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Far-field scattering of an axisymmetric laser beam
of arbitrary profile by an on-axis spherical particle

James A. Lock and Joseph T. Hodges

Experimental laser beam profiles often deviate somewhat from the ideal Gaussian shape of the TEM00

laser mode. In order to take these deviations into account when calculating light scattering, we
propose a method for approximating the beam shape coefficients in the partial wave expansion of an
experimental laser beam. We then compute scattering by a single dielectric spherical particle placed
on the beam’s axis using this method and compare our results to laboratory data. Our model
calculations fit the laboratory data well. r 1996 Optical Society of America

1. Introduction

In recent years two different approaches have been
developed for calculating scattering of a localized
laser beam by a spherical particle whose diameter is
comparable to the beam width. One method relies
on expanding the beam in an angular spectrum of
plane waves.1,2 In the other method, the beam is
expanded in terms of partial waves.3–5 In the sec-
ond approach, much has been learned about scatter-
ing of a focused beam having a Gaussian profile at its
focal waist. For a number of reasons, however, the
intensity profile of actual laser beams often deviates
somewhat from an ideal Gaussian shape. Thus the
light-scattering signature of an actual beam also
deviates from the predictions of Gaussian beam
scattering theory.6 Our purpose is to perform an
approximate partial wave analysis of an experimen-
tal laser beam profile and then use this partial wave
analysis to compute scattering of the beam by a
spherical particle placed on the beam’s axis. The
subject of scattering by a spherical particle placed off
the beam’s axis entails a number of additional
considerations and thus will be treated in a separate
paper.
Although the partial wave coefficients of a laser

beam are related to both the magnitude and phase of
the beam’s electric field, measurement of the beam’s
intensity allows one to infer only the electric field

magnitude, leaving the phase undetermined. In
the Fraunhofer zone or far zone of the beam, how-
ever, the phase of the beam may be modeled. The
combination of the far-zone intensity measurement
and our phase modeling provides enough informa-
tion to determine approximately the magnitude and
phase of the coefficients in the beam’s partial wave
expansion.
The body of this paper is organized as follows. In

Section 2 we briefly review the equations for scatter-
ing of an on-axis laser beamwith an arbitrary profile
by a spherical particle. In Section 3 we describe our
method for approximately determining the partial
wave coefficients of the beam. As a check of our
method, we show that, when it is applied to a beam
with a Gaussian profile, the partial wave coefficients
obtained are nearly identical to the localized model
Gaussian beam shape coefficients.7,8 Finally in Sec-
tion 4 we compare the predictions of our method with
experimental scattering data for three different posi-
tions of a dielectric spherical particle on the beam
axis. We find an excellent correspondence between
our model and the experimental data in two of the
three cases. We also conjecture why our results for
the third case deviate somewhat from the experimen-
tal results.

2. Scattering of an On-Axis Beam by a Spherical
Particle

Consider an axially symmetric monochromatic beam
of electromagnetic radiation having wavelength l
and wave number

k 5 2p@l, 112

traveling along the z axis of a laboratory coordinate
system whose origin is at the center of a spherical
particle of radius a and refractive index n. Such a
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beam is called an on-axis beam with respect to the
particle because it strikes the particle head on. If
the beam were traveling parallel to the z axis rather
than along it, it would strike the particle off center
and thus be called an off-axis beam. The time
dependence of the beam is taken to be exp12ivt2.
The beam is assumed to be focused by a lens, and the
center of the beam focal waist is at the coordinate
10, 0, z02 with respect to the particle as is shown in
Fig. 1. The electric field of the beam at the focal
waist is assumed to be polarized in the x direction.
Since the beam fields are derivable from a radia-

tion potential that satisfies the Helmholtz equation,9
the electric and magnetic fields of an on-axis beam
have the following partial wave expansion with
respect to the origin of coordinates at the particle
center10:

Ebeam1r, u, f2

5
2iE0 sin u cos f

k2r2
ûr o

l51
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In Eqs. 122 J l1kr2 are Riccati–Bessel functions that
are related to spherical Bessel functions jl1kr2 by11

J l1kr2 5 krjl1kr2. 132

The angular functions pl1u2 and tl1u2 are related to
associated Legendre polynomials by

pl1u2 5
1

sin u
Pl

11cos u2, tl1u2 5
d

du
Pl

11cos u2. 142

The coefficients gl are the partial wave amplitudes of
the beam, otherwise known as the beam shape
coefficients.
The focused laser beam diffractively spreads at

values of z beyond the end of its focal waist. In the
Fraunhofer zone or far zone of the beam’s spreading,
the Riccati–Bessel functions become12

lim
kr=`

J l1kr2 5 sin1kr 2
lp

2 2 , 152

and in the near-forward direction 1i.e., u 9 12, where
the beam intensity is expected to be the largest, the
angular functions become13

lim
u91

pl1u2 5
l1l 1 12

2
3J01u2 1 J21u24,

lim
u91

tl1u2 5
l1l 1 12

2
3J01u2 2 J21u24, 162

where J0 and J2 are Bessel functions and

u 5 1l 1 1@22u. 172

Substituting Eqs. 152 and 162 into Eq. 122we obtain

Ebeam1r, u, f2

5 2iE01cos fûu 2 sin fûf2
exp1ikr2

kr

3 o
l51
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1sin fûu 2 cos fûf2
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as the partial wave expansion of the beam fields in
the near-forward direction in the far zone.

Fig. 1. Focused laser beam incident on a spherical particle whose
center is at the origin of coordinates. The center of the beam
focal waist is at 10, 0, z02 with respect to the particle, and the
detector is located at 1xd, yd, zd2. The distance from the origin to
the detector is r, and the distance from the center of the focal waist
to the detector is r8.
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Physically, one would expect that for u < 0° the
outgoing spherical wave portion of Eqs. 182 would be
orders of magnitude larger than the incoming spheri-
cal wave portion. This is in fact the case, math-
ematically, since the 1212l factors in Eqs. 182 cause the
slowly varying contributions of successive partial
waves nearly to cancel for the incoming wave terms.
Similarly for u < 180°, when the backscattering
version of Eqs. 162 is substituted into Eqs. 122, the
incoming spherical wave contribution dominates,
which is again what one would expect physically.
For outgoing spherical wave dominance at u < 0°,
Eqs. 182 reduce to

Ebeam1r, u, f2 < 2iE0ûx
exp1ikr2

kr o
l51

`

1l 1 1@22glJ01u2,

Bbeam1r, u, f2 <
iE0

c
ûy

exp1ikr2

kr o
l51

`

1l 1 1@22glJ01u2.

192

When the incident on-axis beam interacts with the
spherical particle, scattered waves are created.
The far-zone scattered electric and magnetic fields
produced by the interaction are

lim
r=`

Escattered1r, u, f2

5
2iE0

kr
exp1ikr232S21u2cos fûu 1 S11u2sin fûf4,

lim
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5
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In Eqs. 1102 the on-axis scattering amplitudes S11u2
and S21u2 are given by

S11u2 5 o
l51

` 12l 1 12

l1l 1 12
gl3alpl1u2 1 bltl1u24,

S21u2 5 o
l51

` 12l 1 12

l1l 1 12
gl3altl1u2 1 blpl1u24, 1112

and the coefficients al and bl are the partial wave
scattering amplitudes of the plane wave Lorenz–Mie
theory.14
In experiments, the total exterior fields

Etotal 5 Ebeam 1 Escattered, Btotal 5 Bbeam 1 Bscattered

1122

are observed rather than the scattered fields alone.
This fact is especially important in the near-forward
direction where the spreading beam fields and the
scattered fields overlap appreciably.

3. Model for the Beam Shape Coefficients

The mathematically precise way of calculating the
beam shape coefficients of a known electromagnetic
wave is as follows. Consider an on-axis beam with
an arbitrary profile that is written in spherical
coordinates with respect to the origin of coordinates
at the particle center. The radial component of the
field vectors has the form8

Ebeam
radial 5 E0 exp1ikr cos u2 f 1kr, u2sin u cos f,

Bbeam
radial 5

E0

c
exp1ikr cos u2 f 1kr, u2sin u sin f, 1132

where both the beam amplitude profile and the
shape of the surfaces of constant phase are contained
in the function f 1kr, u2. Assuming that this function
is known, the beam shape coefficients gl are given by8

gl 5
12i2l21

2

kr

jl1kr2

1

l1l 1 12 e0
p

sin2 uduf 1kr, u2

3 exp1ikr cos u2Pl
11cos u2. 1142

Since the electric and magnetic fields of Eqs. 1132 are
assumed to be an exact solution of Maxwell’s equa-
tions, the r dependence in Eq. 1142 cancels and the gl
are constants. Unfortunately, the only case of inter-
est for which f 1kr, u2 is exactly known is that of a
plane wave for which f 1kr, u2 5 1.
As an alternative to the mathematically precise

approach, we consider the following approximate
method. Experimentally, one can use a detector
array to record only the magnitude squared of the
beam fields leaving the phase undetermined. Thus
in order to calculate the beam shape coefficients, the
beam phase must be either separately measured or
modeled. We propose modeling it in the following
way. Consider the center of the spherical particle to
be at the origin of coordinates. Let the center of the
beam’s focal waist be at the coordinate 10, 0, z02 with
respect to the particle, and let the detector be at the
coordinate 1xd, yd, zd2 in the far zone of the beam as is
shown in Fig. 1. Although each individual partial
wave of the beam in approximations 192 is an outgo-
ing spherical wave centered on the particle, in the far
zone the beam taken as a whole appears to emanate
from an effective point source located at the beam
waist center, and its electric field is

Ebeam 5 2iE0ûx
exp1ikr82

kr8
M1u82. 1152

In Eq. 1152 r8 is the vector from the center of the focal
waist to the detector at 1xd, yd, zd2, u8 is the angle that
the vector r8 makes with the z axis, and M1u82 is the
angular dependence of the amplitude profile of the
beam in the far zone.
We wish to convert Eq. 1152 from the spherical

coordinates r8, u8 centered on the beam focal waist to
the spherical coordinates r, u centered on the particle
in order to make contact with the partial wave
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expansion of the beam of approximations 192. This
can be accomplished in the following way. For zd :
z0 and in the near-forward direction with xd9 zd and
yd 9 zd, we have

r < zd 1
1xd2 1 yd22

2zd
,

u <
1xd2 1 yd221@2

zd
,

r8 < zd 2 z0 1
1xd2 1 yd22

21zd 2 z02
< zd 2 z0

1
1xd2 1 yd22

2zd
1

1xd2 1 yd22

2zd2
z0,

u8 <
1xd2 1 yd221@2

zd 2 z0
<

u

11 2
z0
zd2

. 1162

Using these changes of variable, Eq. 1152 becomes

Ebeam < 2iE0ûx
exp1ikr2

kr
M1u82exp12ikz02exp1ikz0u2@22.

1172

Finally, comparing approximations 192 and 1172 we
obtain

exp12ikz02exp1ikz0u2@22M1u82

< o
l51

`

1l 1 1@22glJ031l 1 1@22u4 1182

or

12µ0c21@2kr
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< o
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`
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where from approximation 1172we used

Ibeam1u2 5
E0

2

2µ0ck2r2
M21u82. 1202

At this point we assume that a large number of
partial waves are required to reconstruct the focused
laser beam. As a result we can approximately
convert the sum over partial waves into an integral13
and replace the beam shape coefficients gl by the
continuous function g1l2. We then have

12µ0c21@2kr

E0
exp12ikz02Ibeam1u21@2 exp1ikz0u2@22

< e
0

`

ldlg1l2J01lu2. 1212

Equation 1212 can be recognized as a zero-order
Hankel transform.15 Its inverse Hankel trans-
form is

g1l2 <
12µ0c21@2kr

E0
exp12ikz02 e

0

`

uduIbeam1u21@2

3 exp1ikz0u2@22J01lu2. 1222

Approximation 1222 for integer l is our approximation
to the beam shape coefficients for the focused laser
beam with the experimental far-zone beam profile
Ibeam1u2, which is the central result of this study.
As a test of the accuracy of approximation 1222, we

consider a Davis first-order Gaussian beam with
electric field

EDavis1x, y, z 5 z02 5 E0 exp321x2 1 y22@w0
24ûx 1232

in the beam focal plane.16 In the far-zone of the
beam, the electric field becomes

lim
kr8=`

EDavis1r8, u8, f82

5
2iE0

kr8

k2w0
2

2
exp1ikr82exp12k2w0

2u8
2

4 2ûx.
1242

Using the change of variables from r8, u8 to r, u and
taking z0@zd < 0, we obtain

IDavis1u2 <
E0

2

2µ0c

1

k2r2
k4w0

4

4
exp12k2w0

2u2

2 2 . 1252

Substituting approximation 1252 into approximation
1222 and performing the Hankel transform of the
Gaussian function, we obtain

gDavis1l2 5
1

1 2 2iz0@kw0
2
exp12ikz02

3 exp1 2l2@k2w0
2

1 2 2iz0@kw0
22 . 1262

Equation 1262 is identical to the localized beam shape
coefficients for a Davis first-order beam except for
the replacement of l 1 1@2 in Eq. 1502 of Ref. 8 by l in
Eq. 1262. The difference between l and l 1 1@2 is
minor for the experiment described in Section 4 since
approximately 340 partial waves are involved in the
scattering.

4. Experimental Verification

The experimental procedure is described in detail in
Ref. 6. Briefly, a spatially unfiltered Ar1 laser
operated in the TEM00 mode of the l 5 0.5145 µm
line was focused using a 100-mm focal-length lens.
At a distance of 146 6 1.5 mm beyond the beam’s
focal waist, the beam intensity was measured using
a 505-element CCD array interfaced to an 8-bit
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frame grabber board. At this distance, the CCD
array was in the far zone of the beam 1i.e.,
2z8@kw0

2 5 73.8 : 12. The beam intensity after the
CCD read noise was subtracted is shown in Fig. 2.
Although the experimental beam profile has the
same general shape as a Gaussian, there are notice-
able differences between Fig. 2 and a pure Gaussian
function. These differences were commented on in
Ref. 6. Specifically, if the peak intensity of the beam
at the detector plane is I0, the central portion of the
beam 10.25 , I@I0 , 1.02 is fit well by a Gaussian
function with an electric field half-width of w0 5 24
µm and the outer portions of the beam
10.01 , I@I0 , 0.12 are fit well by another Gaussian
function havingw0 5 18 µm.
After the far-zone beam profile was measured, a

single spherical droplet of dioctyl phthalate 1DOP2
was levitated using an electrodynamic balance and
was positioned at three different locations on the
beam axis downstream from the focal waist as in Fig.
1. The spacing between these locationswas approxi-
mately 12.5 mm. The dioctyl phthalate droplet had
radius a 5 25.6 6 0.05 µm and refractive index n 5
1.4845. Again, for each of the three particle loca-
tions, the beam-plus-scattered intensity was mea-
sured in the near-forward direction 1i.e., 0u 0 & 1.0°2
and was normalized with respect to the peak beam
intensity at the detector. The experimental scatter-
ing data are shown in Figs. 31a2–31c2. In Ref. 6 the
positions of the particle with respect to the beam
waist were determined by fitting Figs. 31a2–31c2 with
the central region@outer regions two-Gaussianmodel
employed by Hodges et al. Based on their fitting
procedure, they determined that Figs. 31a2–31c2 corre-
spond to z0 5 25.0 mm, z0 5 218.2 mm, and z0 5
230.0mm, respectively. The coordinate of the beam
focal waist, z0, is negative since the beam focuses
before the origin of coordinates.
Before employing our beam shape coefficientmodel

of approximation 1222 to fit the experimental scatter-
ing data, the beam profile data of Fig. 2 was prepro-
cessed in the following way. First, with the center
of the beam normalized to unit intensity, the beam

was thresholded at Ibeam 5 0.01 since the quantiza-
tion error of the intensity digitizationwas Iquantization <
0.004. Since an on-axis beam is defined to be
symmetric about the beam axis, the best-fit beam
axis was found for 0.01 # Ibeam # 1.0, and the beam
intensities at equal distances to either side of the
axis were averaged. The experimental scattering
data of Figs. 31a2–31c2 were not symmetrized in this
way. As mentioned previously, it was found in Ref.
6 that the outer portion of the beam 1i.e.,
0.01 & Ibeam & 0.12 is fit well by a Gaussian profile of
beam waist radius w0 5 18 µm. Our thresholded
and symmetrized beam profile was continued from
Ibeam 5 0.01 to Ibeam 5 1028 using the w0 5 18 µm
Gaussian model.
This continuation was made in order to eliminate

artifacts that were found to occur in the computed
values of gl caused by the experimental cutoff of the u
integral in approximation 1222. The elimination of
the artifacts in the gl was tested by reconstructing
the beam profile using approximation 1182 after calcu-
lating the gl using approximation 1222. Testing this
reconstruction procedure first on the truncated
Gaussian beam profile

IGaussian1u2 5 exp12u2@4s22 for 0 # u # umax 1272

with

s 5
1

kw0

, 1282

the reconstructed beam was found to reproduce the
Gaussian function of Eq. 1272 for 0 # u & umax
virtually exactly when the largest partial wave lmax
satisfied

lmax * 4@s. 1292

Regardless of the value of umax, the reconstructed
beam was always found to oscillate about the Gauss-
ian profile of Eq. 1272 for u < umax. Extending our
thresholded and averaged beam to Ibeam 5 1028 thus
ensured that any artifact in the gl that is due to the
cutoff of the u integral at umax would be moved out of
the intensity region of interest so as to affect only
beam intensities that are orders of magnitude below
the intensity cutoff of the scattering data at I@I0 5
0.01 in Figs. 31a2–31c2.
Next, this reconstruction procedure was tested on

the thresholded and symmetrized experimental beam
derived from Fig. 2. Approximation 1222 was evalu-
ated for lmax 5 1500 for a number of values of the
beam waist particle spacing z0. This value of lmax is
a factor of 2 above the beam reconstruction stability
requirement of inequality 1292 1i.e., w0 5 18 µm gives
s 5 0.00455 and lmax * 8792. In addition, if the de-
tector grid is too coarse and l is too large, the
evaluation of approximation 1222 by numerical inte-
gration becomes imprecise because lDu is compa-
rable to or larger than the periodicity of Bessel
function J0. For our 505-element detector array

Fig. 2. Intensity as a function of angle for a focused Ar1 laser
beam at a distance of zd 5 146 6 1.5 mm beyond the beam focal
waist. The detector is in the far zone of the beam.

20 July 1996 @ Vol. 35, No. 21 @ APPLIED OPTICS 4287



with Du 5 4.9 3 1023 deg, the Nyquist partial wave
for J01lu2 is lNyquist 5 18,350. Our choice of lmax 5
1500 is a factor of 12 below the Nyquist limit thus
ensuring the accuracy of numerical integration.
Again after the gl were computed, the symmetrized
beam was reconstructed using approximation 1182.
As before, the beam reconstruction virtually exactly
reproduced the original beam for Ibeam . 1027.
Now being confident that the beam shape coeffi-

cients were being computed accurately, the scattered
electric field was computed using Eqs. 1102 and 1112
and the beam electric field was evaluated using the
left-hand side of approximation 1212 along with the
experimentally measured profile. The two fields
were added as in Eqs. 1122, and the resulting beam-
plus-scattered intensity was determined. The only
adjustable parameter in our model is the distance z0
between the beam waist center and the particle.
This distance was varied to fit the angular positions
of the subsidiary maxima of the experimental data.
There is no intensity scaling factor in our model.
The resulting beam-plus-scattered intensity is shown
in Figs. 31a2–31c2 for z0 5 24.0 mm, z0 5 214.5 mm,
and z0 5 225.0 mm, respectively. In Figs. 31b2 and
31c2 the angular width of the central maximum and
the positions of the subsidiary maxima are fit well
with our model. Further the entire intensity profile
is fit well in contrast to Ref. 6 in which a Gaussian
function of w0 5 24 µm for the beam fits only the
small-angle 1i.e., 0.25 & I@I0 & 1.02 data and another
Gaussian function of w0 5 18 µm for the beam fit
only the large-angle 1i.e., 0.01 & I@I0 & 0.12 portions
of the experimental intensity profile. The outer
w0 5 18 µm Gaussian beam fit to the experimental
data from Ref. 6 is also shown in Figs. 31a2–31c2 for
comparison. The interference structure in Figs.
31a2–31c2 is due to the fact that the surfaces of
constant phase of the incident beam and the scat-
tered wave have different radii of curvature at the
detector plane. As one scans along the detector
plane, the two waves of different curvature alter-
nately constructively and destructively interfere ac-
cording to the exp1ikz0u2@22 factor in approximation
1172.

For all three sets of data the experimental fringe
contrast for the outer portions of the data is often
lower than our theoretical predictions. This ap-
pears not to be due to the finite pixel size since each
relative minimum extends over at least 8 pixels.
Small differences between the left-hand and right-
hand sides of the unsymmetrized experimental data
in Figs. 31a2–31c2mirror both the slight asymmetry of
the original beam in Fig. 2 and the fact that the
particle may have been slightly off axis with respect
to the beam. Also, since it is experimentally impos-
sible tomeasure the distance z0 to an accuracy that is
substantially smaller than a wavelength over a
distance of many millimeters, the phase of the
exp12ikz02 factor in approximations 1192–1222 is unde-
termined. When one constructs the beam-plus-
scattered intensity, this exp12ikz02 factor is of no
consequence, however, since it appears in an identi-
cal way in both the scattered field using Eqs. 1102 and
1112 and approximation 1222 and in the beam field
using the left-hand side of approximation 1212.
In Fig. 31a2 the predictions of the single-Gaussian

model with w0 5 18 µm and z0 5 25.0 mm of Ref. 6
and the predictions of our model with z0 5 24.0 mm
are similar. 1For our model with z0 5 25.0 mm they
are almost identical.2 But neither fits the experi-
mental data well. Both models reasonably fit the
shape of the central peak and the rate of fall off of the
outer portions of the experimental data but grossly
overestimate the interference structure. Perhaps
this overestimation is not surprising for two reasons.
First, for a Gaussian beam with w0 5 18 µm, the
point of maximum wave-front curvature occurs at
z0 5 62.0 mm, whereas for w0 5 24 µm, it occurs at
z0 5 63.5 mm. Since the data of Fig. 31a2 was
obtained only slightly beyond the point of maximum
wave-front curvature, small inaccuracies in model-
ing the phase of the beam in this region may well
produce large errors in the structure of the scattered
wave@incident beam interference described above.
Second, for a particle of radius 25.6 µm the first
far-zone diffraction zero occurs at u 5 0.70°. At this
angle the phase of the diffracted field shifts by 180°,

Fig. 3. Beam-plus-scattered intensity as a function of scattering angle u for a beam waist particle spacing of 1a2 z0 5 24.0 mm, 1b2 z0 5

214.5 mm, 1c2 z0 5 225.0 mm. The experimental data are from Figs. 101b2, 101d2, and 101f2 of Ref. 6, respectively, and the theoretical
intensity is from Eqs. 1102–1132 and 1202 and approximation 1222. The single-Gaussian fit to the data forw0 5 18 µm from Ref. 6 is given by
the dashed curves.
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which also adds to the complexity of the scattered
wave@incident beam interference there.
Figure 11 of Ref. 6 shows the experimental scat-

tered intensity for 8° # u # 15° along with the
predictions of the two-Gaussian beam model of
Hodges et al. Both the central and outer Gaussian
models fit the laboratory data well. The reason for
this is twofold. First, this angular interval is be-
yond the spreading width of the incident beam so no
incident beam@scattered field interference occurs.
Second, for z0 5 24.0, 214.5, and 225.0 mm, the
effective beam half-width at the location of the
particle is approximately 41, 133, and 237 µm,
respectively. The rays reflected by the particle in
this angular interval strike it approximately 25.5-µm
off-axis, whereas the rays transmitted through the
particle in this angular interval strike it approxi-
mately 7.5-µm off-axis. In all cases these off-axis
positions are near the center of the local beam profile
1i.e., the beam intensity is Ibeam * 0.462 where the
beam is well described by a Gaussian of width w0 5
24 µm. The deviations from an ideal Gaussian
profile that occur at lower beam intensities 1i.e.,
Ibeam & 0.252 are not observed in scattering from a
particle of this size placed this far downstream from
the beam waist when the scattering angle is larger
than approximately 2°. Thus we did not examine
the predictions of our beam shape coefficient model
of approximation 1222 for the angular interval of Fig.
11 of Ref. 6. This points up an important issue
concerning our model for scattering by a non-
Gaussian beam. The deviations between the beam
of Fig. 2 and an exact Gaussian are significant but
not overwhelming. As a result, the differences be-
tween Gaussian beam scattering theory and non-
Gaussian beam scattering theory are most apparent
in the angular region where the incident beam
superposes with the scattered wave. This occurs in
the near-forward direction, which is what we have
analyzed in this experiment.
A number of previous experiments have also been

used to examine near-forward scattering of a focused
laser beam in which the spreading beam field and
the scattered field overlap appreciably.17–19 Figure
2 of Ref. 17 shows both experimental data and the
results of diffraction theory for a 5 22 µm, the beam
half-width at the position of the particle w1z02 5 43
µm, and 0° # u & 0.92°. The comparison between
theory and experiment is excellent for 1023 & I@I0 #
1.0, indicating that the expanded and spatially fil-
tered beam of Ref. 17 was almost exactly Gaussian in
shape. Figure 12 of Ref. 18 shows both experimen-
tal data and the results of Gaussian beam scattering
theory for a 5 34.8 µm,w1z02 5 42.6 µm, and 0° # u &
1.72°. The deviation of Gaussian beam scattering
theory from the data for u * 0.6° indicates that the
spatially unfiltered beam of Ref. 18 deviates from a
Gaussian for I@I0 & 1022. Figures 8–16 of Ref. 19
are concerned with an off-axis beam. But again
there are small deviations between Gaussian beam
theory and experiment for I@I0 < 1022 that the

authors tentatively attributed to ‘‘imperfections in
the Gaussian character of the beam . . . because of
the finiteness of the laser source.’’ Based on these
results, it would be interesting to test to what degree
spatial filtering would eliminate the deviations of an
unfiltered beam, such as we have in Fig. 2, from an
ideal Gaussian shape. The price one pays for spa-
tial filtering, however, is a greatly reduced beam
intensity. This intensity reduction was the reason
that we did not spatially filter the laser beam in this
experiment.
Over the last few years a number of papers have

been published claiming to extend Lorenz–Mie scat-
tering theory from plane wave incidence to arbitrary
beam incidence.3–5 From a theoretical point of view,
these claims were correct. But from an experimen-
tal point of view they did not answer the question of
how to obtain the beam shape coefficients of an
actual laboratory beam. The good agreement be-
tween our beam shape coefficient model and the
experimental results of Figs. 31b2 and 31c2 provides a
tentative answer to this question for an axisymmet-
ric on-axis beam if one measures its far-zone inten-
sity profile. Our phase modeling procedure has not
been tested on severely non-Gaussian axisymmetric
beams or on nonaxisymmetric on-axis beams. In
the first of these cases it is our belief that our model
will work satisfactorily if the surfaces of constant
phase of the beam are not too contorted. For the
second of these cases the partial wave expansion of
the beam depends on the partial wave modes l and
m, where 1 # l , ` and 2l # m # l and is thus
outside the scope of this paper. The beam shape
coefficients of an axisymmetric off-axis beam also
depend on l and m and will be the subject of a
separate publication.

We thank Gérard Gouesbet of l’Institut National
des SciencesAppliquées de Rouen, France, for bring-
ing the problem of obtaining the beam shape coeffi-
cients of an actual laser beam to our attention.
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