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Moment analysis of the cluster-size-distribution approach to scaling during coaguiation

T. W. Taylor
Department of Physics, C!eueland State Uniuersity, Cleueland, Ohio 44115

C. M. Sorensen
Department of Physics, Kansas State University, Manhattan, Kansas 66506

(Received 18 May 1987)

We study the temporal approach of a cluster size distribution to its asymptotic scaling form. By
enforcing consistency between the distribution's zeroth moment derived from both the Smolu-
chowski equation and the scaling distribution ansatz, we find values for the scaling exponents m

and z in terms of the scaling exponent ~ and the kernel homogeneity A, which are not equivalent to
their asymptotic, scaling forms. The predicted values do agree well, however, with intermediate
time values found in simulations by Kang, Redner, Meakin, and Leyvraz [Phys Rev. A 33, 1171
(1986)]. By enforcing consistency between all moment orders, the asymptotic exponent values are
found. These results imply the lowest-order moments approach their scaling values quickest.

I. INTRODUCTION

There has been considerable interest in recent years in
aggregation processes because of the wide range of appli-
cations. ' The main thrust of recent work has been in
irreversible aggregation and the scaling properties of the
cluster size distribution. ' The Smoluchowski coagula-
tion equation (SE) describes the time evolution of the
cluster size distribution in the mean-field approximation
and is the fundamental equation in this area of research.
The SE equation is

n„(t ) =M, k -'g(k /s) . (2)

Eq. (2) M, is the total number of monomers in the
system and must remain constant, g(x) is a time-
dependent scaling function whose form depends on the
coagulation kernel, and s is the cluster mean size. Using
this form for the cluster size distribution, scaling ex-
ponents are defined and a relationship between them is
found. Asymptotic values of the exponents have been
found for certain forms of the coagulation kernel.

In an effort to corroborate these theoretical results,
computer simulations of the cluster-cluster aggregation
process were recently performed by Kang et a/. They
uncovered some surprising results. An intermediate
time regime was found to exist where the scaling relation

n& ———,
' g K(i j )n;n, n„g K(j—, k)n, .

(i+j=k) j =1

In Eq. (1) n„ is the concentration of clusters with k
monomers per cluster and K(i,j ) is the coagulation ker-
nel and represents the rate coefficient for the clustering
process between clusters of size i and j.

One of the important findings in the study of the SE
with a homogeneous coagulation kernel is that for times
that are long compared to the characteristic coagulation
time, the concentration or size distribution has the scal-
ing form

was obeyed by the exponents, but the values of the ex-
ponents were not the predicted asymptotic values. The
exponents also changed in value with time, and the
length of time required to reach asymptotic values de-
pended on the form of the coagulation kernel. In an
effort to understand the computer simulations, it became
apparent that the long-time scaling solution to the SE,
Eq. (2), was not the solution at these intermediate times.
However, since the exponent relationship holds, it must
be a good approximation.

Lee, in an earlier work, was able to study many of the
features of coagulation processes using an approximation
for the cluster size distribution. He analyzed the mo-
ments of the distribution rather than the distribution it-
self. Even though the moment equation carried less in-
formation than the equation for the size distribution,
this procedure was effective because the gross features of
the coagulation process are present.

In this paper we describe a procedure which uses the
moment equations that lead to approximate exponent re-
lations. These relations are valid whenever the scaling
solution of the cluster size distribution is a good approx-
imation and the exponents are weak functions of time.
The key to this procedure is to demand consistency be-
tween the time evolution of the moments derived in two
ways: one using the long-time scaling form of the clus-
ter size distribution, Eq. (2), and the other using the SE,
Eq. (1). If we enforce consistency only for the zeroth
moment, the lowest-order description of the time evolu-
tion of the size distribution, we obtain additional ex-
ponent relations that agree with the results of Kang
et al. However, if consistency is required for all the mo-
ments, then Eq. (2) is the exact solution to the SE and
the previousIy determined asymptotic exponent relations
are obtained.

We interpret this to mean that as the cluster size dis-
tribution evolves from some arbitrary shape to the
asymptotic scaling form, the first distribution moment to
achieve its asymptotic value is the zeroth moment.
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It is helpful at this time to discuss the properties of
the coagulation kernel and the scaling form of the clus-
ter size distribution.

There are three main kernels that appear in the litera-
ture. ' These are the Brownian, product, and sum ker-
nels. The Brownian kernel K~(i,j )=(i~+j ~)(i ~+j ~)

is used to describe the Brownian coagulation of clusters.
The first term represents the geometrical collision cross
section, and the second term represents the size depen-
dence of the diffusion coefficients of the clusters. The
product kernel K (ij )=i~j~ has been used to describe
branched polymerization. The sum kernel K, (i,j)=i~
+j~ is used to describe the Brownian coagulation of
clusters when the diffusion coefficients are independent
of cluster size.

While the kernels above relate to real physical situa-
tions, the mathematical structure of the theory is better
defined by more general properties of the kernels. Thus
van Dongen and Ernst characterize the kernels by two
exponents A. and p, defined by

K (ai, aj) =a K (i j ),
K(i,j ) i "j ' (j-» i) .

(3)

(4)

Equation (3) defines the homogeneity of the kernel
A, =@+v, and the exponent p further divides the kernel
into three separate classes. In class I, p) 0; in class II,
p=0; and in class III, p &0. For non-negative homo-
geneities A, )0, the product, sum, and Brownian kernels
are class I, II, and III, respectively. If A, ) 1, mass is not
conserved and the system gels.

When the cluster size distribution has the scaling
form, Eq. (2), the cluster incan size s scales with time as
t'. The other scaling exponents are found when one
considers the small-x limit of iij(x).

For class I, g(x)-x ~' for x &&1, where iu is a tem-
poral scaling exponent. For class III, g(x )

—exp( —x " ) for x «1. Class-II systems appear to
depend on the details of the kernel. For our purposes
we shall take g(x)-x ~' when x &&1 for the sum kernel
(class II), as this is consistent with the simulation result
of Kang et al. To summarize, the kernels we will con-
sider will yield the following x « 1 properties:

Thereafter, higher-order moments achieve their asymp-
totic values as well, leading to the exact scaling distribu-
tion; hence, the exact exponent relations in the infinite
time limit.

II. THEORY

M;= v'n vdv .
0

(9)

Using the approximate scaling form (8) and making a
change of variables, the moments can be written as

(10)

where

P, = I x' g(x)dx .
0

The integral (11) may diverge at either the upper or
lower limits. To ensure that it does not, we will consider
separately the two difFerent small-x limits, Eqs. (5), of
the scaling function. For the product and sum kernels
the small-x limit of the scaling function is [Eq. (5a)]

Q(x)-x

and the large-x limit must be g(x) =0. This means that
the integral (11) is either finite or dominated by the
lower end of the scaling function.

Substitution of Eq. (5) into Eq. (11) and using Eq. (7),
one finds

f X dX
0

(12)

This integral is finite for ~ &i + 1; however, it diverges at
the lower limit for ~)i +1. To resolve this problem we
revert back to volume space and note that the lower lim-
it is now v&, the volume of a monomer. Therefore, the
integral is finite and we obtain

P, —t "' ' v' 'dv, v) 1 +1
Ui

(13)

Using Eqs. (10) and (13) the time dependence of the mo-
ments for the product and sum kernels are

selves to nongelling, mass conserved systems so that
0 & k & 1 and w & 2. We also make the following three as-
sumptions.

(i) The discrete form of the SE can be replaced by the
continuous form.

(ii) The cluster size distribution has evolved sufficiently
so that it may be approximated by

n (u)=M, u g(ult'),
where v -k is the cluster volume.

(iii) The exponents iu, r, and z are at most weak func-
tions of time.

The moments of the cluster size distribution are
defined by

iij(x) -x ~' (sum and product),

ii (x ) —exp( —x " ) ( Brownian ) .

(sa)

(5b)
M, -t, ~)i+1 .

(14a)

(14b)
Application of Eq. (5a) to Eq. (2) yields for x «1

n„(t) k-
where ~ is defined by the scaling relation

iu =z (2 —r) (7)

and ~ is constrained to z &2 by the conservation of mass.
In the following formulation we will constrain our-

Next we consider the Brownian kernel. In view of Eq.
(5b), the integral (9) is finite for all values of i and the
time dependence of the moment is given by Eq. (14a).
Because of this, we will concern ourselves only with the
product and sum kernels for the rest of this section,
remembering that the results for the Brownian kernel
are the same as for the product and sum kernels when
z& 1.
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M, = f "du f du[(u+u)' —u' —u']K(u, u)n(U)n(u) .
0 0

Using Eq. (8) and changing variables, Eq. (15) becomes

M =M't" +' "I (K)1
(16)

where

The next step is the central one in this approach to
the exponent relations. We now require the rate at
which the moments change as given in Eqs. (14) equal
the rate at which they are required to change using the
SE. Multiplying the SE in Eq. (1) by k', summing over
all k, and converting to the continuous form, gives

Kernel

Product

Product

Product

Sum

Brownian

7 range

1&7&1+—
2

7& 1+k/2

7& 1+X

7& 1+k

all 7

1 —A,

2—7

2 —7
1 —A,

2 —7
1 —A,

1

1 —k
1

7—k
1

2 —7
1

1 —A,

1

2 —7
1

1 —A.

TABLE I. Scaling exponents w and z for various kernels of
homogeneity k and various ranges of 7, derived under the as-
sumption that only the zeroth moment of the cluster size distri-
bution accurately refiects the scaling form.

I, (K)= f "dx f "
dy[(x +y)' —x' —y'](xy)

0 0

XK (x,y)g(x )P(y) . (17)
t —2z(p 1+w/z—) dU du (uU)p

—2+m/z
0 p U lC

1 1

Here again we must make sure that Eq. (17) does not
diverge at the lower limit. It is at this point that we use
the assumption that the scaling form of the cluster size
distribution is only an approximation. If it were exact,
we would require that Eq. (16) be equivalent to the time
derivatives of Eq. (14) for all i. Since it is approximate,
we only require that they hold for a single i. We choose
i =0 because it is the lowest-order description of the
evolution of the size distribution. Also consideration of
the zeroth moment causes divergences in Eq. (17) at the
lower limit, and it is these divergences that yield the ad-
ditional exponent relations. Because Eq. (16) is also ker-
nel dependent, we must analyze the two kernels sepa-
rately. Since the procedure is the same for both kernels,
we will describe the procedure for the product kernel
and report the exponent relations for all three kernels.

Substitution of the product kernel into Eq. (17) with
i =0, we obtain

(20)

Mp-t" 2), 7& 1+&/2

-t "', 7) 1+A/2 .

(21a)

(21b)

Equating these time dependences to those of Eq. (14)
with i =0 and using Eq. (7) we find the additional ex-
ponent relations

1 7&1

1
1 &7& 1+k/2 (22)

Using Eq. (16) the time dependence of the zeroth mo-
ment is

Io(K ) = —f dx f dy (xy)P ttt(x)1(j(y) . (18) 2 —7
7& 1+X/2 .

Because of a possible divergence of Eq. (18) at the lower
limit, the small-x limit for the scaling functions, Eq. (5a),
is used to obtain

I (K )= — dx xP —2+w /z dyyP
—2+w /z

p p
X X

0
(19)

This integral is finite for P—2+tv/z & —1 or, using Eq.
(17) and A, =2P, r& 1+X/2. However, if r& 1+1/2, Eq.
(19) diverges at the lower limit and we must convert
back to volume space, where the integrals are finite.
This gives

These results as we11 as those for the sum and Brownian
kernel are summarized in Table I.

Now we consider the asymptotic regime where the
scaling form Eq. (8) is exact. Thus the time derivatives
of the moments calculated from Eq. (8) should agree
with the time derivatives calculated from the SE, Eq.
(16), for all i This req.uires that we find the time depen-
dence of I, (K) in Eq. (17). First, binomially expand
(x +y)' in the integrand for i &2. The case for i =0 has
been worked out above and i =1 yields a constant mo-
ment. The small-x limit of g(x), Eq. (5a), is used to ob-
tain

I;(K ) —f dx f dy ix' 'y + ' ' x' y + +ixy' ' (xy)p
i (i —1)

(23)
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TABLE II. Product kernel scaling exponents. Experimental values are the results of the simula-
tions of Kang et al. ; theoretical values are the predictions of Table I given the values of ~ from the
experiment and the kernel homogeniety, X.

t &10
A, =O. 50

t &10 t &10
X=0.80

t &104
Expt.

1.5
0.95
1.4

Theo r.

2. 1

2.0

Expt.

1.0
1.4
1.9

Theor.

1.0

1.7

Expt.

1.6
1.3
2.4

Theor.

1.4

2.0

Expt.

1.1

1.7
4.0

Theo r.

1.0

3.3

where use has been made of Eq. (7).
These integrals diverge if i +p —r & 0; otherwise,

I, (K) is finite and the t dependence of M, for i & 2 and
i +p r& 0 i—s given by

tz(i +k —2)
I

For the divergent case we transform back to volume
space, where the integrand is finite. Upon transforma-
tion all the terms in Eq. (23) have the same order in t
which is z (2r —2 —A. —i ) Co.mbination into Eq. (16)
yields the result

M, —t" ', ~&i+k/2, i )2

M, -t, ~)i +k/2, ~ )2 .

(24a)

(24b)

For nongelling, mass conservative systems one must
have r & 2. Hence, for A =2p & 0 and i & 2 both Eq.
(14b) and Eq. (24b) are irrelevant. Requiring consistency
between M, calculated from the scaling distribution, Eq.
(14a), and the SE equation, Eq. (24a), we obtain only one
condition

(25)

Since this holds for all i, it holds for when the scaling
distribution (8) is the correct distribution; hence, Eq. (25)
is an asymptotic condition.

We now combine the requirement of moment time
evolution consistency for i )2, which leads to the well-
known result in Eq. (25), with the similar requirement
for i =0, which led to the relations in Table I. These
conditions should be met in the asymptotic time limit
when the scaling distribution is achieved and hence is
accurately represented by all its moments. It is evident
that the requirement Eq. (25) is met by all three kernels
when ~ & 1. In this case the exponent w is irrelevant be-
cause all the moments of the distribution scale as t"

with z =1/(1 —k). When r & 1, the kernels must be ex-
amined separately. With the product kernel, Eq. (25)
implies w =1 and ~=1+k, in agreement with previously
published results. '' For the sum kernel we only obtain
an upper bound on ~, ~(1+A,. This upper limit is also
in agreement with previously published results.

III. COMPARISON WITH COMPUTER SIMULATIONS

We now compare our results to the simulations of
Kang et a/. These simulations were performed in the
mean-field limit and hence one expects the Smolu-
chowski equation to be a valid description of the coagu-
lation process. We use their measured value of ~ and the
homogeneity A. of their coagulation kernels to calculate
the exponents w and z using the relations in Table I.
The comparisons for the product kernel are summarized
in Table II ~ We note that neither time regime can be
considered asymptotic since ~ never equals 1+A. as it
should in the asymptotic regime for the product kernel.
Agreement is fairly good since the discrepancies between
theory and experiment seen in Table I can be accounted
for in all but the short-time P=A, /2=0. 25 values if we
assume an error of 5% or less in the measurements of ~.
The discrepancies in the P=0.25 values can be attribut-
ed to the fact that ~ is probably not a weak function of
time in this regime, contradicting the original assump-
tion.

The comparisons for the sum kernel are shown in
Table III. Excellent agreement is seen for all values of
P. This indicates that r is a weak function of time, even
early in the simulation and that the zeroth moment, hav-
ing reached its asymptotic value, provides an accurate
description of the size distribution. Thus the time
dependence of the exponents is dependent on the form of
the coagulation kernel. With the product kernel the ex-
ponents reached their asymptotic value relatively quick-
ly, while for the sum kernel they approach relatively

TABLE III. Sum kernel scaling exponents. Experimental values are the results of the simulations
of Kang et al. ; theoretical values are the predictions of Table I given the values of ~ from the experi-
ment and the kernel homogeneity, A, .

Expt.

1.76
0.63
1.32

X=0.25
Theo r.

1.82

1.33

Expt.

1.75
0.84
1.56

A, =0.40
Theo r.

1.93

1.67

Expt.

2.5
1 ' 3
3.3

A, =0.75
Theor.

2.8

4.0
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slowly. This is also manifest in the computer simula-
tions. Kang et al. noted that they were able to reach
the asymptotic values of all the exponents using the
product kernel but were unable to do with the sum ker-
nel even at the longest time available.

IV. CONCLUSIONS

The results of Kang et al. suggest that achievement of
the asymptotic scaling cluster size distribution and its
associated exponents take a considerable amount of time.
During this approach to scaling, pseudoscaling is found
with nonasymptotic exponents which still obey
w =z(2 —r) if the exponents do not vary too quickly.
We can predict the values of these intermediate time ex-
ponents by enforcing consistency between the Smolu-
chowski equation and the scaling distribution ansatz for
the zeroth-order moment of the distribution. This im-
plies that during a cluster size distribution's evolution
from an arbitrary initial shape to the asymptotic scaling
form, the first moment to achieve its asymptotic or scal-

ing value is the zeroth moment. When consistency be-
tween the SE and the scaling ansatz is enforced for all
moments, we found that the usual, asymptotic exponent
values were obtained. Hence we propose that higher
moments sequentially approach their asymptotic values
as the coagulation proceeds.

The consistency-of-moments approach we have used
here is simple yet powerful in that it can predict ex-
ponents in both the nonasymptotic and asymptotic time
regimes if the exponents do not vary too quickly. Et

would be interesting to simulate the behavior of the mo-
ments of a distribution to study how they evolve into
their asymptotic values during coagulation.
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