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Spiral morphology-dependent resonances have been observed in a tilted optical fiber. The polarization-
preserving and the cross-polarized elastic-scattering spectra for plane-wave illumination show that the
wavelengths of the resonances are blueshifted quadratically as the fiber tilt angle increases. When a focused
Gaussian beam illuminates the fiber at its edge, the resonances are blueshifted and broadened as the detector
is offset from the scattering plane with the maximum scattering intensity. The blueshift with focused beam
illumination is also a consequence of the spiral resonances.  1998 Optical Society of America

OCIS codes: 060.2400, 160.2290, 150.2950.

Morphology-dependent resonances (MDR’s) have been
observed in various optical cavities such as micro-
droplets,1 microdisks,2 and optical f ibers.3 The reso-
nant internal electric f ield is greatly enhanced because
after each round trip inside the cavity the circulating
MDR wave is in phase with the incident wave entering
the cavity. One achieves more-eff icient coupling of an
incident wave to an MDR by focusing a Gaussian beam
near the cavity edge. Since a focused Gaussian beam
is composed of an angular spectrum of plane waves,4 we
can gain insight into focused Gaussian beam coupling
to fiber MDR’s by studying the resonances produced by
plane-wave illumination of a tilted f iber.

In this Letter we report, for the first time to our
knowledge, experimental evidence for the existence of
spiral MDR’s when the optical f iber is tilted by a
small angle u from the perpendicular to the incident
beam propagation direction. In the elastic-scattering
spectra the wavelength l of spiral resonance is pre-
dicted to blueshift quadratically as the fiber tilt angle
increases.5,6 We observed the quadratic blueshift of
spiral MDR’s in all four polarization configurations,
TE–TE, TM–TM, TE–TM, and TM–TE, for an un-
focused laser beam. We also observed that when the
waist of a perpendicularly incident focused laser beam
was narrower than the f iber diameter and was fo-
cused at the f iber edge, the MDR’s were blueshifted
and broadened as the detector was offset from the scat-
tering plane with the maximum scattering intensity.
The MDR blueshift of a nontilted fiber illuminated by
a focused Gaussian beam that is composed of an an-
gular spectrum of plane waves is consistent with the
blueshift of a tilted fiber with plane-wave illumination.

Figure 1 shows a tilted f iber in the laboratory
reference frame. An incident plane wave propagates
along the Xlab direction. A ray that is incident upon
the tilted fiber at its edge is refracted into the f iber
with internal angle a, which is the angle between the

spiral and the cross-sectional plane of the fiber. The
internal ray has velocity components both parallel and
perpendicular to the f iber axis. The ray is conf ined
beneath the f iber surface and spirals along the f iber
via successive total internal ref lections. An upward-
propagating spiral resonance requires that the spiral
wave be in phase with the incident wave farther
up the tilted f iber. The upper incident wave of the
same phase front must travel an extra distance d to
reach the tilted fiber. The phase-matching condition
between the spiral MDR and the external incident wave

Fig. 1. Internal spiral wave of a tilted optical fiber with
respect to the laboratory reference frame. The phase-
matching condition between the spiral mode and the
external incident wave reduces the effective cavity length
for the spiral wave by a distance dyn, where n is the f iber
refractive index.
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reduces the effective cavity length for the spiral wave
by a distance dyn, where n is the f iber’s refractive
index. For a small tilt angle, the spiral MDR with a
fixed partial wave number l of the MDR (an integer
number of wavelength that f its into the cavity length)
is blueshifted as follows5:

l ø
2pan

l
2

pa
nl

u2, (1)

where 2a is the f iber diameter.
Experimentally, we employed an optical glass f iber

of 125-mm diameter. An external-cavity tunable-diode
laser with a wavelength of 664–683 nm, a linewidth
of ø1025 nm, and a scanning resolution of ,0.01 nm
was used. Elastic scattering by the fiber was lock-
in detected by a photodiode with an acceptance angle
,1±. The incident and scattered polarizations were
set either vertically (TM; the electric f ield was parallel
to Zfiber at u ­ 0±) or horizontally (TE; the electric
field was perpendicular to Zfiber at u ­ 0±) in the
laboratory frame. For experiments with a tilted f iber,
the fiber was positioned in a goniometer ø1 mm in
diameter at the center of the unfocused laser beam
and with tilt angle uncertainty of ø0.1±. When the
fiber was tilted in the beam, the physical height of
the scattered light shifted. Thus it was necessary to
readjust the photodiode height each time the f iber
tilt was increased. For experiments with a focused
Gaussian beam the fiber was mounted vertically and
was transversely displaced from the center of the beam
focal waist by ø60 mm.

For the data shown in Fig. 2(a), both the incident and
the scattered light were horizontally polarized (TE–
TE) and the scattering angle was 90±. A series of
MDR’s with Q ø 104 denoted a, b, and c were observed
for normal incidence of the unfocused laser beam. The
resonant wavelength of these MDR’s blueshifted with
increasing u, and Fig. 2(b) shows a blueshift with u2

dependence. The average intercept-to-slope ratio of
the u2 f its is consistent with the ratio 2n2 derived from
relation (1) and with n ­ 1.456 for fused silica. How-
ever, the values of the intercepts and the u2 coefficients
are ø30% smaller than those estimated with l ­ 600,
that is deduced from matching the measured spectra
with Mie calculations. When the f iber was tilted in
the TM–TM configuration, both the amplitude and the
Q of the TM resonances decreased substantially faster
than those of the TE resonances. The TM resonances
also blueshifted quadratically with u, but the u2 f its
suggest larger coeff icients and a systematic intercept
shift of ø0.3 nm compared with that of the TE reso-
nances. The polarization dependence of the u2 coef-
ficient requires more-sophisticated modeling than the
proposed geometric argument.

Cross-polarized scattering with an unfocused laser
beam also exhibited MDR peaks, and these peaks
blueshifted as the f iber was tilted. At 90± scatter-
ing angle and at u ­ 0±, the TE–TM and TM–TE
spectra consisted of only a broad noise background.
As u was increased, the cross-polarized MDR’s ap-
peared and were blueshifted quadratically with u.
The u2 f its to the peaks with the TE–TM and the

TM–TE configurations are consistent with those of
the TM resonances. TE resonances also occurred in
the cross-polarized configurations but were substan-
tially weaker than the TM resonances. The presence
of both TE and TM resonances in the cross-polarized
spectra is due to the slight depolarization of the spiral
MDR wave at each total internal ref lection.7 The am-
plitude difference between the TE and TM resonances
in the cross-polarized configurations requires further
investigation.

MDR’s were also observed by use of focused Gauss-
ian beam illumination at the f iber edge for normal
incidence su ­ 0±d. The MDR peak-to-background
ratio was much improved. The Gaussian beam was
focused by a 5-cm fy7 lens, and the elastic-scattering
spectra were measured at 120± scattering angle, with a
detector-acceptance angle of ø0.5±. Figure 3(a) shows
the TM–TM spectra with the three MDR’s denoted
d, e, and f . The bottom spectrum was measured
with the detector at the scattering plane with the
maximum scattering intensity. The middle and the
top spectra were measured with the detector height
offset by 2 and 4 mm, respectively, corresponding to
a change in vertical observation angle from 0± to 1±

and 2±. A slight blueshift and broadening were noted

Fig. 2. Elastic-scattering spectra detected at a 90± scat-
tering angle from a tilted fiber that is illuminated by an
unfocused beam. The tilt angle is u. (a) Both the inci-
dent and the scattered light were horizontally polarized
(TE–TE). (b) Blueshift of the a, b, and c MDR’s with u2

dependence.
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Fig. 3. Elastic-scattering spectra of a perpendicularly in-
cident su ­ 0±d focused Gaussian beam at the fiber edge.
(a) TM–TM spectra detected at 120± scattering angle.
The three spectra were measured with the detector at the
maximum scattering intensity (0 mm) and with the de-
tector height offset by 2 and 4 mm. The f peaks in the
three spectra are normalized. The d, e, and f MDR’s
were broadened and slightly blueshifted as the detector-
height offset increased. (b) TE–TE and TE–TM spectra
measured at 0-mm height offset. The TE–TM spectrum
shows a wavelength shift and is ø0.5% of the TE–TE
intensity.

when the detector-height offset was increased. The
slight blueshift is consistent with larger tilt angles in
the angular spectrum of plane waves that form the
focused Gaussian beam. The TM–TE spectra had
similar detector-height dependence. The TM–TE
spectrum at the height for maximum scattering inten-

sity resembles the TM–TM spectrum but with only
ø5% of the TM–TM intensity.

A focused Gaussian beam with TE-incident polariza-
tion was also studied. Figure 3(b) shows the TE–TE
spectrum compared with the TE–TM spectrum mea-
sured at 120± scattering angle at the maximum scat-
tering plane. The TE–TM spectrum has a scattering
intensity of only ø0.5% of the TE–TE spectrum and re-
veals a wavelength shift which suggests that the TE–
TM MDR’s are the TM resonances. The presence of
the TM resonances in the TE–TM configuration with
focused Gaussian beam illumination at the fiber edge
is consistent with the observation of the TM spiral
modes in the TE–TM configuration of a tilted f iber
with plane-wave illumination.

In summary, we have observed quantitative evi-
dence of spiral MDR’s in a tilted optical fiber. The
resonances in each of the four polarization configu-
rations are blueshifted quadratically as the f iber is
tilted. The TM spiral modes for cross-polarized scat-
tering appear to have a larger amplitude than the
TE spiral modes. Using a Gaussian beam focused at
the f iber edge, we find that the resonant wavelength
and linewidth are detector-height dependent. Such
detector-height dependence is consistent with the an-
gular spectrum of plane waves that form the focused
Gaussian beam.
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