier coefficient.
The theoretical m 5 0 Fourier coefficient was 2.0243,
which differs from the experimental ~h2!ave by only
0.15%.

The j dependence of the experimental data for h2~j!
in Fig. 1~b!, however, only vaguely resembles the ray-
tracing–wave-front modeling prediction. The data
possess a surprisingly high noise level. The root-
mean-square deviation of the experimental data of
Fig. 1~b! from ~h2!ave is 182% of the value of Dh2~j!
predicted from approximation ~11!. This is surpris-
ing because our estimate of the measurement uncer-
tainty in Section 2 was approximately only 4% of
Dh2~j!. We also compared the experimental results
for Möbius’s other spheres and cylinders to the ray-
tracing–wave-front modeling predictions and found
the comparison to be considerably poorer than for the
sample C2 rod. This is because the eccentricity, and
thus the expected oscillation in h2~j!, is much smaller
for the other samples.

We conjecture that the large noise level in the ex-
perimental data of Möbius is due to perturbations in
the shape of the wave front exiting the rod caused by
small localized inhomogeneities in the rod’s refrac-
tive index or small imperfections in the rod. We call
this effect inhomogeneity noise and discuss it more in
Subsection 3.B. The interval of the rod rotation an-
gle used by Möbius, Dj 5 22.5°, is too coarse to per-
form low-pass filtering on the data to determine
whether the expected oscillation in h2 is present be-
neath the inhomogeneity noise.

B. p 5 2 Supernumeraries of the 8.05-mm-Radius Glass
Rod

We also encountered an unexpectedly high amount of
inhomogeneity noise in our experimental determina-
tion of h2~j!. As a result, in this subsection we give
a detailed description of the tests we made on our
apparatus to ensure that the noise was not an artifact
of the measurement procedure. First, the rationale
for our choice of glass rods is as follows. Before the
measurements of the p 5 2 and p 5 3 rainbows
reported in Ref. 13 were made, we tested a number of
different glass and plastic rods of different radii and
eccentricities, looking for a suitable sample. Almost
all the potential samples were discarded immediately
because the p 5 2 and p 5 3 rainbows and their
supernumeraries appeared as a series of wavy par-
allel lines, rather than as a series of straight parallel
lines. This was due to the rods possessing visible
striae or small bubbles or imperfections that dis-
torted the shape of the wave front exiting the rod.
Our criterion for a suitable sample was that the p 5
2 and p 5 3 rainbows and their supernumeraries
must visually appear as parallel straight lines on the
viewing screen. We believed that this criterion was
sufficient to ensure that any striae or imperfections
in the rod were acceptably small. The 8.05-mm-
radius rod chosen for the experiments of Ref. 13, as
well as for the experiments reported here, was de-
scribed by the vendor18 as a near-optical quality art-

ist’s glass. Visual inspection showed no striae or
bubbles, and the p 5 2 and p 5 3 rainbows and their
supernumeraries seen on a distant viewing screen
were a series of straight parallel lines. Slight im-
perfections in the glass were detected only when a
10-mW He–Ne laser, expanded to a diameter of ap-
proximately 1 cm, illuminated the center of the rod.
In this case the beam transmitted directly through
the rod showed a small amount of brightness varia-
tion, corresponding to weak striae or local inhomoge-
neities. The 2.44-mm glass rod was also free of
bubbles and visible striae and produced parallel
straight lines for the p 5 2 and p 5 3 rainbows and
their supernumeraries. Thus both rods were judged
to be of sufficient optical quality to serve as samples
for our p 5 2 and p 5 3 rainbow experiments.

Our experimental apparatus for measuring the p 5
2 and p 5 3 rainbows of the 8.05- and 2.44-mm-radius
glass rods is shown in Fig. 2. The beam from a
smaller 3-mW He–Ne laser, partially polarized par-
allel to the rod axis, was spatially filtered and then
expanded to a diameter of 2.5 cm with an afocal tele-
scope. The expanded beam illuminated the glass
rod, which was aligned to stand vertically at the cen-
ter of a rotation stage. To prevent saturation of the
8-bit 640 3 480 pixel CCD camera that was used to
record the scattered intensity in the vicinity of the
rainbow, a photographic-grade polarizing filter, with
its polarization direction parallel to the rod axis, was
used to decrease the beam power to approximately
0.3 mW. The resulting rainbow signal on the CCD
array was more than a factor of 102 larger than the
array’s dark current. The orientation of the polar-
izing filter was not changed during the experiment,
although somewhat of a change in orientation did not
change the measured supernumerary spacing. We
used a razor blade as a beam block to ensure that only
rays near the rainbow ray were incident on the rod.
Thus there were no specularly reflected rays that
otherwise would have been incident on the side of the
rod opposite the rainbow ray, and which would have
caused a fine interference structure superimposed on
the rainbow supernumeraries. Care was taken to
ensure that diffraction from the razor blade did not
optically interfere with the rainbow supernumerary

Fig. 2. Beam of a 3-mW He–Ne laser is attenuated by a polarizing
filter, expanded by an afocal telescope, and is incident on a glass
rod mounted on a rotation stage. A beam block prevents inter-
ference of reflected light from the rod with the p 5 2 and p 5 3
rainbows. The rainbow pattern is recorded by a CCD camera
placed in the scattering near zone.
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pattern. To decrease the background light as much
as possible, all the measurements were made in a
darkened room.

The CCD camera was mounted on a rotating arm
that was at the same height as the incident laser
beam. The rotating arm was mounted on a pivot
concentric with the glass rod, and we took care to
ensure that the plane of the CCD array was parallel
to the rod axis. During each measurement of either
the p 5 2 or p 5 3 rainbow, we rotated the glass rod
in increments of Dj 5 2°, and before each measure-
ment we adjusted the camera position so that the first
supernumerary maximum was at the center of the
CCD array. Because the rainbow intensity varies as
a function of j, the supernumerary maxima-to-
minima contrast varied between 45y1 at best and
10y1 at worst. The CCD array was used in a lens-
less configuration, and approximately 50 rows of pix-
els, corresponding to a height of slightly less than 1
mm on the array, were averaged to decrease statis-
tical fluctuations. Because the rainbows and their
supernumeraries visually appeared as a series of par-
allel straight lines and the columns of CCD pixels
were aligned with the supernumerary fringes, the
averaging procedure did not reduce the fringe con-
trast. The supernumerary intensity pattern was re-
corded only once for each j. But when many frames
were recorded at a given j and the results were av-
eraged, the resulting supernumerary spacing did not
change.

To ensure that the diffraction pattern from the
beam block was not affecting our measurements, we
repeated the measurements without the beam block
present. Although the overall background noise in-
creased, the spacing of the supernumerary pattern
did not change. The CCD camera initially had a
thin IR filter on its active surface. We removed this
to ensure that reflections inside the IR filter were not
affecting the supernumerary pattern. Removal of
the filter produced no change in the supernumerary
structure, although it did eliminate a high-frequency
ripple superimposed on it. All the measurements

reported here were taken after the filter was re-
moved.

The spacing between the first and second and the
first and third supernumerary maxima was used to
determine the supernumerary spacing parameter
from Eq. ~18!, and the results were decomposed into
a Fourier series as in Eq. ~21!. Our experimental
results for h2~j! for the 8.05-mm-radius rod are
shown in Table 1 and in Figs. 3~a! and 3~b!. The
column in Table 1 labeled Experiment ~1 1 2! and the
data in Fig. 3~a! are determined from the first and
second supernumerary maxima, and the column in
Table 1 labeled Experiment ~1 1 3! and the data in
Fig. 3~b! are determined from the first and third su-
pernumerary maxima. In Table 1 the magnitude of
the Fourier coefficients is displayed for 0 # m # 6,
rather than the individual coefficients themselves;
and the experimental data of Figs. 3~a! and 3~b! were
cyclically permuted until the phase of the experimen-
tal m 5 2 Fourier coefficient matched that of the
theoretical m 5 2 Fourier coefficient. This was done
because, at the beginning of the experimental run, we
were not able to align the rod accurately with the
theoretical j 5 0° orientation. This was also the
case for our measurement of the p 5 2 and p 5 3
rainbow angle in Ref. 13.

We obtained the theoretical values of the Fourier
coefficients in Table 1 using the ray-tracing–wave-
front modeling procedure of Ref. 6 with n 5 1.474 and
e 5 20.037. The odd-m theoretical coefficients van-
ish identically because of the 180° rotational symme-
try of the cylinder cross section. The 4.2% near-zone
correction of Ref. 19 for a circular cross-sectional cyl-
inder was applied to the m 5 0 theoretical coefficient
appearing in Table 1 because the experimental mea-
surements were made at rya 5 42.35 rather than
infinitely far from the rod. No near-zone correction
was applied to the m $ 2 Fourier coefficients. In
Figs. 3~a! and 3~b! the filled circles are the experi-
mental data points, the solid curves are the low-pass
filtered experimental data containing only the 0 #
m # 4 Fourier series terms, and the dashed curves

Table 1. Magnitude of the Coefficients in the Fourier-Series Decomposition of h2~j! for the 8.05- and 2.44-mm-Radius Glass Rodsa

Fourier
Coefficient

a 5 8.05 mm a 5 2.44 mm

Experiment
~1 1 2!

Experiment
~1 1 3! Theory Experiment Theory

e0 2.593 2.566 2.592 2.191 2.175
~e1

2 1 f1
2!1y2 0.043 0.135 0.000 0.043 0.000

~e2
2 1 f2

2!1y2 0.829 0.904 0.790 0.115 0.100
~e3

2 1 f3
2!1y2 0.478 0.517 0.000 0.042 0.000

~e4
2 1 f4

2!1y2 0.287 0.413 0.126 0.040 0.002
~e5

2 1 f5
2!1y2 0.497 0.447 0.000 0.058 0.000

~e6
2 1 f6

2!1y2 0.537 0.473 0.019 0.045 2 3 1024

aExperiments ~1 1 2! and ~1 1 3! correspond to the measurement of the first and second and the first and third supernumerary maxima
of the 8.05-mm rod, respectively. For the 2.44-mm-radius glass rod, the experimental coefficients are the result of averaging h2~j!
obtained from the first and second, first and third, and first and fourth supernumerary maxima. The ray-tracing–wave-front modeling
Fourier coefficients are for n 5 1.474 and e 5 20.037 and for n 5 1.511 and e 5 0.0054. The m 5 0 theoretical coefficient was corrected
for near-zone effects with rya 5 42.35 for the larger rod and rya 5 54.14 for the smaller rod.
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are the ray-tracing–wave-front modeling prediction
of Ref. 6. The cutoff of the low-pass filtering of the
experimental data was chosen to be m 5 4 because
the theoretical Fourier coefficients of h2~j! in Table 1
are negligible for m $ 6. It can be argued that the
choice of m 5 4 for the low-pass cutoff of the experi-
mental data is somewhat arbitrary. If we had cut off
the Fourier series at m 5 2 or m 5 3, the agreement
between the filtered data and the theoretical predic-
tion would have been greatly improved. But if we
had used a cutoff of m $ 5, the low-pass data would
have exhibited some higher-frequency periodicity,
and the comparison would have deteriorated some-
what. We believe that the m 5 4 cutoff represents a
realistic trade-off between these two tendencies.

The average values of h2 in the interval 0° # j #
360° for the experimental data of Figs. 3~a! and 3~b!
are ~h2!ave 5 2.593 and ~h2!ave 5 2.566. The theo-
retical m 5 0 Fourier coefficient of Table 1 deviates
from these values by only 0.06% and 0.99%, respec-

tively. But the most apparent feature of Figs. 3~a!
and 3~b! is the large noise level present in the data.
The root-mean-square deviation of the data from the
0 # m # 4 low-pass filtered data in Figs. 3~a! and 3~b!
is 231% and 205% of the value of Dh2 predicted from
approximation ~11!. We were surprised by the mag-
nitude of the noise, because in Section 2 we deter-
mined that the measurement uncertainty should be
approximately only 25% of Dh2. Although the inho-
mogeneity noise in Figs. 3~a! and 3~b! is substantial,
it was not visually evident to us as we rotated the rod
manually before taking the data. During manual
rotation, j increased by a number of degrees per sec-
ond, the fast fluctuations in the supernumerary spac-
ing were smoothed, and only the slow sinusoidal
variation of the supernumerary spacing was observed
visually on a distant viewing screen.

After repeatedly testing the apparatus, we con-
cluded that the high noise level in Figs. 3~a! and 3~b!
does not arise from nonuniformities in the laser
beam, optical interference with diffraction from the
beam block, or nonuniformities in the polarizing fil-
ter. Each of these elements remained fixed during
the experimental run. The noise is uncorrelated for
Dj 5 2° and persisted when we examined a 10° rota-
tion angle interval with Dj 5 0.083°. Because the
inhomogeneity noise is uncorrelated for Dj 5 2°, the
0 # m # 4 low-pass filtering of Figs. 3–6 largely
removes it from the experimental data.

The noise appears to take the form of an expansion
or contraction of the entire supernumerary pattern,
i.e., a sudden rise or drop in h2~j! obtained from the
first and second supernumerary maxima in Fig. 3~a!
is almost always accompanied by a similar rise or
drop in h2~j! obtained from the first and third super-
numeraries in Fig. 3~b!. Thus what we observe is
not random noise superimposed on the data. Rather
it appears to be the actual behavior of the entire
supernumerary pattern. For these reasons we be-
lieve that the rapid fluctuations in h2~j! are due to
perturbations in the shape of the wave front exiting
the rod and that these perturbations are caused by
the rod’s small local refractive-index inhomogene-
ities. The reason this high noise level surprised us
is that, because the rainbow supernumeraries were
observed to be parallel straight lines and our mea-
sured u2

R~j! and u3
R~j! in Ref. 13 were free of noise,

we presumed that h2~j! would be similarly noise free,
except for the measurement uncertainty of approxi-
mation ~20!. What appears to be the case is that,
because h2~j! was found in Ref. 6 to be such a delicate
feature of the caustic, it is sensitive to any imperfec-
tion in the glass rod as well as to any uncertainty in
the measured supernumerary angles.

When we now consider the Fourier-series decom-
position of both the experimental data and the pre-
diction of the ray-tracing–wave-front modeling
calculation, the average inhomogeneity noise level in
the experimental 3 # m # 6 Fourier channels in
Table 1 is ~em

2 1 fm
2!1y2 ' 0.45. Once we subtract

this average noise level from the magnitude of the
experimental m 5 2 Fourier coefficient in Table 1,

Fig. 3. Supernumerary spacing parameter of the p 5 2 rainbow of
a 8.05-mm-radius glass rod with refractive index n 5 1.474 and
eccentricity e 5 20.037 as a function of the rod’s rotation angle.
The solid circles are the experimental data obtained from ~a! the
first and second supernumerary maxima and ~b! the first and third
supernumerary maxima. The solid curves are the low-pass fil-
tered experimental data, and the dashed curves are the predictions
of the ray-tracing–wave-front modeling procedure of Ref. 6.
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assuming that the relative phase between the m 5 2
coefficient and the inhomogeneity noise is random,
the magnitude of the experimental m 5 2 coefficient
agrees with that of the theoretical m 5 2 coefficient to
within 8.8% and 1.2% for the data from the first and
second and the first and third supernumeraries, re-
spectively. The agreement between the m 5 0 and
m 5 2 theoretical and experimental Fourier-series
coefficients in Table 1 and the agreement between the
low-pass filtered experimental data and the predic-
tions of the ray-tracing–wave-front modeling calcula-
tion in Figs. 3~a! and 3~b! provide strong evidence
that the approximation for the supernumerary spac-
ing parameter in approximations ~10!–~12! is accu-
rate.

C. p 5 2 Supernumeraries of the 2.44-mm-Radius Glass
Rod

We first determined the refractive index and elliptic-
ity of the 2.44-mm-radius rod using the same method
as we used earlier for the 8.05-mm-radius rod.13 We
measured the position of the first supernumerary
maximum of the p 5 2 and p 5 3 rainbows as a
function of j, determined the rainbow angle using
approximation ~15!, and performed the Fourier-series
decomposition. We then determined the refractive
index from the m 5 0 Fourier coefficient of the p 5 2
and p 5 3 rainbows and the ellipticity from the m 5
2 Fourier coefficient. We found that n 5 1.502 6
0.010 and e 5 0.0054 6 0.0002 produced the best fit
to the combined p 5 3 rainbow angle data. The
average rod radius was measured with a micrometer.

With the CCD detector placed a distance r 5 132
mm from the rod axis, we then determined h2~j! from
the relative position of the first, second, third, and
fourth supernumerary maxima and computed the
Fourier-series decomposition of h2~j!. Our results
are shown in Table 1 and Fig. 4. The experimental
data are the average of three separate measurements
of h2~j! by use of the first and second, first and third,
and first and fourth supernumeraries. This averag-
ing procedure did not reduce the inhomogeneity
noise, but greatly reduced the measurement uncer-
tainty that was seen in Section 2 to be dangerously
high. The root-mean-square deviation of the result-
ing data from the 0 # m # 4 low-pass filtered data is
337% of the value of Dh2 predicted by approximation
~11!. In Table 1 the m 5 0 theoretical Fourier coef-
ficient for n 5 1.502 and e 5 0.0054 contains the 3.6%
near-zone correction for rya 5 54.14 and agrees to
within 0.75% of the experimental value of ~h2!ave.
The average inhomogeneity noise level in the 3 #
m # 6 Fourier channels in Table 1 is ~em

2 1 fm
2!1y2 '

0.046. Once we subtract the average noise level
from the magnitude of the experimental m 5 2 Fou-
rier coefficient of Table 1 assuming a random phase
difference, it agrees with the theoretical m 5 2 coef-
ficient to within 4.43%. The combined results of Fig.
4 and Table 1 again show good agreement between
the experimental data and the ray-tracing–wave-
front modeling prediction of approximations ~10!–
~12!.

D. p 5 3 Supernumeraries of the 8.05- and
2.44-mm-Radius Rods

We also measured the relative position of the first,
second, and third supernumerary maxima of the p 5
3 rainbow for our two glass rods. We then deter-
mined h3~j! using the p 5 3 version of Eq. ~18! and
performed the Fourier-series decomposition of the ex-
perimental results:

h3~j! 5 g0 1 (
m51

`

gm cos~mj! 1 (
m51

`

jm sin~mj!. (22)

The experimental data for the 8.05- and 2.44-mm-
radius rods and the theoretical predictions of the ray-
tracing–wave-front modeling calculations are shown
in Table 2 and Figs. 5 and 6. The experimental data
are the average of two separate measurements of

Fig. 4. Supernumerary spacing parameter of the p 5 2 rainbow of
a 2.44-mm-radius glass rod with refractive index n 5 1.502 and
eccentricity e 5 0.0054 as a function of the rod’s rotation angle.
The solid circles are the experimental data that we obtained from
averaging the results of the first and second, first and third, and
first and fourth supernumerary maxima; the solid curve is the
low-pass filtered experimental data; and the dashed curve is the
prediction of the ray-tracing–wave-front modeling procedure of
Ref. 6.

Table 2. Magnitude of the Coefficients in the Fourier-Series
Decomposition of h3~j! for the 8.05- and 2.44-mm-Radius Glass Rodsa

Fourier
Coefficient

a 5 8.05 mm a 5 2.44 mm

Experiment Theory Experiment Theory

g0 23.018 16.971 12.496 13.249
~g1

2 1 j1
2!1y2 1.107 0.000 0.582 0.0

~g2
2 1 j2

2!1y2 7.830 8.249 1.256 0.980
~g3

2 1 j3
2!1y2 5.728 0.000 1.514 0.0

~g4
2 1 j4

2!1y2 2.799 0.598 0.318 0.012
~g5

2 1 j5
2!1y2 2.810 0.000 0.476 0.0

~g6
2 1 j6

2!1y2 3.140 0.136 0.543 6 3 1024

aWe obtained the experimental coefficients by averaging h3~j!
obtained from the first and second and the first and third super-
numerary maxima. The ray-tracing–wave-front modeling Fou-
rier coefficients are for n 5 1.474 and e 5 20.037 and for n 5 1.511
and e 5 0.0054. The m 5 0 theoretical coefficient was corrected
for near-zone effects with rya 5 42.35 and rya 5 54.14.
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h3~j! that we obtained using the first and second and
the first and third supernumerary maxima. The
theoretical m 5 0 Fourier coefficient contains the
1.58% and 1.47% near-zone correction of Ref. 19 for
the experimental rya ratios for the two rods and dif-
fers from the experimental m 5 0 coefficient by 35.6%
and 5.7%, respectively. We do not know the reason
for the large difference between the m 5 0 coefficients
for the 8.05-mm rod.

Because h3
cyh2

c ' 6, the measurement uncer-
tainty dh3yh3

c in the p 5 3 supernumerary data

should be approximately ~1y6!1y3 ' 0.55 of that for
dh2yh2

c. But as was the case for the h2~j! data in
Figs. 3 and 4, the h3~j! data of Figs. 5 and 6 contain
a large amount of inhomogeneity noise, with the
root-mean-square deviation of the data from the 0 #
m # 4 low-pass filtered data for the 8.05- and 2.44-
mm-radius rods being 147% and 350% of the value
of the theoretical m 5 2 Fourier coefficient, our
estimate for Dh3. The average inhomogeneity
noise in the m 5 1, 4, 5, 6 Fourier channels in Table
2 is ~gm

2 1 jm
2!1y2 ' 2.464 and 0.480. When we

subtract this noise from the experimental m 5 2
Fourier coefficient assuming a random phase differ-
ence, the result agrees with the theoretical m 5 2
Fourier coefficient to within 9.1% and 15.2%. This
is an encouraging sign, again illustrating the basic
correctness of the ray-tracing–wave-front modeling
procedure of Ref. 6 as applied to h3~j!.

In Ref. 13 we had found that the p 5 2 rainbow
angle was rather insensitive to a small amount of
nonellipticity in the rod cross section, but there was a
marked sensitivity of the p 5 3 rainbow angle to rod
nonellipticity. On the basis of this sensitivity of the
p 5 3 rainbow angle, we determined that, when the
cross section of the 8.05-mm rod was modeled by two
half-ellipses of differing eccentricities e1 5 20.050
and e2 5 20.024 smoothly joined together along the
major axis, the prediction of the ray-tracing calcula-
tion fit the experimental p 5 2 and p 5 3 rainbow
angles as a function of j rather well.

We also examined the effects of cross-sectional non-
ellipticity on the supernumerary spacing parameter
using the ray-tracing–wave-front modeling proce-
dure and a cross section of two half-ellipses. The
prediction for h2~j! with n 5 1.474, e1 5 20.050, and
e2 5 20.024 remained approximately sinusoidal with
the amplitude of oscillation increasing by approxi-
mately 12% from the elliptical cross-sectional case
n 5 1.474 and e 5 20.037. Thus both u2

R~j! and
h2~j! are relatively insensitive to a small amount of
rod ellipticity. However, for n 5 1.474, e1 5 20.050,
and e2 5 20.024, the predicted oscillation in h3~j!
exhibited larger deviations from a sinusoidal behav-
ior with the amplitude of oscillation increasing by
approximately 24% from the n 5 1.474 and e 5
20.037 elliptical cross-sectional case. As a result, a
small amount of rod nonellipticity is likely to be a
significant factor in the interpretation of the h3~j!
data of Figs. 5 and 6. The fact that the double-hump
behavior seen in Figs. 5 and 6 at j ' 120° and j '
210° was not reproduced by the two half-ellipses
model, whereas a similar double-hump structure in
the p 5 3 rainbow angle shown in Fig. 6 of Ref. 11 was
reproduced by the two half-ellipses model, may signal
that h3~j! is much more sensitive to the exact form of
the nonellipticity than is u3

R~j!. Until a better mod-
eling procedure for the rod cross section is available,
a detailed quantitative comparison between theory
and the experimental results of Figs. 5 and 6 is pre-
mature.

Fig. 5. Supernumerary spacing parameter of the p 5 3 rainbow of
a 8.05-mm-radius glass rod with refractive index n 5 1.474 and
eccentricity e 5 20.037 as a function of the rod’s rotation angle.
The solid circles are the experimental data that we obtained from
averaging the results of the first and second and the first and third
supernumerary maxima, the solid curve is the low-pass filtered
experimental data, and the dashed curve is the prediction of the
ray-tracing–wave-front modeling procedure of Ref. 6.

Fig. 6. Supernumerary spacing parameter of the p 5 3 rainbow of
a 2.44-mm-radius glass rod with refractive index n 5 1.502 and
eccentricity e 5 0.0054 as a function of the rod’s rotation angle.
The solid circles are the experimental data that we obtained from
averaging the results of the first and second and the first and third
supernumerary maxima, the solid curve is the low-pass filtered
experimental data, and the dashed curve is the prediction of the
ray-tracing–wave-front modeling procedure of Ref. 6.
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4. Discussion

When an elliptical cross-sectional rod is illuminated
at normal incidence by a plane wave and is rotated
about its axis, the first-order rainbow undergoes a
number of changes. When observed on a distant
viewing screen, it is quite evident that the entire
rainbow pattern moves back and forth. To see this,
all one has to do is mark the rainbow position on the
viewing screen for a particular rod orientation and
then watch the rainbow move with respect to the
mark as the rod is rotated. Similarly, the rainbow
intensity variations are easily observable. But it re-
quires more careful observation to realize that the
supernumerary spacing is simultaneously expanding
or contracting as well, because, for the 8.05-mm-
radius rod, the amount of expansion and contraction
is approximately only 21% for the p 5 2 rainbow and
approximately 34% for the p 5 3 rainbow.

In rainbow refractometry,20,21 the refractive index
and size of a falling spherical liquid droplet can be
determined when the features of its first-order rain-
bow are examined. After measuring the angular po-
sition of the first two supernumerary maxima ua

max

and ub
max, one can obtain the rainbow angle from Eq.

~17!, then the refractive index from Eqs. ~3!, then the
supernumerary spacing parameter from Eq. ~4!, and
finally the particle radius from Eqs. ~1! and ~18!. If
the falling droplet has an oblate spheroidal rather
than a spherical shape because of flattening produced
by air resistance, the value of n and a determined in
this manner, assuming a spherical shape, will be in
error.22 Two experimental tests for asphericity have
been proposed for rejecting rainbow refractometry
measurements made on aspherical droplets.23,24

It appears that the size of the error in n and a
caused by either droplet asphericity or uncertainty in
the measured values of ua

max and ub
max has not been

studied systematically. We derive these errors as
follows. When we differentiate Eqs. ~3!, a change
dup

D in the p-rainbow angle produces a change dn in
the refractive index of

dn 5 n~n2 2 1!1y2dup
Dy@2~ p2 2 n2!1y2#. (23)

Similarly, when we differentiate Eq. ~4!, a change dn
in the refractive index produces a change dh in the
supernumerary spacing parameter of

dh 5 2n~ p2 2 1!2~3p2 2 2n2 2 1!dny@ p2~ p2

2 n2!1y2~n2 2 1!5y2#; (24)

and when we differentiate Eq. ~18!, a change dh in
the supernumerary spacing parameter produces a
fractional change daya in the particle radius of

daya 5 dhy~2h!. (25)

If the droplet being studied is spherical and the
angular position of the first two supernumerary max-
ima of the p 5 2 rainbow is measured with the pre-
cision 6duab deg, the uncertainty in the rainbow
angle is given by approximation ~19!. If the refrac-
tive index and the particle size are obtained with Eqs.

~17!, ~3!, ~4!, and ~18! as described above, the uncer-
tainty in n and a is

dnyn 5 ~n2 2 1!1y2~py180!duaby@2~4 2 n2!1y2#, (26)

daya 5 n2~11 2 2n2!~py180!duaby@4~n2 2 1!1y2~4

2 n2!3y2#. (27)

On the other hand, if the p 5 2 supernumerary max-
ima are measured with perfect accuracy but the drop-
let being studied is an oblate spheroid with
eccentricity e, the maximum uncertainty in the rain-
bow angle is given by Du2

R in Eq. ~9!. The resulting
maximum uncertainty in n and a becomes

dnyn 5 32~n2 2 1!2ey~9n4!, (28)

daya 5 16~11 2 2n2!~n2 2 1!ey@9n2~4 2 n2!#. (29)

In either case, we obtain

~daya!y~dnyn! 5 n2~11 2 2n2!y@2~n2 2 1!~4 2 n2!#.

(30)

As an example of these error estimates, consider a
spherical water droplet with n 5 1.33. For either
type of error, Eq. ~30! yields ~daya!y~dnyn! 5 3.8,
illustrating that the uncertainty in the determined
particle size is substantially larger than the uncer-
tainty in the determined refractive index. This is
because of the sensitive dependence of h on n in Eq.
~24!. These results also underscore the principal
theme of both this paper and Ref. 6, i.e., that the
supernumerary spacing is a surprisingly sensitive
and delicate feature of the rainbow.

This research was supported in part by the Na-
tional Science Foundation under grant PHY-9987862
and by the National Aeronautics and Space Admin-
istration under grant NCC-3-521.
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