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Correlated light scattering by a dense distribution
of condensation droplets on a window pane

James A. Lock and Chin-Lien Chiu

An analytical model of the scattering structure factor for an assembly of noninteracting hard disks has
recently appeared in the literature [Phys. Rev. A 42, 5978-5989 (1990)]. We employ this model to
calculate correlated light scattering by monodispersions and binary mixtures of condensation droplets on
a window pane. We find that an area fraction of f 2 0.6 is required for producing the near-forward
direction scattering suppression and that a moderately wide polydispersion of droplet sizes is capable of
producing the experimentally observed bright ring of colored light.

1. Introduction and Overview of Correlated Scattering
If one looks at a distant street lamp through a window
pane fogged by condensation, one often sees a bright
ring of colored light surrounding the street lamp.'
The ring of light is red at its outer edge and blue at its
inner edge. The region between the inner edge of
the ring and the street lamp is dark (see Plate 44).
Under especially favorable circumstances one some-
times sees a second dim ring of light surrounding the
bright main ring. The qualitative explanation of
this phenomenon has long been known.2 4 The dis-
tant street lamp acts as a coherent light source over
distances of many condensation droplet diameters.
Light diffracted by the perimeter of each of the
condensation droplets reaches the observer. This
light possesses a phase that depends on the positions
of both the droplet on the window pane and the
observer. The diffraction pattern is modulated by
the interference of the phases of the light scattered by
all the droplets. The destructive interference of the
phases for near-forward scattering causes the dark
region immediately around the street lamp, and
constructive interference causes the bright ring of
colored light surrounding the dark region. Cloud
corona is also the result of diffraction of sunlight or
moonlight by small water droplets in clouds.4 5 The
reason why the center of the cloud corona pattern is
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bright rather than dark is because water droplets are
separated by many diameters in a cloud whereas they
are nearly touching on a window pane. This differ-
ence in density greatly influences the interference
modulation of the diffraction pattern.

As the interference of the phases of the diffracted
light from the condensation droplets plays a major
role in producing the dominant features of scattering
by a fogged window pane, this phenomenon is an
example of what is known as correlated scattering.6
The intensity of the bright ring is greater than that
caused by incoherent scattering by a purely random
distribution of particles, in which the intensities that
are due to individual particles are additive. Yet it is
less than that caused by coherent Bragg scattering by
a crystal, in which each particle is located at a
well-defined lattice position. Because the condensa-
tion droplets on a window pane are nearly touching,
they are analogous to a two-dimensional liquid. If
the center of a given droplet of radius a is at the
coordinate r and the center of another droplet is at rj,
geometric packing constraints alone dictate that the
nearest neighbors and next-nearest neighbors are
preferred distances away from the given droplet, even
though, over large distances, the relative positions of
the droplets are random. The geometry of the scat-
terers is then one of short-range semiorder and
long-range disorder. This produces scattering that
is stronger than incoherent scattering by randomly
positioned particles yet weaker than coherent scatter-
ing by particles on a crystal lattice.

There are a number of mathematical models of
correlated scattering. In general, the more sophisti-
cated the model, the more predictive power it has.
In perhaps the lowest-level model, the condensation
droplets on the window pane are considered as form-
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ing many domains of a polycrystalline array.7-9 If
light is normally incident, the aggregate of the Bragg
spots that are due to each domain forms circular
rings, the innermost of which occurs at the scattering
angle 0, which is given by

dsin0=X, (1)

where X is the wavelength of the light, and d is the
nearest-neighbor separation. The intensity of the
scattered light at the Bragg angles is proportional to
the scattered intensity of a single particle of radius a.
If the random nature of the droplet positions is
modeled by a perturbation of the location of each
condensation droplet by a small random amount, the
first Bragg ring becomes broader and less intense
while the others are extinguished, qualitatively repro-
ducing the fogged window-pane observations. We
call this model the two-size model (i.e., droplet radius
and separation) of correlated scattering. The great-
est defect of this model is that, although it is success-
ful in predicting where the bright scattered ring will
occur and why the center region is dark, it cannot
quantitatively predict the exact behavior of the scat-
tered intensity as a function of angle. It also cannot
trace the evolution of features in the scattered inten-
sity as a function of droplet density from the dilute
cloud corona limit to the high-density window-pane
limit.

A brute-force method for calculating correlated
scattering consists of measuring the positions ri of all
the droplets and performing the scattering sum

N

E(0) = j Ea(0)exp[i(ko - ks) * ri] (2)

directly, where Ea(0) is the scattered electric field that
is due to a single particle of radius a, ko is the wave
vector of the incident light (see Fig. 1), and k, is the
wave vector of the scattered light. The complex

X

-� 0

Y

Fig. 1. Geometry for correlated scattering. The ith scatterer is

located at ri, the incident wave vector is ko, and the scattered wave
vector is k,. The scattering angle is 0.

exponential in Eq. (2) is the position-dependent phase
of the light scattered by the ith particle. The direct
summation procedure gives reasonable results if the
experimental scatterer positions r are accurately
measured.' 0 But it may produce a few prominent
streaklike scattering artifacts in simulations if dot
scatterers are painted by hand onto a transparent
substrate and subtle artist-generated patterns are
present in the purportedly random distribution.4

A more sophisticated mathematical model for calcu-
lating correlated scattering employs the static pair-
correlation function" g(r). If a(rj) is the average
macroscopic number density of condensation droplets
at the position rj and if A(rj - ri) is the local micro-
scopic number density of droplets at rj, given that
there is a droplet at the nearby position ri, the static
pair-correlation function g(r) is defined by'

A(r - r) = g(rj - rJ)0(rj). (3)

It is interpreted as the position-dependent fluctuation
in the local microscopic number density from the
average macroscopic number density. For an isotro-
pic material, g(r) depends only on the magnitude of r.
At the nearest-neighbor and next-nearest-neighbor
positions, where the local microscopic density is
larger than average, g(r) > 1, and between the
nearest-neighbor and next-nearest-neighbor posi-
tions, where the local microscopic density is smaller
than average, g(r) < 1. As the droplets cannot
overlap, g(r) = 0 for r < 2a, and, as the arrangement
of the droplets is disordered when examined over
large distances, limr-, g(r) = 1. The dependence of
the pair-correlation function on the density of drop-
lets is illustrated in Fig. 2.

If the positions of the droplets are experimentally
known, a histogram representation of g(r) may be
computed by statistical methods." Alternatively, in
simulations random nonoverlapping scatterer posi-
tions are generated by a computer, and a histogram of
g(r) is again computed by statistical methods. This
method has been employed extensively,' 2- 5 because
the two-dimensional noninteracting hard-disk sys-
tem (i.e., the generic system for which condensation
droplets on a window pane is an example) possesses a
long-range order-disorder phase transition at an area
fraction f 0.69, where

f ra2c (4)

is the fraction of the total area covered by disks.
Because g(r) depends on the area fraction and because
the scattered intensity depends on g(r), the intensity
exhibits different features as f is varied.

A third method of computing the pair-correlation
function is by the use of an analytical model of disk
packing. A recently employed example is the free-
energy model.' 6 In this model the Fourier trans-
form of g(r) for the noninteracting hard-disk system
is obtained as an analytical function. As is shown in
Section 2, the scattered intensity is proportional to
the Fourier transform of the pair-correlation function.
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2. Pair-Correlation-Function Model
of Correlated Scattering
Consider N condensation droplets of radius a on a
window pane at the random positions ri for 1 < i <
N. Let light of wavelength and wave vector ko be
normally incident upon the window pane, as in Fig. 1.
The scattered electric field is given by Eq. (2), and the
scattered intensity may be written as"

I(0) = E*(0) E(o) = Ia(0)

N N

x N+ E exp[iK. (rj - r)] ,
jdi

(5)

where Ia(0) is the scattered intensity that is due to a
single droplet of radius a. The quantity

K _ k - k (6)
is known as the scattering momentum transfer. For
elastic scattering, as we have in the window-pane
situation,

I K I = K = 2k sin(0/2).
The first term in Eq. (5) is the incoherent scattering
sum, and the second term represents the interference

I IJ, I , , of the phases of light scattered by all the droplets.
1 2 3 4 5 If the sums over droplets are converted to integrals

2 3a over the window-pane coordinates, Eq. (5) becomes"
Fig. 2. Pair-correlation function for noninteracting hard disks
with area fractions (a) f = 0.05, (b) f = 0.2, (c) f = 0.5 employing the
free-energy model of Section 2. The nearest-neighbor peak is
denoted by N and the next-nearest-neighbor peak is denoted
by NN.

Thus scattering calculations that use a histogram
representation of g(r) are prone to numerical conver-
gence problems. These problems are bypassed if an
analytical approximation to the Fourier transform of
g(r) is employed.

The purpose of this paper is to examine the details
of correlated scattering in the free-energy analytical
model for the Fourier transform of g(r). The pair-
correlation-function model of scattering by droplets
on a window pane merits study, as it provides many
insights into the scattering process that the two-size
model cannot. In particular, it handles in a natural
way the situation of condensation droplets of many
different sizes and the effect this has on the scattered
intensity. The body of this paper proceeds as follows.
In Section 2 we briefly summarize the pair-correlation-
function model of correlated scattering by monodis-
perse particles and by particles of two different sizes.
We also give the free-energy model analytical formula
for the Fourier transform of g(r). In Section 3 we
present the results of our scattering calculations.
Finally in Section 4 we analyze photographs of corre-
lated scattering by condensation haze on a camera
lens in order to determine the average size of the haze
particles.

I(0) = Ia(0)(N + Nu f d2r[g(r) - lexp(iK r)

+ 2 fd2rexp(iK r) |, (8)

where we have assumed that the macroscopic number
density of condensation droplets is constant over the
window pane. As in Eq. (5), the first term in Eq. (8)
represents incoherent scattering, and the second
term represents the scatterer phase correlation.
The third term represents diffraction by the entire
collection of scatterers. It ensures that scattering in
the forward direction is coherent. But it is negligible
compared with the first two terms when 0 is greater
than a few thousandths of a degree. As its impor-
tance does not extend beyond the observed angular
size of the source, the third term in Eq. (8) is omitted
in the remainder of this work.

For an isotropic system, the azimuthal integral in
Eq. (8) may be performed to give

I(0) = NIa(0) 1 + 2rru rdr[g(r) - 1]

x Jo(2kr sin 0)} = NIa(0)S(0), (9)

where the quantity in braces is called the scattering
structure factor, and where Jo is the zero-order Bessel
function. With the exception of the leading factor of
unity and the number density a, the structure factor
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is the Fourier transform of g(r) - 1. If scattering by
each condensation droplet is dominated by diffrac-
tion, then

Ia(O) = i42R2° ka s )in (10)

where Io is the intensity of the incident light, and R is
the distance from the window pane to the observer.
In actuality, Ia(O) for near-forward scattering should
also contain the effects of specular reflection off the
droplet and transmission through it.5 But because
these two effects are proportional to a2 and because
the observed scattering pattern corresponds to scatter-
ing angles smaller than that of the first diffraction
minimum at

1.22X
sin 0= 2 ' (11)

Eq. (10) is a reasonable approximation to Ia(0) in the
angular region of interest. From Eq. (9) one can see
why g(r) in histogram form obtained from statistical
data may cause numerical convergence problems
when the integral over r is performed. As r ap-
proaches infinity, g(r) - 1 approaches zero while rJo
(2kr sin 0) diverges as r . If g(r) - 1 has not been
computed for sufficiently large r or if the statistical
noise in the histogram is sufficiently large, the g(r) -
1 factor will not counterbalance the divergence of the
rJ0 (2kr sin 0) factor. Employing an analytical model
for S(0) sidesteps these convergence considerations.

Thus far it was assumed that all the condensation
droplets on the window pane were the same size.
In order to model the effects of scattering by a
polydispersion of condensation droplets crudely we
now examine scattering by particles of two sizes.
Consider N, droplets of radius a, and N2 droplets of
radius a2. Their average macroscopic number densi-
ties are a, and a2, respectively, and their area frac-
tions are

f = Tral 201, (12)

f2 = ra 2
2a2. (13)

The total area fraction is

f = fl + f2- (14)

Often the individual area fractions f, and f2 are
desired if one knows only the total area fraction f and
the indivdual number densities. The individual area
fractions are then given by

f

[1=1

a 2

f2= \a,) a1 (15)

a2 2a 2

a,) a1

As Ia(o) for diffractive scattering by large particles is
proportional to the fourth power of the radius, if
scattering by the collection of droplets were purely
incoherent, the intensity that is due to a few large
droplets would dominate the intensity that is due to
many small ones. This is not observed for a corre-
lated system. Thus the intensity nonadditivity pro-
duced by phase correlation effects is expected to be
important for this system.

Let A11(rj - ri) be the local microscopic number
density of type-1 droplets at rj, given that there is a
type-1 droplet at ri, and let A21(rj - ri) be the local
microscopic number density of type-2 droplets at rj,
given that there is a type-1 droplet at ri. Let the
local microscopic number densities A12(rj - ri) and
A2 2(rj - ri) be defined similarly. There are now four
pair-correlation functions that describe fluctuations
in the local microscopic number densities from the
average macroscopic number densities.' 7 They are
defined by

A11(rj - ri) = gll(rj - ri)ay(rj),

A21(rj - ri) = g2 1(rj - rj)0r2(rj),

A12(r - r) = g 2 (ri - ri)o(rj),

A22(r - r) = g2 2 (r - ri)ar2(rj).

For an isotropic system, symmetry dictates that

g21(r) = g92 (r).

(16)

(17)

The light scattered by this system of particles is

I(0) = NI,(0)S,1 (0) + N212(0)S 22 (0) + (NlN2 )'/2

x [E,*(o) E2(0) + E2*(0) E,(0)]S 2(0), (18)

where the structure factors Sij(0) are given by

Sij(0) = j+ 2r((aj)y/ 2 f rdr[gij(r) - 1]

x J0 (2kr sin 0). (19)

Equation (18) contains two departures from the
incoherent additivity of intensities. The first is the
type-1-type-1 and type-2-type-2 phase correlation
factors of Eq. (19) that were encountered above.
The second is the type-1-type-2 phase correlation
factor that is proportional to S12(0) in Eq. (18).

Analytical expressions for the structure factors for
a mixture of M types of noninteracting hard disk are
given in Ref. 16. As the number of disk sizes in-
creases, the number of structure factors increases,
and their analytical representation becomes more
complicated. This is one reason why we consider
mixtures of only two types of condensation droplets.
The other reason is that the results described in
Section 3 are sufficiently general that considering
many different sizes would almost certainly lead to
the same conclusions. The structure factor expres-
sions in Ref. 16, unfortunately, contain a number of
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misprints. Thus we reproduce the corrected equa-
tions here. For disks of a single size we have

S(0) = (C(o) + )-', 4(20)

where, from Ref. 16, Eqs. (4.4), (4.6), (4.8), (4.9), and
(6.8),

4f 22Jk(2ka sin 0)0

+ JMk i 0) 2J,(a sin 0

(1 - f)2 Jo(ka sin [ ka sin 0 ]

[ f2 2f3 I[2J(ka sin 0)12
[(1 - f)2 +a(1 f)3J[ kasin J (21)

This expression satisfies the forward-scattering limit' 8

S(0) = (1 +f) (22)

and exhibits the long-range order-disorder phase
transition at f 0.754. For a binary system, Ref.
16, Eq. (4.9), gives the matrix equation

[SU(] = [C + 1
C1C

where

Cii = X2ai2fis kai in 0)] + 4)

x 2J(ka, sin 0)] + 4XOfi'
kai sin O J 0Xf

C12 1'

22 + 
(23)

<,aifJo(kai sin 0)

2J,(2kai sin 0)]
2kai sin 0

2

x 2Jl(ka2 sin 0)
L ka 2 sin0 J

x 2J 1(ka2 sin 0)
L ka 2 sin0 

[2Jl(ka 1 sin 0)]
L ka, sin 0

+ 2 1a2(fif 2)1/2Jo(ka1 sin 0)

+ 2a 1(flf 2)'/ 2Jo(ka2 sin 0)

(fi f/ (a, + a2)2

+ Xo0f f2)112 a1a2

x2J,(ka, sin 0 + ka2 sin 0).
L k(ai + a2)sin 0

Xo = (1 f)-l

X = (a+ ( ( f - 2

X2 = (A2i+ :2 (1 - f )2 + 2 + (1 - f ).

0 (degrees)
Fig. 3. Scattered intensity as a function of scattering angle from
Eqs. (9), (10), (20), and (21) for a = 7.5 pum, = 0.6328 plm, and for
a number of area fractions in the range 0.001 < f < 0.7. In this
model, the long-range order-disorder phase transition occurs atf =
0.754.

either Eqs. (9), (10), (20), and (21) for droplets of one
size or Eqs. (10), (18), and (23)-(25) for a binary
mixture of droplet sizes.

3. Results of the Model Calculations
Our model calculations, performed for several mono-
dispersions and binary mixtures of droplets, produced
six major results. The first three results are con-
cerned with monodispersions, the next two with
binary mixtures of similar size droplets, and the last
result is for a binary mixture of vastly dissimilar size
droplets. These results are as follows: (1) The scat-
tered intensity was calculated as a function of 0 for a
monodispersion with a = 7.5 m, = 0.6328 [Lm and
for many different area fractions in the range 0.001 <
f < 0.7. The angle 0 ranged from forward scattering
to slightly less than the second diffraction minimum
at 0 = 5.370. The results are shown in Fig. 3. For
f 0.001, the droplets are sufficiently dilute that,
besides the nonoverlap constraint, there is enough
room available so that the droplets have no difficulty
in positioning themselves randomly. Thus the corre-
lation function is well approximated by g(r) = 1 for
r > 2a, and Eq. (9) reduces to

I(0) NIa(0).
(24)

(25)

Our model calculations for scattering by condensa-
tion droplets on a window pane consist of the use of

(26)

The central diffraction maximum appears promi-
nently, corresponding to the situation encountered in
cloud corona.4 '5

(2) When the area fraction is slightly less than that
for the order-disorder phase transition, a prominent
scattering peak rises up at

X
sin 0 = -2

2a

This corresponds to the bright colored ring men-
tioned in Section 1. This peak grows higher and
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narrower as the area fraction increases and evolves
into the coherent first Bragg peak at the order-
disorder transition.7-9 Comparison with Eq. (1)
shows that for high area fractions, nearest-neighbor
droplets are almost touching. Comparison with Eq.
(9) shows that this enhancement occurs close to the
first diffraction zero. Thus the bright ring of light
mentioned in Section 1 is more due to the short-range
semiordering of the condensation droplets on the
window pane than it is to diffraction by individual
droplets. As a result, the bright ring would remain
largely unchanged if the condensation droplets did
not have exactly circular perimeters and the resulting
diffraction pattern of an individual droplet were more
complicated. In addition, whenever the dark region
is observed inside the bright ring of light, the area
fraction of the droplets on the window pane is quite
high, at least f 0.6 and possibly as high as f 0.7.

Figure 4 shows the scattered intensity in greater
detail for f 0.7 just below the long-range order-
disorder transition. In addition to the near-forward
angle scattering suppression and the first scattering
peak of expression (27), there is a much weaker and
broader second scattering peak at

1.84X
sin 0 2 (28)

If this were due solely to diffraction, it would occur at
sin 0 1.72X/2a, and if it were due solely to
short-range ordering, it would occur at sin 0 
2X/2a. The actual peak represents a combination of
both effects.

(3) Plate 1 shows correlated scattering that is due to
haze on a camera lens focused on a distant mercury
street lamp. The light from the street lamp, al-
though appearing bluish white to the naked eye, is in
actuality dominated by four spectral lines, blue at
XB = 0.4358 Im, green at XG = 0.5461 ALm, yellow at
Xy = 0.5791 arm, and red at AR = 0.6198 Am. The

1.01 , , ,

0.5 

0 1 2 3 4 5
0 (degrees)

Fig. 4. Scattered intensity as a function of scattering angle from

Eqs. (9), (10), (20), and (21) for a = 7.5 pum, A = 0.6328 pum, and f =

0.7. The first scattering peak occurs at sin 0 = X/2a, and the

second scattering peak occurs at sin 0 = 1.84X/2a.

1.0

0 2 3 4 5
0 (degrees)

Fig. 5. Scattered intensity as a function of scattering angle from
Eqs. (9), (10), (20), and (21) for a = 7.5 pum, X = 0.4358 plm (B), X =
0.5461 pm (G), X = 0.5791 pum (Y), and X = 0.6198 pum (R), and for

f=0.7.

blue, green, and yellow lines are produced in the
emission spectrum of mercury, and the red line is
produced by fluorescence of a coating on the inner
surface of the glass envelope of the lamp.'9 Figure 5
shows scattering that is due to the mercury street
lamp wavelengths. The relative intensities of XB, XG,

Xy, and AR and the relative sensitivity of the human
visual system to these wavelengths have not been
taken into account. Still, the narrowness of the first
scattering peak for f 0.7 implies that good color
resolution should occur at high-area fractions.
Although Figs. 3-5 were calculated for a = 7.5 [Lm,
the results are identical for any other wavelength or
droplet size, except for a scaling factor, as each term
in Eqs. (9), (10), (20), and (21) is a function of only ha
sin 0.

(4) Consider a clean glass surface that is relatively
free of fingerprints, grease spots, and dirt. In the
absence of these large potential nucleation sites,
moisture condenses at all locations on the window
pane at roughly the same rate, producing nearly
equal-size condensation droplets. To model this situ-
ation we considered binary mixtures of droplets in the
range 1.0 < a 2/a, < 1.4. Typical results for equal
numbers of the two types of droplet and for f = 0.7 are
shown in Fig. 6. If the scattering were purely inco-
herent, the angular width of the first scattering peak
would extend from the inner edge of the a2 peak to the
outer edge of the a, peak. The nonadditivity pro-
duced by phase correlation narrows the binary mix-
ture scattering peak to being no wider than either of
the two component droplet peaks. Thus, if the two
types of droplet are similar in size, their individual
light-scattering signatures are not observed. Rather,
they act as a single semiordered structure of monodis-
perse particles of some average radius. This radius
was found to be well approximated by the intensity-
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1.0

0_
1.02

(b)2

1 2 3 4 5
0 (degrees)

Fig. 6. (a) Scattered intensity as a function of scattering angle for
al = 6.75 pm, f = 0.7 (curve 1); a2 = 7.5 pm, f2 = 0.7 (curve 2); and
the binary mixture a = 6.75 m, a2 = 7.5 pum, fi = 0.3133, 2 =
0.3867, and al = 2 (dashed curve). All these curves are for =
0.6328 pum. The size ratio is a2/a = 1.11. (b) Scattered inten-
sityas a function of scatteringangle foral = 6.0 pm,f1 = 0.7 (curve
1); a2 = 7.5 pum, 2 = 0.7 (curve 2); and the binary mixture a = 6.0
pum, a2 = 7.5 pum, fi = 0.2732, f2 = 0.4268, and l = 2 (dashed
curve). All these curves are for X = 0 0.6328 pm. The size ratio
is a2 /a = 1.25.

weighted average

__(aloa,)a, + (a2
4a 2)a2

aave= (al a1 + a 2
4 a2 (29)

producing a first scattering peak at

X
sin .= - * (30)2aave

(5) The continued narrowness of the first scattering
peak for high-area fractions and a reasonably narrow
polydispersion of droplet sizes yield good color resolu-
tion of the light from a distant mercury street lamp.
This is shown in Fig. 7. Again the relative strength
of the four street lamp wavelengths and the relative
sensitivity of the human visual system have not been
taken into account. But the important point is that

0
1.0

(b)

ol~~~~~ A

1 2 3 4 5
0 (degrees)

Fig. 7. (a) Scattered intensity as a function of scattering angle for
the binary mixture of Fig. 6(a) and = 0.4358 pm (B), = 0.5461
pum (G), = 0.5891 ptm (Y), and = 0.6198 pum (R). (b) Scattered
intensity as a function of scattering angle for the binary mixture of
Fig. 6(b) and the wavelengths of Fig. 7(a).

the condensation droplets do not have to be monodis-
perse for a bright colored ring of light to be observed
through a fogged window pane. A reasonably nar-
row polydispersion of droplet sizes produces the effect
just as well, leading to the frequency of this observa-
tion. This situation is contrasted with cloud corona,
where it is uncommon to see more than the aureole
ring, as the polydispersion of cloud droplets must be
much narrower to see additional rings.5

(6) Now consider a glass surface that has not been
precleaned. Small particles of dirt and grease on the
surface act as large nucleation sites for condensation.
As a result both small condensation droplets as above
and more substantial droplets that are due to the
larger nucleation sites form. We modeled this situa-
tion with binary mixtures of droplets that have 2.0 
a 2/a, < 3.0. Sample results are shown in Fig. 8.
For a2 /a = 2.0 and purely incoherent scattering,
each type-2 droplet should diffractively scatter 24 =
16 times more light than each type-1 droplet. As
there are 2.57 more type-1 droplets than type-2
droplets, the type-2 scattering peak should be 6.2
times as intense as the type-1 scattering peak. In
actuality, for the binary mixture, phase correlation
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Fig. 8. Scattered intensity as a function of scattering angle for

a, = 7.5 pLm,fi = 0.7 (curve 1); a2 = 15.0 pLmf2 = 0.7 (curve) 2); and

the binary mixture a, = 7.5 pAm, a2 = 15.0 pLm, fi = 0.275, f2 =

0.425, and 02 = 2.57 ul (dashed curve). All the curves are for X =

0.6328 plm. The size ratio is a2 /a, = 2.0.

renders both peaks equally intense. Also significant
is the fact that the size difference between the two
droplet types is now large enough that both compo-
nent peaks appear separately at

X
sin 01 2

sin 02 2 .(31)

The mixture acts as two interpenetrating semior-
dered structures, one of nearest-neighbor separation
2a, and the other of nearest-neighbor separation 2a2.
Furthermore, if many droplet sizes were present and
the range in sizes were a factor of 2 or larger, the
scattered intensity would no longer possess the near-
forward direction suppression. The intensity would
be a rather featureless monatonically decreasing func-
tion of 0.

4. Photographic Analysis

A number of photographs were taken of a mercury
street lamp - 45 m away. We determined the wave-
lengths of the lamp's four component colors by
photographing the lamp through a diffraction grating
and by checking the results with the published mer-
cury emission spectrum.2 0 Before each condensa-
tion droplet photograph was taken, the camera lens
was cleaned. It was then breathed on in order to
produce the condensation layer on the lens. The
condensation layer evaporated in 5 s. During the
evaporation, the bright ring of light that is due to the
first scattering peak remained unaffected, indicating
that evaporation proceeded by the droplets' thinning
while preserving the same area of contact on the
window pane.' A representative photograph of the
bright scattering ring and the near-forward angle
scattering suppression is shown in Plate 44.21 In each

condensation droplet photograph the angular size of
the red edge (R = 0.6198 m) and the blue edge
(XB = 0.4358 lm) of the bright ring of light was
determined by scaling from the angular size of the
image of the street lamp. Using expression (30), we
obtained the average radius of the droplet size distri-
bution. These results are shown in Table 1. The
convolution of the scattering pattern with the angu-
lar size of the street lamp was taken into account.
The droplet radii we obtained by using the blue and
red edges of the bright scattering ring are similar,
indicating the internal consistency of expression (30).
It is also interesting that the size of the condensation
droplets is generally reproducible, there being only a
50% difference between the largest and the smallest
values of aave obtained in different trials.

A number of condensation droplet photographs
were also taken when the camera lens was not
cleaned between exposures. Residue from evapora-
tion gradually built up on the lens, providing large
nucleation sites, and within a few trials, scattering by
the haze on the lens resembled the situation shown in
Plate 45. Here the size distribution of condensation
droplets is bimodal, with the smaller scattering ring
corresponding to aave 37 tm and the larger scatter-
ing ring corresponding to aave 11 tim. The situa-
tion resembles the calculated intensity of Fig. 8.
When the lens had not been cleaned, a few exposures
later the intensity profile became rather featureless,
as in Plate 46, which indicates a wide polydispersion
of condensation droplet sizes.

As a final consistency check, the pair-correlation
function model of correlated scattering assumes a
coherent light source so that the phases of the light
scattered by the different droplets are correlated in
the proper manner. The mercury street lamp, how-
ever, had an angular size of 0.24°, as seen by the
observer 45 m away. The resulting coherence width
of the mercury source at the window pane is then22

0.32X
W A =50 m. (32)

A given condensation droplet and its nearest neigh-
bors lie within the source coherence width, and as a

Table 1. Average Droplet Radius from Expression (30) based on the

Blue Edge (0.4358 urn) and the Red Edge (0.6198 Rum) of the Bright
Scattering Ring for Eight Photographs of Correlated Scattering

Produced by Condensation Droplets on a Camera Lensa

Photograph
Number aave 0.

4 3 5 8
pLm (pm) ave

0-6198
Am (pom)

4 17.4 15.7

8 14.5 16.1

10 12.8 16.4

18 16.4 17.2

19 12.0 12.0

21 12.2 11.2
22 12.8 13.4
23 15.3 12.4

aAll average radii are ± 0.6 pm.
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result, the phases of their scattered light are corre-
lated as described in Section 2. In summary, al-
though the two-size model of correlated scattering is
successful in predicting where the bright ring of
scattered light occurs, the pair-correlation-function
model provides valuable physical insight as to how
the scattered intensity behaves when condensation
droplets of differing sizes are present on the window
pane. It also predicts the densities that are required
for producing the near-forward direction scattering
suppression.

This work was supported in part by the National
Aeronautics and Space Administration grant #NCC
3-204.
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